Files
f1-race-prediction/project/Modeling.ipynb

1250 lines
392 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Formula One Project: Modeling\n",
"\n",
"DUE: December 4th, 2024 (Wed) \n",
"Name(s): Sean O'Connor, Connor Coles \n",
"Class: CSCI 349 - Intro to Data Mining \n",
"Semester: Fall 2024 \n",
"Instructor: Brian King "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Assignment Description\n",
"\n",
"Copy over the important cells from the previous step that read in and cleaned your data to this new notebook file. You do not need to copy over all your EDA and plots describing your data, only the code that prepares your data for modeling. This notebook is about exploring the development of predictive models. Some initial preliminary work on applying some modeling techniques should be completed.\n",
"Be sure to commit and push all supporting code that you've completed in this file. Include in this notebook a summary cell at the top that details your accomplishments, challenges, and what you expect to accomplish for your final steps. Be sure to update your readme.md in your repository."
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"# Importing Libraries\n",
"import pandas as pd\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"import os\n",
"\n",
"import fastf1\n",
"import fastf1.plotting\n",
"from fastf1.ergast.structure import FastestLap\n",
"\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.preprocessing import StandardScaler\n",
"from sklearn.linear_model import LinearRegression\n",
"from sklearn.ensemble import RandomForestRegressor\n",
"from sklearn.metrics import mean_squared_error, r2_score\n",
"from sklearn.tree import DecisionTreeRegressor\n",
"from sklearn.ensemble import GradientBoostingRegressor\n",
"from sklearn.svm import SVR\n",
"import xgboost as xgb\n",
"from sklearn.model_selection import cross_val_score"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"# FastF1 general setup\n",
"cache_dir = '../data/cache'\n",
"if not os.path.exists(cache_dir):\n",
" os.makedirs(cache_dir)\n",
"\n",
"fastf1.Cache.enable_cache(cache_dir)\n",
"fastf1.plotting.setup_mpl(misc_mpl_mods=False, color_scheme=None)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"# Define years, sessions, and events of interest\n",
"years = [2021, 2022, 2023, 2024]\n",
"sessions = ['Race']\n",
"events = ['Bahrain Grand Prix', 'British Grand Prix', 'United States Grand Prix', 'Mexico City Grand Prix', 'São Paulo Grand Prix'] "
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Processing 2021 Bahrain Grand Prix - Race\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"core INFO \tLoading data for Bahrain Grand Prix - Race [v3.4.4]\n",
"req INFO \tUsing cached data for session_info\n",
"req INFO \tUsing cached data for driver_info\n",
"logger WARNING \tFailed to load result data from Ergast!\n",
"core WARNING \tNo result data for this session available on Ergast! (This is expected for recent sessions)\n",
"req INFO \tUsing cached data for session_status_data\n",
"req INFO \tUsing cached data for lap_count\n",
"req INFO \tUsing cached data for track_status_data\n",
"req INFO \tUsing cached data for _extended_timing_data\n",
"req INFO \tUsing cached data for timing_app_data\n",
"core INFO \tProcessing timing data...\n",
"logger WARNING \tFailed to add first lap time from Ergast!\n",
"req INFO \tUsing cached data for car_data\n",
"req INFO \tUsing cached data for position_data\n",
"req INFO \tUsing cached data for weather_data\n",
"req INFO \tUsing cached data for race_control_messages\n",
"core INFO \tFinished loading data for 20 drivers: ['33', '44', '77', '16', '10', '3', '4', '55', '14', '18', '11', '99', '22', '7', '63', '31', '6', '47', '9', '5']\n",
"core INFO \tLoading data for British Grand Prix - Race [v3.4.4]\n",
"req INFO \tUsing cached data for session_info\n",
"req INFO \tUsing cached data for driver_info\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Processing 2021 British Grand Prix - Race\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"logger WARNING \tFailed to load result data from Ergast!\n",
"core WARNING \tNo result data for this session available on Ergast! (This is expected for recent sessions)\n",
"req INFO \tUsing cached data for session_status_data\n",
"req INFO \tUsing cached data for lap_count\n",
"req INFO \tUsing cached data for track_status_data\n",
"req INFO \tUsing cached data for _extended_timing_data\n",
"req INFO \tUsing cached data for timing_app_data\n",
"core INFO \tProcessing timing data...\n",
"logger WARNING \tFailed to add first lap time from Ergast!\n",
"req INFO \tUsing cached data for car_data\n",
"req INFO \tUsing cached data for position_data\n",
"req INFO \tUsing cached data for weather_data\n",
"req INFO \tUsing cached data for race_control_messages\n",
"core INFO \tFinished loading data for 20 drivers: ['33', '44', '77', '16', '4', '3', '14', '5', '31', '55', '10', '63', '7', '18', '99', '22', '6', '47', '9', '11']\n",
"core INFO \tLoading data for United States Grand Prix - Race [v3.4.4]\n",
"req INFO \tUsing cached data for session_info\n",
"req INFO \tUsing cached data for driver_info\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Processing 2021 United States Grand Prix - Race\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"logger WARNING \tFailed to load result data from Ergast!\n",
"core WARNING \tNo result data for this session available on Ergast! (This is expected for recent sessions)\n",
"req INFO \tUsing cached data for session_status_data\n",
"req INFO \tUsing cached data for lap_count\n",
"req INFO \tUsing cached data for track_status_data\n",
"req INFO \tUsing cached data for _extended_timing_data\n",
"req INFO \tUsing cached data for timing_app_data\n",
"core INFO \tProcessing timing data...\n",
"core WARNING \tDriver 7: Lap timing integrity check failed for 1 lap(s)\n",
"logger WARNING \tFailed to add first lap time from Ergast!\n",
"req INFO \tUsing cached data for car_data\n",
"req INFO \tUsing cached data for position_data\n",
"req INFO \tUsing cached data for weather_data\n",
"req INFO \tUsing cached data for race_control_messages\n",
"core INFO \tFinished loading data for 20 drivers: ['33', '44', '11', '16', '55', '3', '4', '10', '77', '22', '31', '99', '18', '6', '7', '47', '9', '5', '14', '63']\n",
"core INFO \tLoading data for Mexico City Grand Prix - Race [v3.4.4]\n",
"req INFO \tUsing cached data for session_info\n",
"req INFO \tUsing cached data for driver_info\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Processing 2021 Mexico City Grand Prix - Race\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"logger WARNING \tFailed to load result data from Ergast!\n",
"core WARNING \tNo result data for this session available on Ergast! (This is expected for recent sessions)\n",
"req INFO \tUsing cached data for session_status_data\n",
"req INFO \tUsing cached data for lap_count\n",
"req INFO \tUsing cached data for track_status_data\n",
"req INFO \tUsing cached data for _extended_timing_data\n",
"req INFO \tUsing cached data for timing_app_data\n",
"core INFO \tProcessing timing data...\n",
"logger WARNING \tFailed to add first lap time from Ergast!\n",
"req INFO \tUsing cached data for car_data\n",
"req INFO \tUsing cached data for position_data\n",
"req INFO \tUsing cached data for weather_data\n",
"req INFO \tUsing cached data for race_control_messages\n",
"core INFO \tFinished loading data for 20 drivers: ['77', '44', '33', '11', '10', '55', '3', '16', '5', '7', '99', '14', '6', '47', '9', '63', '22', '4', '31', '18']\n",
"core INFO \tLoading data for São Paulo Grand Prix - Race [v3.4.4]\n",
"req INFO \tUsing cached data for session_info\n",
"req INFO \tUsing cached data for driver_info\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Processing 2021 São Paulo Grand Prix - Race\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"logger WARNING \tFailed to load result data from Ergast!\n",
"core WARNING \tNo result data for this session available on Ergast! (This is expected for recent sessions)\n",
"req INFO \tUsing cached data for session_status_data\n",
"req INFO \tUsing cached data for lap_count\n",
"req INFO \tUsing cached data for track_status_data\n",
"req INFO \tUsing cached data for _extended_timing_data\n",
"req INFO \tUsing cached data for timing_app_data\n",
"core INFO \tProcessing timing data...\n",
"logger WARNING \tFailed to add first lap time from Ergast!\n",
"req INFO \tUsing cached data for car_data\n",
"req INFO \tUsing cached data for position_data\n",
"req INFO \tUsing cached data for weather_data\n",
"req INFO \tUsing cached data for race_control_messages\n",
"core INFO \tFinished loading data for 20 drivers: ['77', '33', '55', '11', '4', '16', '10', '31', '5', '44', '3', '14', '99', '18', '22', '6', '63', '47', '9', '7']\n",
"core INFO \tLoading data for Bahrain Grand Prix - Race [v3.4.4]\n",
"req INFO \tUsing cached data for session_info\n",
"req INFO \tUsing cached data for driver_info\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Processing 2022 Bahrain Grand Prix - Race\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"logger WARNING \tFailed to load result data from Ergast!\n",
"core WARNING \tNo result data for this session available on Ergast! (This is expected for recent sessions)\n",
"req INFO \tUsing cached data for session_status_data\n",
"req INFO \tUsing cached data for lap_count\n",
"req INFO \tUsing cached data for track_status_data\n",
"req INFO \tUsing cached data for _extended_timing_data\n",
"req INFO \tUsing cached data for timing_app_data\n",
"core INFO \tProcessing timing data...\n",
"logger WARNING \tFailed to add first lap time from Ergast!\n",
"req INFO \tUsing cached data for car_data\n",
"req INFO \tUsing cached data for position_data\n",
"req INFO \tUsing cached data for weather_data\n",
"req INFO \tUsing cached data for race_control_messages\n",
"core INFO \tFinished loading data for 20 drivers: ['16', '1', '55', '11', '44', '77', '20', '14', '63', '10', '31', '47', '4', '23', '24', '22', '27', '3', '18', '6']\n",
"core INFO \tLoading data for British Grand Prix - Race [v3.4.4]\n",
"req INFO \tUsing cached data for session_info\n",
"req INFO \tUsing cached data for driver_info\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Processing 2022 British Grand Prix - Race\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"logger WARNING \tFailed to load result data from Ergast!\n",
"core WARNING \tNo result data for this session available on Ergast! (This is expected for recent sessions)\n",
"req INFO \tUsing cached data for session_status_data\n",
"req INFO \tUsing cached data for lap_count\n",
"req INFO \tUsing cached data for track_status_data\n",
"req INFO \tUsing cached data for _extended_timing_data\n",
"req INFO \tUsing cached data for timing_app_data\n",
"core INFO \tProcessing timing data...\n",
"logger WARNING \tFailed to add first lap time from Ergast!\n",
"req INFO \tUsing cached data for car_data\n",
"req INFO \tUsing cached data for position_data\n",
"req INFO \tUsing cached data for weather_data\n",
"req INFO \tUsing cached data for race_control_messages\n",
"core INFO \tFinished loading data for 20 drivers: ['55', '1', '16', '11', '44', '4', '14', '63', '24', '6', '10', '77', '22', '3', '31', '23', '20', '5', '47', '18']\n",
"events WARNING \tCorrecting user input 'United States Grand Prix' to 'United States Grand Prix'\n",
"core INFO \tLoading data for United States Grand Prix - Race [v3.4.4]\n",
"req INFO \tUsing cached data for session_info\n",
"req INFO \tUsing cached data for driver_info\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Processing 2022 United States Grand Prix - Race\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"logger WARNING \tFailed to load result data from Ergast!\n",
"core WARNING \tNo result data for this session available on Ergast! (This is expected for recent sessions)\n",
"req INFO \tUsing cached data for session_status_data\n",
"req INFO \tUsing cached data for lap_count\n",
"req INFO \tUsing cached data for track_status_data\n",
"req INFO \tUsing cached data for _extended_timing_data\n",
"req INFO \tUsing cached data for timing_app_data\n",
"core INFO \tProcessing timing data...\n",
"logger WARNING \tFailed to add first lap time from Ergast!\n",
"req INFO \tUsing cached data for car_data\n",
"req INFO \tUsing cached data for position_data\n",
"req INFO \tUsing cached data for weather_data\n",
"req INFO \tUsing cached data for race_control_messages\n",
"core INFO \tFinished loading data for 20 drivers: ['55', '1', '44', '63', '18', '4', '77', '23', '11', '5', '10', '16', '20', '14', '3', '47', '6', '24', '22', '31']\n",
"core INFO \tLoading data for Mexico City Grand Prix - Race [v3.4.4]\n",
"req INFO \tUsing cached data for session_info\n",
"req INFO \tUsing cached data for driver_info\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Processing 2022 Mexico City Grand Prix - Race\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"logger WARNING \tFailed to load result data from Ergast!\n",
"core WARNING \tNo result data for this session available on Ergast! (This is expected for recent sessions)\n",
"req INFO \tUsing cached data for session_status_data\n",
"req INFO \tUsing cached data for lap_count\n",
"req INFO \tUsing cached data for track_status_data\n",
"req INFO \tUsing cached data for _extended_timing_data\n",
"req INFO \tUsing cached data for timing_app_data\n",
"core INFO \tProcessing timing data...\n",
"logger WARNING \tFailed to add first lap time from Ergast!\n",
"req INFO \tUsing cached data for car_data\n",
"req INFO \tUsing cached data for position_data\n",
"req INFO \tUsing cached data for weather_data\n",
"req INFO \tUsing cached data for race_control_messages\n",
"core INFO \tFinished loading data for 20 drivers: ['1', '63', '44', '11', '55', '77', '16', '4', '14', '31', '3', '24', '22', '10', '47', '5', '23', '6', '20', '18']\n",
"core INFO \tLoading data for São Paulo Grand Prix - Race [v3.4.4]\n",
"req INFO \tUsing cached data for session_info\n",
"req INFO \tUsing cached data for driver_info\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Processing 2022 São Paulo Grand Prix - Race\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"logger WARNING \tFailed to load result data from Ergast!\n",
"core WARNING \tNo result data for this session available on Ergast! (This is expected for recent sessions)\n",
"req INFO \tUsing cached data for session_status_data\n",
"req INFO \tUsing cached data for lap_count\n",
"req INFO \tUsing cached data for track_status_data\n",
"req INFO \tUsing cached data for _extended_timing_data\n",
"req INFO \tUsing cached data for timing_app_data\n",
"core INFO \tProcessing timing data...\n",
"logger WARNING \tFailed to add first lap time from Ergast!\n",
"req INFO \tUsing cached data for car_data\n",
"req INFO \tUsing cached data for position_data\n",
"req INFO \tUsing cached data for weather_data\n",
"req INFO \tUsing cached data for race_control_messages\n",
"core INFO \tFinished loading data for 20 drivers: ['63', '44', '1', '11', '16', '4', '55', '20', '5', '10', '3', '47', '24', '77', '18', '31', '14', '6', '23', '22']\n",
"core INFO \tLoading data for Bahrain Grand Prix - Race [v3.4.4]\n",
"req INFO \tUsing cached data for session_info\n",
"req INFO \tUsing cached data for driver_info\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Processing 2023 Bahrain Grand Prix - Race\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"logger WARNING \tFailed to load result data from Ergast!\n",
"core WARNING \tNo result data for this session available on Ergast! (This is expected for recent sessions)\n",
"req INFO \tUsing cached data for session_status_data\n",
"req INFO \tUsing cached data for lap_count\n",
"req INFO \tUsing cached data for track_status_data\n",
"req INFO \tUsing cached data for _extended_timing_data\n",
"req INFO \tUsing cached data for timing_app_data\n",
"core INFO \tProcessing timing data...\n",
"logger WARNING \tFailed to add first lap time from Ergast!\n",
"req INFO \tUsing cached data for car_data\n",
"req INFO \tUsing cached data for position_data\n",
"req INFO \tUsing cached data for weather_data\n",
"req INFO \tUsing cached data for race_control_messages\n",
"core INFO \tFinished loading data for 20 drivers: ['1', '11', '16', '55', '14', '63', '44', '18', '31', '27', '4', '77', '24', '22', '23', '2', '20', '81', '21', '10']\n",
"core INFO \tLoading data for British Grand Prix - Race [v3.4.4]\n",
"req INFO \tUsing cached data for session_info\n",
"req INFO \tUsing cached data for driver_info\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Processing 2023 British Grand Prix - Race\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"logger WARNING \tFailed to load result data from Ergast!\n",
"core WARNING \tNo result data for this session available on Ergast! (This is expected for recent sessions)\n",
"req INFO \tUsing cached data for session_status_data\n",
"req INFO \tUsing cached data for lap_count\n",
"req INFO \tUsing cached data for track_status_data\n",
"req INFO \tUsing cached data for _extended_timing_data\n",
"req INFO \tUsing cached data for timing_app_data\n",
"core INFO \tProcessing timing data...\n",
"logger WARNING \tFailed to add first lap time from Ergast!\n",
"req INFO \tUsing cached data for car_data\n",
"req INFO \tUsing cached data for position_data\n",
"req INFO \tUsing cached data for weather_data\n",
"req INFO \tUsing cached data for race_control_messages\n",
"core INFO \tFinished loading data for 20 drivers: ['1', '4', '81', '16', '55', '63', '44', '23', '14', '10', '27', '18', '31', '2', '11', '22', '24', '21', '20', '77']\n",
"events WARNING \tCorrecting user input 'United States Grand Prix' to 'United States Grand Prix'\n",
"core INFO \tLoading data for United States Grand Prix - Race [v3.4.4]\n",
"req INFO \tUsing cached data for session_info\n",
"req INFO \tUsing cached data for driver_info\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Processing 2023 United States Grand Prix - Race\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"logger WARNING \tFailed to load result data from Ergast!\n",
"core WARNING \tNo result data for this session available on Ergast! (This is expected for recent sessions)\n",
"req INFO \tUsing cached data for session_status_data\n",
"req INFO \tUsing cached data for lap_count\n",
"req INFO \tUsing cached data for track_status_data\n",
"req INFO \tUsing cached data for _extended_timing_data\n",
"req INFO \tUsing cached data for timing_app_data\n",
"core INFO \tProcessing timing data...\n",
"logger WARNING \tFailed to add first lap time from Ergast!\n",
"req INFO \tUsing cached data for car_data\n",
"req INFO \tUsing cached data for position_data\n",
"req INFO \tUsing cached data for weather_data\n",
"req INFO \tUsing cached data for race_control_messages\n",
"core INFO \tFinished loading data for 20 drivers: ['16', '4', '44', '55', '63', '1', '10', '31', '11', '81', '22', '24', '77', '3', '23', '2', '20', '27', '14', '18']\n",
"core INFO \tLoading data for Mexico City Grand Prix - Race [v3.4.4]\n",
"req INFO \tUsing cached data for session_info\n",
"req INFO \tUsing cached data for driver_info\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Processing 2023 Mexico City Grand Prix - Race\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"logger WARNING \tFailed to load result data from Ergast!\n",
"core WARNING \tNo result data for this session available on Ergast! (This is expected for recent sessions)\n",
"req INFO \tUsing cached data for session_status_data\n",
"req INFO \tUsing cached data for lap_count\n",
"req INFO \tUsing cached data for track_status_data\n",
"req INFO \tUsing cached data for _extended_timing_data\n",
"req INFO \tUsing cached data for timing_app_data\n",
"core INFO \tProcessing timing data...\n",
"logger WARNING \tFailed to add first lap time from Ergast!\n",
"req INFO \tUsing cached data for car_data\n",
"req INFO \tUsing cached data for position_data\n",
"req INFO \tUsing cached data for weather_data\n",
"req INFO \tUsing cached data for race_control_messages\n",
"core INFO \tFinished loading data for 20 drivers: ['16', '55', '1', '3', '11', '44', '81', '63', '77', '24', '10', '27', '14', '23', '31', '20', '4', '22', '2', '18']\n",
"core INFO \tLoading data for São Paulo Grand Prix - Race [v3.4.4]\n",
"req INFO \tUsing cached data for session_info\n",
"req INFO \tUsing cached data for driver_info\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Processing 2023 São Paulo Grand Prix - Race\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"logger WARNING \tFailed to load result data from Ergast!\n",
"core WARNING \tNo result data for this session available on Ergast! (This is expected for recent sessions)\n",
"req INFO \tUsing cached data for session_status_data\n",
"req INFO \tUsing cached data for lap_count\n",
"req INFO \tUsing cached data for track_status_data\n",
"req INFO \tUsing cached data for _extended_timing_data\n",
"req INFO \tUsing cached data for timing_app_data\n",
"core INFO \tProcessing timing data...\n",
"logger WARNING \tFailed to add first lap time from Ergast!\n",
"req INFO \tUsing cached data for car_data\n",
"req INFO \tUsing cached data for position_data\n",
"req INFO \tUsing cached data for weather_data\n",
"req INFO \tUsing cached data for race_control_messages\n",
"core INFO \tFinished loading data for 20 drivers: ['1', '16', '18', '14', '44', '4', '55', '63', '11', '81', '27', '20', '23', '31', '10', '22', '3', '77', '2', '24']\n",
"core INFO \tLoading data for Bahrain Grand Prix - Race [v3.4.4]\n",
"req INFO \tUsing cached data for session_info\n",
"req INFO \tUsing cached data for driver_info\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Processing 2024 Bahrain Grand Prix - Race\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"logger WARNING \tFailed to load result data from Ergast!\n",
"core WARNING \tNo result data for this session available on Ergast! (This is expected for recent sessions)\n",
"req INFO \tUsing cached data for session_status_data\n",
"req INFO \tUsing cached data for lap_count\n",
"req INFO \tUsing cached data for track_status_data\n",
"req INFO \tUsing cached data for _extended_timing_data\n",
"req INFO \tUsing cached data for timing_app_data\n",
"core INFO \tProcessing timing data...\n",
"logger WARNING \tFailed to add first lap time from Ergast!\n",
"req INFO \tUsing cached data for car_data\n",
"req INFO \tUsing cached data for position_data\n",
"req INFO \tUsing cached data for weather_data\n",
"req INFO \tUsing cached data for race_control_messages\n",
"core INFO \tFinished loading data for 20 drivers: ['1', '16', '63', '55', '11', '14', '4', '81', '44', '27', '22', '18', '23', '3', '20', '77', '24', '2', '31', '10']\n",
"core INFO \tLoading data for British Grand Prix - Race [v3.4.4]\n",
"req INFO \tUsing cached data for session_info\n",
"req INFO \tUsing cached data for driver_info\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Processing 2024 British Grand Prix - Race\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"logger WARNING \tFailed to load result data from Ergast!\n",
"core WARNING \tNo result data for this session available on Ergast! (This is expected for recent sessions)\n",
"req INFO \tUsing cached data for session_status_data\n",
"req INFO \tUsing cached data for lap_count\n",
"req INFO \tUsing cached data for track_status_data\n",
"req INFO \tUsing cached data for _extended_timing_data\n",
"req INFO \tUsing cached data for timing_app_data\n",
"core INFO \tProcessing timing data...\n",
"logger WARNING \tFailed to add first lap time from Ergast!\n",
"req INFO \tUsing cached data for car_data\n",
"req INFO \tUsing cached data for position_data\n",
"req INFO \tUsing cached data for weather_data\n",
"req INFO \tUsing cached data for race_control_messages\n",
"core INFO \tFinished loading data for 20 drivers: ['63', '44', '4', '1', '81', '27', '55', '18', '23', '14', '16', '2', '22', '24', '3', '77', '20', '31', '10', '11']\n",
"events WARNING \tCorrecting user input 'United States Grand Prix' to 'United States Grand Prix'\n",
"core INFO \tLoading data for United States Grand Prix - Race [v3.4.4]\n",
"req INFO \tUsing cached data for session_info\n",
"req INFO \tUsing cached data for driver_info\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Processing 2024 United States Grand Prix - Race\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"logger WARNING \tFailed to load result data from Ergast!\n",
"core WARNING \tNo result data for this session available on Ergast! (This is expected for recent sessions)\n",
"req INFO \tUsing cached data for session_status_data\n",
"req INFO \tUsing cached data for lap_count\n",
"req INFO \tUsing cached data for track_status_data\n",
"req INFO \tUsing cached data for _extended_timing_data\n",
"req INFO \tUsing cached data for timing_app_data\n",
"core INFO \tProcessing timing data...\n",
"logger WARNING \tFailed to add first lap time from Ergast!\n",
"req INFO \tUsing cached data for car_data\n",
"req INFO \tUsing cached data for position_data\n",
"req INFO \tUsing cached data for weather_data\n",
"req INFO \tUsing cached data for race_control_messages\n",
"core INFO \tFinished loading data for 20 drivers: ['4', '1', '55', '16', '81', '10', '14', '20', '11', '22', '27', '31', '18', '23', '43', '77', '44', '24', '30', '63']\n",
"core INFO \tLoading data for Mexico City Grand Prix - Race [v3.4.4]\n",
"req INFO \tUsing cached data for session_info\n",
"req INFO \tUsing cached data for driver_info\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Processing 2024 Mexico City Grand Prix - Race\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"logger WARNING \tFailed to load result data from Ergast!\n",
"core WARNING \tNo result data for this session available on Ergast! (This is expected for recent sessions)\n",
"req INFO \tUsing cached data for session_status_data\n",
"req INFO \tUsing cached data for lap_count\n",
"req INFO \tUsing cached data for track_status_data\n",
"req INFO \tUsing cached data for _extended_timing_data\n",
"req INFO \tUsing cached data for timing_app_data\n",
"core INFO \tProcessing timing data...\n",
"logger WARNING \tFailed to add first lap time from Ergast!\n",
"req INFO \tUsing cached data for car_data\n",
"req INFO \tUsing cached data for position_data\n",
"req INFO \tUsing cached data for weather_data\n",
"req INFO \tUsing cached data for race_control_messages\n",
"core INFO \tFinished loading data for 20 drivers: ['55', '1', '4', '16', '63', '44', '20', '10', '23', '27', '22', '30', '14', '18', '77', '43', '81', '11', '24', '31']\n",
"core INFO \tLoading data for São Paulo Grand Prix - Race [v3.4.4]\n",
"req INFO \tUsing cached data for session_info\n",
"req INFO \tUsing cached data for driver_info\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Processing 2024 São Paulo Grand Prix - Race\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"logger WARNING \tFailed to load result data from Ergast!\n",
"core WARNING \tNo result data for this session available on Ergast! (This is expected for recent sessions)\n",
"req INFO \tUsing cached data for session_status_data\n",
"req INFO \tUsing cached data for lap_count\n",
"req INFO \tUsing cached data for track_status_data\n",
"req INFO \tUsing cached data for _extended_timing_data\n",
"req INFO \tUsing cached data for timing_app_data\n",
"core INFO \tProcessing timing data...\n",
"core WARNING \tNo lap data for driver 23\n",
"core WARNING \tFailed to perform lap accuracy check - all laps marked as inaccurate (driver 23)\n",
"logger WARNING \tFailed to add first lap time from Ergast!\n",
"req INFO \tUsing cached data for car_data\n",
"req INFO \tUsing cached data for position_data\n",
"req INFO \tUsing cached data for weather_data\n",
"req INFO \tUsing cached data for race_control_messages\n",
"core INFO \tFinished loading data for 20 drivers: ['4', '63', '22', '31', '30', '16', '23', '81', '14', '18', '77', '11', '10', '44', '50', '43', '1', '27', '24', '55']\n"
]
}
],
"source": [
"# Get data from FastF1 API\n",
"\n",
"# Data containers\n",
"weather_data_list = []\n",
"lap_data_list = []\n",
"\n",
"# Loop through years and sessions\n",
"for year in years:\n",
" for event_name in events: \n",
" for session_name in sessions:\n",
" try:\n",
" print(f\"Processing {year} {event_name} - {session_name}\")\n",
" \n",
" # Load the session\n",
" session = fastf1.get_session(year, event_name, session_name, backend='fastf1')\n",
" session.load()\n",
" \n",
" # Process weather data\n",
" weather_data = session.weather_data\n",
" if weather_data is not None:\n",
" weather_df = pd.DataFrame(weather_data)\n",
" # Add context columns\n",
" weather_df['Year'] = year\n",
" weather_df['Event'] = event_name\n",
" weather_df['Session'] = session_name\n",
" weather_data_list.append(weather_df)\n",
"\n",
" # Process lap data\n",
" lap_data = session.laps\n",
" if lap_data is not None:\n",
" lap_df = pd.DataFrame(lap_data)\n",
" # Add context columns\n",
" lap_df['Year'] = year\n",
" lap_df['Event'] = event_name\n",
" lap_df['Session'] = session_name\n",
" # Ensure driver information is included\n",
" if 'Driver' not in lap_df.columns:\n",
" lap_df['Driver'] = lap_df['DriverNumber'].map(session.drivers)\n",
" # Add team information if available\n",
" if 'Team' not in lap_df.columns:\n",
" lap_df['Team'] = lap_df['Driver'].map(session.drivers_info['TeamName'])\n",
" lap_data_list.append(lap_df)\n",
" \n",
" except Exception as e:\n",
" print(f\"Error with {event_name} {session_name} ({year}): {e}\")\n",
"\n",
"# Combine data into DataFrames\n",
"if weather_data_list:\n",
" weather_data_combined = pd.concat(weather_data_list, ignore_index=True)\n",
" # Ensure consistent column ordering\n",
" weather_cols = ['Time', 'Year', 'Event', 'Session', \n",
" 'AirTemp', 'Humidity', 'Pressure', 'Rainfall', \n",
" 'TrackTemp', 'WindDirection', 'WindSpeed']\n",
" weather_data_combined = weather_data_combined[weather_cols]\n",
" \n",
"if lap_data_list:\n",
" lap_data_combined = pd.concat(lap_data_list, ignore_index=True)\n",
" # Ensure consistent column ordering\n",
" lap_cols = ['Time', 'Year', 'Event', 'Session', \n",
" 'Driver', 'Team', 'LapNumber', 'LapTime',\n",
" 'Sector1Time', 'Sector2Time', 'Sector3Time',\n",
" 'Compound', 'TyreLife', 'FreshTyre',\n",
" 'SpeedI1', 'SpeedI2', 'SpeedFL', 'SpeedST']\n",
" # Only include columns that exist\n",
" existing_cols = [col for col in lap_cols if col in lap_data_combined.columns]\n",
" lap_data_combined = lap_data_combined[existing_cols]\n",
" \n",
"# Time conversion\n",
"# Function to convert timedelta to datetime\n",
"def convert_timedelta_to_datetime(df, base_date='2021-01-01'):\n",
" if 'Time' in df.columns:\n",
" # Create a base datetime and add the timedelta\n",
" base = pd.Timestamp(base_date)\n",
" if df['Time'].dtype == 'timedelta64[ns]':\n",
" df['Time'] = base + df['Time']\n",
" return df\n",
"\n",
"# Apply conversion to both dataframes\n",
"weather_data_combined = convert_timedelta_to_datetime(weather_data_combined)\n",
"lap_data_combined = convert_timedelta_to_datetime(lap_data_combined)\n",
"\n",
"# Remove missing values\n",
"weather_data_combined = weather_data_combined.dropna()\n",
"lap_data_combined = lap_data_combined.dropna()\n",
"\n",
"# Create a new column for lap time in seconds\n",
"lap_data_combined['LapTime_seconds'] = lap_data_combined['LapTime'].dt.total_seconds()\n",
"\n",
"# Merge the data\n",
"merged_data = pd.merge_asof(\n",
" lap_data_combined.sort_values('Time'),\n",
" weather_data_combined.sort_values('Time'),\n",
" on='Time',\n",
" by=['Event', 'Year'], # Match within same event and year\n",
" direction='nearest',\n",
" tolerance=pd.Timedelta('1 min') # Allow matching within 1 minute\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [],
"source": [
"# Feature Engineering (per event)\n",
"def engineer_features(df):\n",
" \"\"\"\n",
" Create F1-specific features that affect lap times:\n",
" - Tire age effect (exponential decay)\n",
" - Track evolution (improving grip over session)\n",
" - Weather impact (combined temperature effects)\n",
" \"\"\"\n",
" # Tire performance degradation (exponential)\n",
" df['TyreAgeFactor'] = np.exp(-0.02 * df['TyreLife'])\n",
" \n",
" # Track evolution (grip improvement)\n",
" df['TrackEvolution'] = df.groupby(['Event', 'Year'])['LapNumber'].transform(\n",
" lambda x: (x - x.min()) / (x.max() - x.min())\n",
" )\n",
" \n",
" # Combined temperature effect (track and air)\n",
" df['TempDelta'] = df['TrackTemp'] - df['AirTemp']\n",
" \n",
" # Fuel load effect (decreasing over race)\n",
" df['FuelEffect'] = 1 - (df['LapNumber'] / df.groupby(['Event', 'Year'])['LapNumber'].transform('max'))\n",
" \n",
" return df"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"# Prepare data for modeling (per event)\n",
"def prepare_modeling_data(df):\n",
" # Engineer features\n",
" data = engineer_features(df)\n",
" \n",
" # Select features for modeling\n",
" feature_columns = [\n",
" 'TrackTemp', 'AirTemp', 'Humidity', 'WindSpeed',\n",
" 'TyreLife', 'TyreAgeFactor', 'TrackEvolution',\n",
" 'TempDelta', 'FuelEffect', 'SpeedI1', 'SpeedI2'\n",
" ]\n",
" \n",
" # Create dummy variables for categorical features (excluding Event)\n",
" data = pd.get_dummies(data, columns=['Compound', 'Team'])\n",
" \n",
" # Add categorical columns to features\n",
" feature_columns.extend([col for col in data.columns if col.startswith(('Compound_', 'Team_'))])\n",
" \n",
" return data, feature_columns"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"# Split and scale data\n",
"def prepare_train_test(data, feature_columns, target_column='LapTime_seconds'):\n",
" X = data[feature_columns]\n",
" y = data[target_column]\n",
" \n",
" X_train, X_test, y_train, y_test = train_test_split(\n",
" X, y, test_size=0.2, random_state=42\n",
" )\n",
" \n",
" scaler = StandardScaler()\n",
" X_train_scaled = scaler.fit_transform(X_train)\n",
" X_test_scaled = scaler.transform(X_test)\n",
" \n",
" return X_train_scaled, X_test_scaled, y_train, y_test, scaler"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [],
"source": [
"# Model training and evaluation\n",
"def train_and_evaluate_models(X_train, X_test, y_train, y_test):\n",
" models = {\n",
" 'Linear Regression': LinearRegression(),\n",
" 'Random Forest': RandomForestRegressor(n_estimators=100, random_state=42),\n",
" 'XGBoost': xgb.XGBRegressor(n_estimators=100, random_state=42),\n",
" 'Gradient Boosting': GradientBoostingRegressor(n_estimators=100, random_state=42)\n",
" }\n",
" \n",
" results = {}\n",
" for name, model in models.items():\n",
" # Train model\n",
" model.fit(X_train, y_train)\n",
" \n",
" # Make predictions\n",
" y_pred = model.predict(X_test)\n",
" \n",
" # Calculate metrics\n",
" mse = mean_squared_error(y_test, y_pred)\n",
" rmse = np.sqrt(mse)\n",
" r2 = r2_score(y_test, y_pred)\n",
" \n",
" # Cross-validation score\n",
" cv_scores = cross_val_score(model, X_train, y_train, cv=5, scoring='r2')\n",
" \n",
" results[name] = {\n",
" 'RMSE': rmse,\n",
" 'R2': r2,\n",
" 'CV_R2_mean': cv_scores.mean(),\n",
" 'CV_R2_std': cv_scores.std()\n",
" }\n",
" \n",
" return results, models"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [],
"source": [
"# Train models for each event\n",
"def train_event_models(merged_data):\n",
" event_models = {}\n",
" event_results = {}\n",
" \n",
" for event in merged_data['Event'].unique():\n",
" print(f\"\\nTraining models for {event}\")\n",
" \n",
" # Filter data for this event\n",
" event_data = merged_data[merged_data['Event'] == event].copy()\n",
" \n",
" # Prepare data\n",
" data, feature_columns = prepare_modeling_data(event_data)\n",
" X_train_scaled, X_test_scaled, y_train, y_test, scaler = prepare_train_test(\n",
" data, feature_columns\n",
" )\n",
" \n",
" # Train and evaluate models\n",
" results, models = train_and_evaluate_models(X_train_scaled, X_test_scaled, y_train, y_test)\n",
" \n",
" # Store results\n",
" event_models[event] = models\n",
" event_results[event] = results\n",
" \n",
" # Print results for this event\n",
" print(f\"\\nModel Performance for {event}:\")\n",
" for name, metrics in results.items():\n",
" print(f\"\\n{name}:\")\n",
" print(f\"RMSE: {metrics['RMSE']:.2f} seconds\")\n",
" print(f\"R2 Score: {metrics['R2']:.3f}\")\n",
" print(f\"Cross-validation R2: {metrics['CV_R2_mean']:.3f} (±{metrics['CV_R2_std']:.3f})\")\n",
" \n",
" # Feature importance for best model\n",
" best_model_name = max(results.items(), key=lambda x: x[1]['R2'])[0]\n",
" if best_model_name in ['Random Forest', 'XGBoost', 'Gradient Boosting']:\n",
" best_model = models[best_model_name]\n",
" feature_importance = pd.DataFrame({\n",
" 'feature': feature_columns,\n",
" 'importance': best_model.feature_importances_\n",
" }).sort_values('importance', ascending=False)\n",
" \n",
" plt.figure(figsize=(12, 6))\n",
" sns.barplot(x='importance', y='feature', data=feature_importance.head(15))\n",
" plt.title(f'Top 15 Most Important Features for {event} ({best_model_name})')\n",
" plt.tight_layout()\n",
" plt.show()\n",
" \n",
" return event_models, event_results"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Training models for Bahrain Grand Prix\n",
"\n",
"Model Performance for Bahrain Grand Prix:\n",
"\n",
"Linear Regression:\n",
"RMSE: 5.63 seconds\n",
"R2 Score: 0.490\n",
"Cross-validation R2: 0.621 (±0.031)\n",
"\n",
"Random Forest:\n",
"RMSE: 2.71 seconds\n",
"R2 Score: 0.882\n",
"Cross-validation R2: 0.886 (±0.023)\n",
"\n",
"XGBoost:\n",
"RMSE: 2.99 seconds\n",
"R2 Score: 0.857\n",
"Cross-validation R2: 0.868 (±0.023)\n",
"\n",
"Gradient Boosting:\n",
"RMSE: 2.91 seconds\n",
"R2 Score: 0.864\n",
"Cross-validation R2: 0.876 (±0.021)\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAJOCAYAAABm7rQwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACkrklEQVR4nOzdeXhNV/v/8c9JwsmcmGOIIUIkaqxSFAn1xNRSippDKFVaRWnUWFNRQyfDUyTUrFpVWi0q1FRjjCmqlFaUh0pMiQz794dvzs+RQUKctLxf17WvZq+99lr33jnnxLm71tomwzAMAQAAAAAAADZkl9sBAAAAAAAA4MlDUgoAAAAAAAA2R1IKAAAAAAAANkdSCgAAAAAAADZHUgoAAAAAAAA2R1IKAAAAAAAANkdSCgAAAAAAADZHUgoAAAAAAAA2R1IKAAAAAAAANkdSCgCecCaTKUtbZGTkI49l4cKFeuWVV+Tn5yc7OzuVLl063XqRkZEZxrlr16779jN69GiZTCbZ2dnpt99+S3P8xo0bcnd3l8lkUkhIyENeVfqOHTum0aNH68yZM1mqHxERIZPJpL179z6SeGxhyZIlmjFjhk36etD7m942ePDgf0SM/0TLly9XxYoV5eTkJJPJpKioqEfWV3rv+3z58qlWrVpasGDBA7cbGBiop556KgcjzZzJZNLo0aNzvN1t27apQ4cOKlmypMxms1xcXFSxYkUNGjRIv/zyS47397DOnDkjk8mkiIiITOvd+3u3t7dXkSJF1LZtW0VHR2epr9TP/JzWqFEj9enTJ9NYCxUqpBdeeCFXP7tTP9/+KZ81qb/79LYaNWrkdnjpyujv199//y1PT0+tXr3a5jEBjwuH3A4AAJC7du7cabU/duxYbd68WT/++KNVeUBAwCOP5fPPP9eFCxdUs2ZNpaSkKDExMdP6EyZMUFBQkFVZdr5curq6Kjw8XGPHjrUqX7lypRITE5UnT56sB59Nx44d05gxYxQYGJhh8u1xs2TJEh05ckQDBgx45H096P0NDw9XhQoVrMqKFSuWw9Hd8W9/DVy6dEldunRRkyZNNHPmTJnNZpUvX/6R93v3+/5///ufFi5cqJCQEMXFxal///6PvP+HtXPnTpUoUSJH2xw+fLjGjx+v2rVra/jw4SpXrpySkpJ06NAhLViwQNOmTVNSUpLs7e1ztF9bSv293759W3v37tV7772nTZs26fDhwypevHim5/bs2VNNmjTJ0Xi+/vprbd++XQsXLsww1sTERB04cEBjxoxRgwYNFBUVpXLlyuVoHP9m/fv3V8eOHa3KXF1dcymazGX09ytfvnx666239Pbbb6tZs2bKmzdv7gQI/IuRlAKAJ9yzzz5rtV+oUCHZ2dmlKbeF77//XnZ2dwbxtmjRQkeOHMm0frly5R4qzvbt22vBggUaM2aMpV9Jmjdvnl566SWtWbPmgdvG/3fz5k05OzvndhhZ8tRTT/1j/099ViUmJspkMsnB4dH+M+/EiRNKTExU586d1aBBgxxpMyuvlXvf982aNdOePXu0dOlSmyelHuRe5/Rn69KlSzV+/Hj16dNHM2fOtBoR1LhxYw0cOFAzZ868bzv/9Pfp3b/3+vXry9PTU6GhoYqIiNC7776b7jmp11SiRIkcTwROmDBBL730UroJsbtjrVevnjw9PdWtWzctWrRIY8aMydE4/s1Kliz5SP6tYavPwFR9+vTRuHHj9MUXX6RJsgG4P6bvAQDu68qVK+rbt6+KFy+uvHnzysfHR++++64SEhKs6plMJvXr109z5sxR+fLlZTabFRAQoGXLlmWpn7sTQ7bQo0cPnTt3Ths2bLCUnThxQtu2bVOPHj3SPefs2bPq3LmzChcuLLPZLH9/f02dOlUpKSlW9WbNmqUqVarI1dVVbm5uqlChgoYNGybpzlSKtm3bSpKCgoIs0xbuN43lXiEhIXJ1ddUvv/yi4OBgubi4qGjRonr//fclSbt27dJzzz0nFxcXlS9fPs0Up9QpHRs2bFD37t2VP39+ubi46IUXXkh3WuP8+fNVpUoVOTo6Kn/+/HrppZfSTJ9Jjenw4cP6z3/+Izc3NzVq1EiBgYFat26dfv/9d6upGqnGjBmjWrVqKX/+/HJ3d1f16tU1b948GYZh1X7p0qXVokULrV+/XtWrV5eTk5MqVKig+fPnW11XTtzf9Cxfvly1a9eWi4uLXF1dFRwcrAMHDljV2bt3r1555RWVLl1aTk5OKl26tDp06KDff/89yzGWLl063amjgYGBCgwMtOynThf6/PPPNWjQIBUvXlxms1m//vqrJGnjxo1q1KiR3N3d5ezsrLp162rTpk1WbV66dEmvvvqqvL29ZTabVahQIdWtW1cbN27M8D6EhIToueeek3QnuWsymaziWrNmjWrXri1nZ2e5ubmpcePGaUZlpk6p2r9/v15++WXly5dPZcuWzbDPjNjZ2cnV1TXNyMZPP/1U9evXV+HCheXi4qJKlSpp8uTJGY7A3LNnj+rVqydnZ2f5+Pjo/ffft3pfZ3avL126pL59+yogIECurq4qXLiwGjZsqJ9++ilNP/dO30t9H27evFmvvfaaChYsqAIFCqh169Y6f/78fa9/3LhxKliwoKZPn57uFDWTyaTXX3/dapRU6pTFrVu3qk6dOnJ2drZ85i1fvlz/+c9/VLRoUTk5Ocnf31/vvPOObty4YdVu6nv9119/VbNmzeTq6ipvb28NGjQozd+G8+fPq127dnJzc5OHh4fat2+vCxcu3PfaMpOazEh9X2X2erp3+t62bduUJ0+eNFNzU38X8+bNy7TvAwcOaPfu3erSpUuWYk1NdP/1119W5Tn5uZdq165dqlu3rhwdHVWsWDGFhYWl+5pPSUnR5MmTVaFCBZnNZhUuXFhdu3bVH3/8YVUv9bWyc+dO1alTx/KZFh4eLklat26dqlevLmdnZ1WqVEnr16/P0j3JiiNHjqhly5bKly+fHB0dVbVq1TR/x2zxGXi/v19FihRR48aNNXv27By7duBJQlIKAJCp+Ph4BQUFaeHChRo4cKDWrVunzp07a/LkyWrdunWa+mvWrNFHH32k9957T1988YVKlSqlDh066Isvvsjx2F5//XU5ODjI3d1dwcHB2rZtW7bOL1eunOrVq2f1D/v58+erdOnSatSoUZr6ly5dUp06dfTDDz9o7NixWrNmjZ5//nkNHjxY/fr1s9RbtmyZ+vbtqwYNGuirr77S6tWr9dZbb1m+1DVv3lwTJkyQdOeL886dO7Vz5041b9482/cgMTFRrVu3VvPmzfX111+radOmCgsL07Bhw9StWzf16NFDX331lfz8/BQSEqJ9+/alaSM0NFR2dnaWNTN2796twMBAXb161VJn4sSJCg0NVcWKFfXll1/qww8/1KFDh1S7dm2dPHnSqr3bt2/rxRdfVMOGDfX1119rzJgxmjlzpurWrSsvLy/L9d6dpDhz5ox69+6tFStW6Msvv1Tr1q3Vv3//NFMrJengwYMaNGiQ3nrrLX399deqXLmyQkNDtXXr1oe+v8nJyUpKSrLaUk2YMEEdOnRQQECAVqxYoc8//1zXrl1TvXr1dOzYMatr8fPz04wZM/T9999r0qRJiomJ0TPPPKP//e9/Dx1jesLCwnT27FnNnj1b33zzjQoXLqxFixbpP//5j9zd3bVgwQKtWLFC+fPnV3BwsNWXsi5dumj16tUaOXKkfvjhB82dO1fPP/+8Ll++nGF/I0aM0Keffmq5Lzt37rSMxlmyZIlatmwpd3d3LV26VPPmzdPff/+twMDAdN+jrVu3lq+vr1auXJmlL3UpKSmW381ff/2l999/X0eOHFHnzp2t6p06dUodO3bU559/rrVr1yo0NFRTpkxR796907R54cIFderUSZ07d9aaNWss76NFixZl6V5fuXJFkjRq1CitW7dO4eHh8vHxUWBgYJbX4+vZs6fy5MmjJUuWaPLkyYqMjExzTfc6f/68jh07psaNG8vR0TFL/aSKiYlR586d1bFjR3377bfq27evJOnkyZNq1qyZ5s2bp/Xr12vAgAFasWKFXnjhhTRtJCYm6sUXX1SjRo309ddfq0ePHpo+fbomTZpkqXPr1i09//zz+uGHHzRx4kStXLlSXl5eat++fbbivVdq0qFQoUJW5Vl5PT333HMaN26cpk6dahkRe/ToUb3++uvq3LmzQkNDM+177dq1sre3V/369bMU6+nTpyUpzfTWnPzck+5MCW7UqJGuXr2qiIgIzZ49WwcOHNC4cePStPfaa69p6NChaty4sdasWaOxY8dq/fr1qlOnjuVzKtWFCxfUvXt39ezZU19//bUqVaqkHj166L333lNYWJiGDBmiVatWydXVVa1atcpSMlWyfi+nbqkJuePHj6tOnTo6evSoPvroI3355ZcKCAhQSEiIJk+enKatR/kZeL+/X9KdxNX27dut/m4CyCIDAIC7dOvWzXBxcbHsz54925BkrFixwqrepEmTDEnGDz/8YCmTZDg5ORkXLlywlCUlJRkVKlQwfH19sxVH8+bNjVKlSqV7bP/+/cabb75pfPXVV8bWrVuN+fPnG/7+/oa9vb2xfv36+7Y9atQoQ5Jx6dIlIzw83DCbzcbly5eNpKQko2jRosbo0aMNwzAMFxcXo1u3bpbz3nnnHUOS8fPPP1u199prrxkmk8k4fvy4YRiG0a9fP8PT0zPTGFauXGlIMjZv3nzfeA3DMMLDww1Jxp49eyxl3bp1MyQZq1atspQlJiYahQoVMiQZ+/fvt5RfvnzZsLe3NwYOHJimzZdeesmqr+3btxuSjHHjxhmGYRh///234eTkZDRr1syq3tmzZw2z2Wx07NgxTUzz589Pcw2Z/U7vlpycbCQmJhrvvfeeUaBAASMlJcVyrFSpUoajo6Px+++/W8pu3bpl5M+f3+jdu7el7EHvb3pbYmKicfbsWcPBwcHo37+/1XnXrl0zvLy8jHbt2mXYdlJSknH9+nXDxcXF+PDDD7MUY6lSpaxee6kaNGhgNGjQwLK/efNmQ5JRv359q3o3btww8ufPb7zwwgtW5cnJyUaVKlWMmjVrWspcXV2NAQMGZBh/RlL7XrlypVX7xYoVMypVqmQkJydbyq9du2YULlzYqFOnjqUs9X04cuTIbPV372ZnZ2e8++67mZ6b+ppauHChYW9vb1y5csVyrEGDBum+rwMCAozg4OA0/d97r9OTlJRkJCYmGo0aNUrz/pJkjBo1yrKf+trr27evVb3JkycbkoyYmJgM+9m1a5chyXjnnXcyjCF1u/t9lHrNmzZtyvQ6UlJSjMTERGPLli2GJOPgwYOWY6nv9Xv/NjRr1szw8/Oz7M+aNcuQZHz99ddW9Xr16mVIMsLDwzONIfW+L1++3EhMTDRu3rxpbN261fD19TXs7e0tMWX2eko9du+1NWvWzPD09DSOHDliBAQEGBUqVDCuX7+eaTyGYRhNmzY1KlSokKVYt2/fbvj5+RkBAQHG33//nWGbOfG51759+wz/BksyTp8+bRiGYURHR6f7mvv5558NScawYcMsZamvlb1791rKUv+eODk5GX/++aelPCoqypBkfPTRR5ncPcM4ffp0hp+3GzZsMAzDMF555RXDbDYbZ8+etTq3adOmhrOzs3H16lXDMGz3GXi/v18bNmwwJBnfffddpu0ASIuRUgCATP34449ycXHRyy+/bFWeOrXo3mHwjRo1UpEiRSz79vb2at++vX799dc00wIeVLVq1TRjxgy1atVK9erVU/fu3bVjxw4VLVpUQ4YMyVZbbdu2Vd68ebV48WJ9++23unDhQoZP3Pvxxx8VEBCgmjVrWpWHhITIMAzL4vA1a9bU1atX1aFDB3399ddp/q9zTjKZTGrWrJll38HBQb6+vipatKiqVatmKc+fP78KFy5sNYUsVadOnaz269Spo1KlSmnz5s2S7izMfOvWrTT3xdvbWw0bNkzzGpCkNm3aZOs6fvzxRz3//PPy8PCQvb298uTJo5EjR+ry5cu6ePGiVd2qVauqZMmSln1HR0eVL18+3WvLroULF2rPnj1Wm4ODg77//nslJSWpa9euVv9X39HRUQ0aNLAaDXP9+nUNHTpUvr6+cnBwkIODg1xdXXXjxo0sPy0su+693zt27NCVK1fUrVs3q3hTUlLUpEkT7dmzxzJyr2bNmoqIiNC4ceO0a9eu+z5gIDPHjx/X+fPn1aVLF6vpuK6urmrTpo127dqlmzdvZhr7/UyaNMnyu9mwYYOGDBmi999/X2+//bZVvQMHDujFF19UgQIFLK+prl27Kjk5WSdOnLCq6+XlleZ9Xbly5XRfUxnFO3v2bFWvXl2Ojo5ycHBQnjx5tGnTpiz/zl988cU0/Ut64Nd1gQIFlCdPHsu2atUqq+P58uVTw4YN05z322+/qWPHjvLy8rLct9Q1w+69FpPJlGYE1b33bfPmzXJzc0tzfdlde6d9+/bKkyePnJ2dVb9+fSUnJ+uLL76w3KdUWX09mUwmLVy4UG5ubqpRo4ZOnz6tFStWyMXF5b7nnj9/XoULF85SrHXr1lVcXJzWrVsnT09Pq3o5/bm3efPmDP8G3y31s/3ez/SaNWvK398/zWd60aJF9fTTT1v2U/+eVK1a1epBEP7+/pKy/pp9880303ze1qpVy3JvGjVqJG9vb6tzQkJCdPPmzTQjlXL7MzD19fDnn39m+1zgScdC5wCATF2+fFleXl5p1iopXLiwHBwc0kzx8fLyStNGatnly5dzfLHZVJ6enmrRooVmz56tW7duycnJKUvnubi4qH379po/f75KlSql559/XqVKlUq37uXLl9N9SlrqP8pT70WXLl2UlJSkzz77TG3atFFKSoqeeeYZjRs3To0bN36wC8yAs7Nzmmk7efPmVf78+dPUzZs3r+Lj49OUZ/Q7S72e1P8WLVo0Tb1ixYpZrcmVGpO7u3uWr2H37t36z3/+o8DAQH322WcqUaKE8ubNq9WrV2v8+PG6deuWVf0CBQqkacNsNqep9yD8/f3TXeg8dS2YZ555Jt3z7k7AdOzYUZs2bdKIESP0zDPPyN3d3ZI8zIkY03Pv7yY13nuTyXe7cuWKXFxctHz5co0bN05z587ViBEj5OrqqpdeekmTJ09O97WRmfu9VlJSUvT3339bLaidXt3M+Pj4WP2Onn/+ef3999+aOnWqQkNDVaFCBZ09e1b16tWTn5+fPvzwQ5UuXVqOjo7avXu3Xn/99Yd6TaUX77Rp0zRo0CD16dNHY8eOVcGCBWVvb68RI0ZkOSl1bwxms1mSMn3NpH5hTy8JEBkZqaSkJO3bt099+vTJ0nVcv35d9erVk6Ojo8aNG6fy5cvL2dlZ586dU+vWrdPEkt7nj9lstvqcuXz5slWSJFV2X1uTJk1Sw4YNZW9vr4IFC6ZJVmR2XRkpUKCAXnzxRX366ad66aWXVKlSpSydd+vWrXSv6d5Yb968aZm22KpVK/3888+W3+uj+NxL/Xt9r3vL7vc+vff1lNHfk3vLU588l97fmfSUKFEiwwdLXL58OcP4Uo/fLbc/A1PfB4/qMx54nJGUAgBkqkCBAvr5559lGIZVYurixYtKSkpSwYIFreqnt3htall6/6jOScb/rUWR3mK/menRo4fmzp2rQ4cOafHixRnWK1CggGJiYtKUp66fcfe96N69u7p3764bN25o69atGjVqlFq0aKETJ05kmPTKLRn9znx9fSX9/99bRtd+72sgu/d/2bJlypMnj9auXWv1BXf16tXZaudRSr3G1HXSMhIbG6u1a9dq1KhReueddyzlCQkJlnWHssLR0THNYtGS9L///S/N/ZbS3vPUOh9//HGGT7dK/VJdsGBBzZgxQzNmzNDZs2e1Zs0avfPOO7p48WK2Fy2+32vFzs5O+fLlyzT2B1G5cmUZhqFDhw6pQoUKWr16tW7cuKEvv/zS6vcVFRX10H2lF++iRYsUGBioWbNmWZVfu3btofvLTLFixVSxYkVt2LBB8fHxVu+fqlWrSrqTaEpPetfx448/6vz584qMjLR6ouLDrJNToEAB7d69O015dhc6vzcZmZHsvJ42bNigWbNmqWbNmvrqq6+0atWqLI20KliwYKbv57tjrV+/vpycnDR8+HB9/PHHlsXVH8XnXoECBTL9G3x3PenO+/Te/1GU3md6bsjO31sp9z8DU18P/4R7B/zbMH0PAJCpRo0a6fr162n+obxw4ULL8btt2rTJ6glDycnJWr58ucqWLfvIRklJ0t9//621a9eqatWq2V7wt3bt2urRo4deeuklvfTSSxnWa9SokY4dO6b9+/dblS9cuFAmk0lBQUFpznFxcVHTpk317rvv6vbt2zp69KikrI2CsJV7E3E7duzQ77//bnmaWu3ateXk5JRm0ec//vjDMsUiKzIaeZL66O67nw5269Ytff7559m8Euu+UtvJCcHBwXJwcNCpU6dUo0aNdDfpzrUYhmHpP9XcuXOVnJyc5RhLly6tQ4cOWZWdOHFCx48fz1K8devWlaenp44dO5ZhvKmjGu5WsmRJ9evXT40bN07zOs8KPz8/FS9eXEuWLLF6gtiNGze0atUqyxP5clpqsil1Ck3qF9S7fw+GYeizzz7L8b5T+7v3d37o0KE0U4wehXfffVf/+9//NHDgwDRPbcuu9O6bJM2ZM+eB2wwKCtK1a9csC4qnWrJkyQO3mRNSF3pv0KCBduzYoRdffFGhoaGWRckzU6FChXSfUJqRIUOGyNfXV++//74lUfkoPveCgoIy/Bt8t9Rpm/d+pu/Zs0fR0dFZ/kx/lBo1amRJkt5t4cKFcnZ2zjDRlCqnPwPvNxo39fUQEBCQncsEIEZKAQDuo2vXrvr000/VrVs3nTlzRpUqVdK2bds0YcIENWvWTM8//7xV/YIFC6phw4YaMWKEXFxcNHPmTP3yyy9atmzZffs6duyY5SlmFy5c0M2bNy1P7QsICLD8Y69jx44qWbKkatSooYIFC+rkyZOaOnWq/vrrL0VERDzQdd7vEeCS9NZbb2nhwoVq3ry53nvvPZUqVUrr1q3TzJkz9dprr1merNSrVy85OTmpbt26Klq0qC5cuKCJEyfKw8PDMv3rqaeekiT997//lZubmxwdHVWmTJlHPposPXv37lXPnj3Vtm1bnTt3Tu+++66KFy9ueRqXp6enRowYoWHDhqlr167q0KGDLl++rDFjxsjR0VGjRo3KUj+VKlXSl19+qVmzZunpp5+WnZ2datSooebNm2vatGnq2LGjXn31VV2+fFkffPBBmi/G2ZHT97d06dJ677339O677+q3335TkyZNlC9fPv3111/avXu3XFxcNGbMGLm7u6t+/fqaMmWKChYsqNKlS2vLli2aN29emvVkMouxS5cu6ty5s/r27as2bdro999/1+TJk9M8aSwjrq6u+vjjj9WtWzdduXJFL7/8sgoXLqxLly7p4MGDunTpkmbNmqXY2FgFBQWpY8eOqlChgtzc3LRnzx6tX78+3adr3o+dnZ0mT56sTp06qUWLFurdu7cSEhI0ZcoUXb16Ve+//36227zXyZMntWvXLkl3RqZt3LhR8+bNU40aNVSvXj1JUuPGjZU3b1516NBBQ4YMUXx8vGbNmqW///77oftPT4sWLTR27FiNGjVKDRo00PHjx/Xee++pTJkyVk9wfBQ6dOigo0ePavz48Tp48KBCQkJUrlw5paSk6Ny5c5Ykh5ub233bqlOnjvLly6c+ffpo1KhRypMnjxYvXqyDBw8+cHxdu3bV9OnT1bVrV40fP17lypXTt99+q++///6B23xYycnJ6tChg0wmk5YsWSJ7e3tFRESoatWqat++vbZt25ZuwiJVYGCg5s+frxMnTqR5ol568uTJowkTJqhdu3b68MMPNXz48EfyuTd8+HCtWbNGDRs21MiRI+Xs7KxPP/3UsnZSKj8/P7366qv6+OOPZWdnp6ZNm+rMmTMaMWKEvL299dZbbz1wDDll1KhRWrt2rYKCgjRy5Ejlz59fixcv1rp16zR58mR5eHhken5OfwZm9Pcr1a5du1SgQIEsTwEFcJfcW2MdAPBPdO/T9wzjzpN2+vTpYxQtWtRwcHAwSpUqZYSFhRnx8fFW9SQZr7/+ujFz5kyjbNmyRp48eYwKFSoYixcvzlLfqU9ISm+7+2lVEydONKpWrWp4eHgY9vb2RqFChYyXXnrJ2L17d7b6uXTpUqb17n36nmEYxu+//2507NjRKFCggJEnTx7Dz8/PmDJlitWTxhYsWGAEBQUZRYoUMfLmzWsUK1bMaNeunXHo0CGrtmbMmGGUKVPGsLe3v+9TqDJ6+t69vyvDuPO0pIoVK6YpL1WqlNG8efM0bf7www9Gly5dDE9PT8tT9k6ePJnm/Llz5xqVK1c28ubNa3h4eBgtW7Y0jh49alUno5gMwzCuXLlivPzyy4anp6dhMpmsnoY1f/58w8/PzzCbzYaPj48xceJEY968eVZPjErvGu6+5rufSmcYD39/07N69WojKCjIcHd3N8xms1GqVCnj5ZdfNjZu3Gip88cffxht2rQx8uXLZ7i5uRlNmjQxjhw5ku4T9TKKMSUlxZg8ebLh4+NjODo6GjVq1DB+/PHHDJ++d/cT8O62ZcsWo3nz5kb+/PmNPHnyGMWLFzeaN29uqR8fH2/06dPHqFy5suHu7m44OTkZfn5+xqhRo4wbN25kei8y63v16tVGrVq1DEdHR8PFxcVo1KiRsX37dqs6WX0f3tvf3ZuLi4sREBBgjBo1yoiNjbWq/8033xhVqlQxHB0djeLFixtvv/228d1336V54mFG75du3bpZPW0rs+tNSEgwBg8ebBQvXtxwdHQ0qlevbqxevTpNG4aR8dP37n3tpfaX1SdIbt261Wjfvr1RokQJI0+ePIazs7MREBBgvPbaa1ZPTsvsmg3DMHbs2GHUrl3bcHZ2NgoVKmT07NnT2L9/f5r3UEbv9fSedJf6nnB1dTXc3NyMNm3aGDt27MjW0/cyeo3f2296r6d7Y3r33XcNOzu7NE8f3LFjh+Hg4GC8+eabmfYVGxtruLq6GpMnT85WrLVq1TLy5ctneXLco/jc2759u/Hss88aZrPZ8PLyMt5++23jv//9b5o2k5OTjUmTJhnly5c38uTJYxQsWNDo3Lmzce7cuTR9ZOXvSarUfwdkJvXpe1OmTMm03uHDh40XXnjB8PDwMPLmzWtUqVIlzevFVp+Bmf39SklJMUqVKpXm6awAssZkGA85zhcAgP9jMpn0+uuv65NPPsntUJAFERER6t69u/bs2ZOltVoAAHf0799fmzZt0tGjR3NkXTT8e23atEn/+c9/dPToUVWoUCG3wwH+dVhTCgAAAACyYfjw4frzzz+1atWq3A4FuWzcuHHq0aMHCSngAbGmFAAAAABkQ5EiRbR48eJHtk4Z/h3+/vtvNWjQwLIGI4DsY/oeAAAAAAAAbI7pewAAAAAAALA5klIAAAAAAACwOZJSAAAAAAAAsDkWOscTKyUlRefPn5ebmxuP8gUAAAAAIIcYhqFr166pWLFisrPLeDwUSSk8sc6fPy9vb+/cDgMAAAAAgMfSuXPnVKJEiQyPk5TCE8vNzU3SnTeJu7t7LkcDAAAAAMDjIS4uTt7e3pbv3RkhKYUnVuqUPXd3d5JSAAAAAADksPstlcNC5wAAAAAAALA5RkrhiVd/+FLZm51yOwwAAAAAAKzsm9I1t0N4pBgpBQAAAAAAAJsjKQUAAAAAAACbIykFAAAAAAAAmyMpBQAAAAAAAJsjKQUAAAAAAACbIykFAAAAAAAAmyMpBQAAAAAAAJsjKYV/pDNnzshkMikqKiq3QwEAAAAAAI8ASakn3MWLF9W7d2+VLFlSZrNZXl5eCg4O1s6dO3M7NCv3JqkOHjyoDh06yNvbW05OTvL399eHH36Yu0ECAAAAAIAsc8jtAJC72rRpo8TERC1YsEA+Pj7666+/tGnTJl25ciW3Q8vUvn37VKhQIS1atEje3t7asWOHXn31Vdnb26tfv365HR4AAAAAALgPRko9wa5evapt27Zp0qRJCgoKUqlSpVSzZk2FhYWpefPmkiSTyaRZs2apadOmcnJyUpkyZbRy5Uqrdv7880+1b99e+fLlU4ECBdSyZUudOXPGqk54eLj8/f3l6OioChUqaObMmVbHd+/erWrVqsnR0VE1atTQgQMHMo29R48e+uijj9SgQQP5+Pioc+fO6t69u7788suHvzEAAAAAAOCRIyn1BHN1dZWrq6tWr16thISEDOuNGDFCbdq00cGDB9W5c2d16NBB0dHRkqSbN28qKChIrq6u2rp1q7Zt2yZXV1c1adJEt2/fliR99tlnevfddzV+/HhFR0drwoQJGjFihBYsWCBJunHjhlq0aCE/Pz/t27dPo0eP1uDBg7N9PbGxscqfP3+GxxMSEhQXF2e1AQAAAACA3EFS6gnm4OCgiIgILViwQJ6enqpbt66GDRumQ4cOWdVr27atevbsqfLly2vs2LGqUaOGPv74Y0nSsmXLZGdnp7lz56pSpUry9/dXeHi4zp49q8jISEnS2LFjNXXqVLVu3VplypRR69at9dZbb2nOnDmSpMWLFys5OVnz589XxYoV1aJFC7399tvZupadO3dqxYoV6t27d4Z1Jk6cKA8PD8vm7e2drT4AAAAAAEDOISn1hGvTpo3Onz+vNWvWKDg4WJGRkapevboiIiIsdWrXrm11Tu3atS0jpfbt26dff/1Vbm5ulpFX+fPnV3x8vE6dOqVLly7p3LlzCg0NtRx3dXXVuHHjdOrUKUlSdHS0qlSpImdn5wz7zMzRo0fVsmVLjRw5Uo0bN86wXlhYmGJjYy3buXPnstwHAAAAAADIWSx0Djk6Oqpx48Zq3LixRo4cqZ49e2rUqFEKCQnJ8ByTySRJSklJ0dNPP63FixenqVOoUCHFx8dLujOFr1atWlbH7e3tJUmGYTxw7MeOHVPDhg3Vq1cvDR8+PNO6ZrNZZrP5gfsCAAAAAAA5h5FSSCMgIEA3btyw7O/atcvq+K5du1ShQgVJUvXq1XXy5EkVLlxYvr6+VpuHh4eKFCmi4sWL67fffktzvEyZMpb+Dh48qFu3bmXYZ3qOHj2qoKAgdevWTePHj8+JSwcAAAAAADZCUuoJdvnyZTVs2FCLFi3SoUOHdPr0aa1cuVKTJ09Wy5YtLfVWrlyp+fPn68SJExo1apR2796tfv36SZI6deqkggULqmXLlvrpp590+vRpbdmyRW+++ab++OMPSdLo0aM1ceJEffjhhzpx4oQOHz6s8PBwTZs2TZLUsWNH2dnZKTQ0VMeOHdO3336rDz74INPYUxNSjRs31sCBA3XhwgVduHBBly5dekR3CwAAAAAA5CSm7z3BXF1dVatWLU2fPl2nTp1SYmKivL291atXLw0bNsxSb8yYMVq2bJn69u0rLy8vLV68WAEBAZIkZ2dnbd26VUOHDlXr1q117do1FS9eXI0aNZK7u7skqWfPnnJ2dtaUKVM0ZMgQubi4qFKlShowYIAljm+++UZ9+vRRtWrVFBAQoEmTJqlNmzYZxr5y5UpdunRJixcvtpo6WKpUKZ05cybnbxYAAAAAAMhRJuNhFvTBY89kMumrr75Sq1atcjuUHBcXFycPDw9V6T9b9man3A4HAAAAAAAr+6Z0ze0QHkjq9+3Y2FjLgJX0MH0PAAAAAAAANkdSCgAAAAAAADbHmlLIFLM7AQAAAADAo8BIKQAAAAAAANgcSSkAAAAAAADYHEkpAAAAAAAA2BxJKQAAAAAAANgcC53jibd1XAe5u7vndhgAAAAAADxRGCkFAAAAAAAAmyMpBQAAAAAAAJsjKQUAAAAAAACbIykFAAAAAAAAmyMpBQAAAAAAAJvj6Xt44tUfvlT2ZqfcDgPAP8C+KV1zOwQAAADgicFIKQAAAAAAANgcSSkAAAAAAADYHEkpAAAAAAAA2BxJKQAAAAAAANgcSSkAAAAAAADYHEkpAAAAAAAA2BxJKQAAAAAAANgcSSkAAAAAAADYHEmpHGYymTLdQkJCHmn/EyZMkL29vd5///1H1kd61/Xcc889dLtnzpyRyWRSVFTUwwcJAAAAAAD+0RxyO4DHTUxMjOXn5cuXa+TIkTp+/LilzMnJKVvtJSYmKk+ePFmuHx4eriFDhmj+/Pl65513stVXdoSHh6tJkyaW/bx58z6yvh5Edu8bAAAAAACwLUZK5TAvLy/L5uHhIZPJJC8vLxUpUkTPPfecPvvsM6v6R44ckZ2dnU6dOiXpziik2bNnq2XLlnJxcdG4ceMkSd98842efvppOTo6ysfHR2PGjFFSUpJVW1u2bNGtW7f03nvv6caNG9q6dWua+MaNG6fChQvLzc1NPXv21DvvvKOqVata1QkPD5e/v78cHR1VoUIFzZw5M007np6eVteaP39+Xb58WR06dFCJEiXk7OysSpUqaenSpVbnpaSkaNKkSfL19ZXZbFbJkiU1fvx4SVKZMmUkSdWqVZPJZFJgYKDlnPfee08lSpSQ2WxW1apVtX79ekubqSOsVqxYocDAQDk6OmrRokX3+1UBAAAAAIBcRFLKRkwmk3r06KHw8HCr8vnz56tevXoqW7aspWzUqFFq2bKlDh8+rB49euj7779X586d9cYbb+jYsWOaM2eOIiIiLMmcVPPmzVOHDh2UJ08edejQQfPmzbM6vnjxYo0fP16TJk3Svn37VLJkSc2aNcuqzmeffaZ3331X48ePV3R0tCZMmKARI0ZowYIF973G+Ph4Pf3001q7dq2OHDmiV199VV26dNHPP/9sqRMWFqZJkyZpxIgROnbsmJYsWaIiRYpIknbv3i1J2rhxo2JiYvTll19Kkj788ENNnTpVH3zwgQ4dOqTg4GC9+OKLOnnypFX/Q4cO1RtvvKHo6GgFBwffN14AAAAAAJB7TIZhGLkdxOMqIiJCAwYM0NWrVyXdmdrn7e2tHTt2qGbNmkpMTFTx4sU1ZcoUdevWTdKd5NWAAQM0ffp0Szv169dX06ZNFRYWZilbtGiRhgwZovPnz0uS4uLiVLRoUe3YsUNVqlRRVFSU6tatq5iYGLm7u0uSnn32WdWoUUOffPKJpZ3nnntO169ft6zjVLJkSU2aNEkdOnSw1Bk3bpy+/fZb7dixwxKjo6Oj7O3treJp1apVmnvQvHlz+fv764MPPtC1a9dUqFAhffLJJ+rZs2eaumfOnFGZMmV04MABq9FbxYsX1+uvv65hw4ZZymrWrKlnnnlGn376qeW8GTNm6M0338zw95GQkKCEhATLflxcnLy9vVWl/2zZm7M3rRLA42nflK65HQIAAADwrxcXFycPDw/FxsZachLpYaSUDRUtWlTNmzfX/PnzJUlr165VfHy82rZta1WvRo0aVvv79u3Te++9J1dXV8vWq1cvxcTE6ObNm5KkJUuWyMfHR1WqVJEkVa1aVT4+Plq2bJmlnePHj6tmzZpWbd+9f+nSJZ07d06hoaFWfY0bN84yvTDV9OnTFRUVZdkaN26s5ORkjR8/XpUrV1aBAgXk6uqqH374QWfPnpUkRUdHKyEhQY0aNcryPYuLi9P58+dVt25dq/K6desqOjo60/t2r4kTJ8rDw8OyeXt7ZzkOAAAAAACQs1jo3MZ69uypLl26aPr06QoPD1f79u3l7OxsVcfFxcVqPyUlRWPGjFHr1q3TtOfo6CjpzjTAo0ePysHBweq8efPm6dVXX7WUmUwmq/PvHiiXkpIi6c4Uvlq1alnVu3tUlHRn7SxfX1+rssmTJ2v69OmaMWOGKlWqJBcXFw0YMEC3b9+WlP1F3u+WXtz3lt173+4VFhamgQMHWvZTR0oBAAAAAADbIyllY82aNZOLi4tmzZql7777Lt3FyO9VvXp1HT9+PE0SKNXhw4e1d+9eRUZGKn/+/Jbyq1evqn79+jpy5Iieeuop+fn5affu3erSpYulzt69ey0/FylSRMWLF9dvv/2mTp06ZfvafvrpJ7Vs2VKdO3eWdCfJdfLkSfn7+0uSypUrJycnJ23atCnd6XupT/BLTk62lLm7u6tYsWLatm2b6tevbylPnQKZHWazWWazOdvXBQAAAAAAch5JKRuzt7dXSEiIwsLC5Ovrq9q1a9/3nJEjR6pFixby9vZW27ZtZWdnp0OHDunw4cMaN26c5s2bp5o1a1olbVLVrl1b8+bN0/Tp09W/f3/16tVLNWrUUJ06dbR8+XIdOnRIPj4+lvqjR4/WG2+8IXd3dzVt2lQJCQnau3ev/v77b6tRRunx9fXVqlWrtGPHDuXLl0/Tpk3ThQsXLEkpR0dHDR06VEOGDFHevHlVt25dXbp0SUePHlVoaKgKFy4sJycnrV+/XiVKlJCjo6M8PDz09ttva9SoUSpbtqyqVq2q8PBwRUVFafHixdm8+wAAAAAA4J+CNaVyQWhoqG7fvq0ePXpkqX5wcLDWrl2rDRs26JlnntGzzz6radOmqVSpUrp9+7YWLVqkNm3apHtumzZttGjRIt2+fVudOnVSWFiYBg8erOrVq+v06dMKCQmxTAGU7kwvnDt3riIiIlSpUiU1aNBAERERKlOmzH3jHDFihKpXr67g4GAFBgbKy8srzeLnI0aM0KBBgzRy5Ej5+/urffv2unjxoiTJwcFBH330kebMmaNixYqpZcuWkqQ33nhDgwYN0qBBg1SpUiWtX79ea9asUbly5bJ0/wAAAAAAwD8PT9/LBdu3b1dgYKD++OMPFSlSJFdjady4sby8vPT555/nahy5IfVpADx9D0Aqnr4HAAAAPLysPn2P6Xs2lJCQoHPnzmnEiBFq166dzRNSN2/e1OzZsxUcHCx7e3stXbpUGzdu1IYNG2waBwAAAAAAANP3bGjp0qXy8/NTbGysJk+ebPP+TSaTvv32W9WrV09PP/20vvnmG61atUrPP/+8zWMBAAAAAABPNqbv4YnF9D0A92L6HgAAAPDwsjp9j5FSAAAAAAAAsDmSUgAAAAAAALA5klIAAAAAAACwOZJSAAAAAAAAsDmH3A4AyG1bx3XIdOE1AAAAAACQ8xgpBQAAAAAAAJsjKQUAAAAAAACbIykFAAAAAAAAmyMpBQAAAAAAAJsjKQUAAAAAAACbIykFAAAAAAAAm3PI7QCA3FZ/+FLZm51yOwwAD2DflK65HQIAAACAB8RIKQAAAAAAANgcSSkAAAAAAADYHEkpAAAAAAAA2BxJKQAAAAAAANgcSSkAAAAAAADYHEkpAAAAAAAA2BxJKQAAAAAAANgcSSn840RGRspkMunq1auWstWrV8vX11f29vYaMGBArsUGAAAAAAByBkmpJ5zJZMp0CwkJeST9li5dWjNmzEj3WJ06dRQTEyMPDw9LWe/evfXyyy/r3LlzGjt27COJCQAAAAAA2I5DbgeA3BUTE2P5efny5Ro5cqSOHz9uKXNycspWe4mJicqTJ89DxZQ3b155eXlZ9q9fv66LFy8qODhYxYoVe6i2AQAAAADAPwMjpZ5wXl5els3Dw0Mmk0leXl4qUqSInnvuOX322WdW9Y8cOSI7OzudOnVK0p2RVrNnz1bLli3l4uKicePGSZK++eYbPf3003J0dJSPj4/GjBmjpKSkLMV09/S9yMhIubm5SZIaNmwok8mkyMhISdKOHTtUv359OTk5ydvbW2+88YZu3LiRQ3cGAAAAAAA8SiSlkC6TyaQePXooPDzcqnz+/PmqV6+eypYtaykbNWqUWrZsqcOHD6tHjx76/vvv1blzZ73xxhs6duyY5syZo4iICI0fPz7bcdSpU8cycmvVqlWKiYlRnTp1dPjwYQUHB6t169Y6dOiQli9frm3btqlfv34Pd+EAAAAAAMAmSEohQ927d9fx48e1e/duSXem5i1atEg9evSwqtexY0f16NFDPj4+KlWqlMaPH6933nlH3bp1k4+Pjxo3bqyxY8dqzpw52Y4hb968Kly4sCQpf/788vLyUt68eTVlyhR17NhRAwYMULly5VSnTh199NFHWrhwoeLj49NtKyEhQXFxcVYbAAAAAADIHawphQwVLVpUzZs31/z581WzZk2tXbtW8fHxatu2rVW9GjVqWO3v27dPe/bssRoZlZycrPj4eN28eVPOzs4PHdu+ffv066+/avHixZYywzCUkpKi06dPy9/fP805EydO1JgxYx66bwAAAAAA8PBISiFTPXv2VJcuXTR9+nSFh4erffv2aZJKLi4uVvspKSkaM2aMWrdunaY9R0fHHIkrJSVFvXv31htvvJHmWMmSJdM9JywsTAMHDrTsx8XFydvbO0fiAQAAAAAA2UNSCplq1qyZXFxcNGvWLH333XfaunXrfc+pXr26jh8/Ll9f30cWV/Xq1XX06NFs9WE2m2U2mx9ZTAAAAAAAIOtISiFT9vb2CgkJUVhYmHx9fVW7du37njNy5Ei1aNFC3t7eatu2rezs7HTo0CEdPnzY8nQ+Sfrzzz8VFRVldW5Go5zuNXToUD377LN6/fXX1atXL7m4uCg6OlobNmzQxx9/nK1rBAAAAAAAtsdC57iv0NBQ3b59O80C5xkJDg7W2rVrtWHDBj3zzDN69tlnNW3aNJUqVcqq3gcffKBq1apZbWvWrMlSH5UrV9aWLVt08uRJ1atXT9WqVdOIESNUtGjRbF8fAAAAAACwPZNhGEZuB4F/tu3btyswMFB//PGHihQpktvh5Ji4uDh5eHioSv/Zsjc75XY4AB7AvildczsEAAAAAPdI/b4dGxsrd3f3DOsxfQ8ZSkhI0Llz5zRixAi1a9fusUpIAQAAAACA3MX0PWRo6dKl8vPzU2xsrCZPnpzb4QAAAAAAgMcISSlkKCQkRMnJydq3b5+KFy+e2+EAAAAAAIDHCEkpAAAAAAAA2BxJKQAAAAAAANgcSSkAAAAAAADYHEkpAAAAAAAA2JxDbgcA5Lat4zrI3d09t8MAAAAAAOCJwkgpAAAAAAAA2BxJKQAAAAAAANgcSSkAAAAAAADYHEkpAAAAAAAA2BxJKQAAAAAAANgcSSkAAAAAAADYnENuBwDktvrDl8re7JTbYfyj7ZvSNbdDAAAAAAA8ZhgpBQAAAAAAAJsjKQUAAAAAAACbIykFAAAAAAAAmyMpBQAAAAAAAJsjKQUAAAAAAACbIykFAAAAAAAAmyMpBQAAAAAAAJsjKYV/pDNnzshkMikqKiq3QwEAAAAAAI8ASakn3MWLF9W7d2+VLFlSZrNZXl5eCg4O1s6dO3M7NCvpJanefPNNPf300zKbzapatWquxQYAAAAAALLPIbcDQO5q06aNEhMTtWDBAvn4+Oivv/7Spk2bdOXKldwO7b4Mw1CPHj30888/69ChQ7kdDgAAAAAAyAZGSj3Brl69qm3btmnSpEkKCgpSqVKlVLNmTYWFhal58+aSJJPJpFmzZqlp06ZycnJSmTJltHLlSqt2/vzzT7Vv31758uVTgQIF1LJlS505c8aqTnh4uPz9/eXo6KgKFSpo5syZVsd3796tatWqydHRUTVq1NCBAwfuG/9HH32k119/XT4+Pg93IwAAAAAAgM2RlHqCubq6ytXVVatXr1ZCQkKG9UaMGKE2bdro4MGD6ty5szp06KDo6GhJ0s2bNxUUFCRXV1dt3bpV27Ztk6urq5o0aaLbt29Lkj777DO9++67Gj9+vKKjozVhwgSNGDFCCxYskCTduHFDLVq0kJ+fn/bt26fRo0dr8ODBOX69CQkJiouLs9oAAAAAAEDuICn1BHNwcFBERIQWLFggT09P1a1bV8OGDUszFa5t27bq2bOnypcvr7Fjx6pGjRr6+OOPJUnLli2TnZ2d5s6dq0qVKsnf31/h4eE6e/asIiMjJUljx47V1KlT1bp1a5UpU0atW7fWW2+9pTlz5kiSFi9erOTkZM2fP18VK1ZUixYt9Pbbb+f49U6cOFEeHh6WzdvbO8f7AAAAAAAAWUNS6gnXpk0bnT9/XmvWrFFwcLAiIyNVvXp1RUREWOrUrl3b6pzatWtbRkrt27dPv/76q9zc3Cwjr/Lnz6/4+HidOnVKly5d0rlz5xQaGmo57urqqnHjxunUqVOSpOjoaFWpUkXOzs4Z9pkTwsLCFBsba9nOnTuX430AAAAAAICsYaFzyNHRUY0bN1bjxo01cuRI9ezZU6NGjVJISEiG55hMJklSSkqKnn76aS1evDhNnUKFCik+Pl7SnSl8tWrVsjpub28v6c6C5bZgNptlNptt0hcAAAAAAMgcI6WQRkBAgG7cuGHZ37Vrl9XxXbt2qUKFCpKk6tWr6+TJkypcuLB8fX2tNg8PDxUpUkTFixfXb7/9luZ4mTJlLP0dPHhQt27dyrBPAAAAAADweCEp9QS7fPmyGjZsqEWLFunQoUM6ffq0Vq5cqcmTJ6tly5aWeitXrtT8+fN14sQJjRo1Srt371a/fv0kSZ06dVLBggXVsmVL/fTTTzp9+rS2bNmiN998U3/88YckafTo0Zo4caI+/PBDnThxQocPH1Z4eLimTZsmSerYsaPs7OwUGhqqY8eO6dtvv9UHH3xw3/h//fVXRUVF6cKFC7p165aioqIUFRVlWWAdAAAAAAD8czF97wnm6uqqWrVqafr06Tp16pQSExPl7e2tXr16adiwYZZ6Y8aM0bJly9S3b195eXlp8eLFCggIkCQ5Oztr69atGjp0qFq3bq1r166pePHiatSokdzd3SVJPXv2lLOzs6ZMmaIhQ4bIxcVFlSpV0oABAyxxfPPNN+rTp4+qVaumgIAATZo0SW3atMk0/p49e2rLli2W/WrVqkmSTp8+rdKlS+fgnQIAAAAAADnNZNhqQR/8K5lMJn311Vdq1apVboeS4+Li4uTh4aEq/WfL3uyU2+H8o+2b0jW3QwAAAAAA/Eukft+OjY21DFhJD9P3AAAAAAAAYHMkpQAAAAAAAGBzrCmFTDG7EwAAAAAAPAqMlAIAAAAAAIDNkZQCAAAAAACAzZGUAgAAAAAAgM2RlAIAAAAAAIDNsdA5nnhbx3WQu7t7bocBAAAAAMAThZFSAAAAAAAAsDmSUgAAAAAAALA5klIAAAAAAACwOZJSAAAAAAAAsDmSUgAAAAAAALA5klIAAAAAAACwOYfcDgDIbfWHL5W92Sm3w8iSfVO65nYIAAAAAADkCEZKAQAAAAAAwOZISgEAAAAAAMDmSEoBAAAAAADA5khKAQAAAAAAwOZISgEAAAAAAMDmSEoBAAAAAADA5khKAQAAAAAAwOZISiFDkZGRMplMunr1am6HAgAAAAAAHjMkpaAdO3bI3t5eTZo0sSqvU6eOYmJi5OHhkeG5pUuXlslkynALDAx8xNEDAAAAAIB/I4fcDgC5b/78+erfv7/mzp2rs2fPqmTJkpKkvHnzysvLK8PzkpOT9fPPP8swDEl3kltt2rTR8ePH5e7ubmkDAAAAAADgXoyUesLduHFDK1as0GuvvaYWLVooIiLCcuze6XsRERHy9PTU2rVrFRAQILPZrJs3b8rLy0teXl7Knz+/JKlw4cKWsl9++UX169eXk5OTvL299cYbb+jGjRuWPkqXLq1x48apa9eucnV1ValSpfT111/r0qVLatmypVxdXVWpUiXt3bvXck5qHKtXr1b58uXl6Oioxo0b69y5cza5ZwAAAAAA4OGRlHrCLV++XH5+fvLz81Pnzp0VHh5uGfmUnps3b2rixImaO3eujh49qsKFC2dY9/DhwwoODlbr1q116NAhLV++XNu2bVO/fv2s6k2fPl1169bVgQMH1Lx5c3Xp0kVdu3ZV586dtX//fvn6+qpr165Wcd28eVPjx4/XggULtH37dsXFxemVV17J9FoTEhIUFxdntQEAAAAAgNxBUuoJN2/ePHXu3FmS1KRJE12/fl2bNm3KsH5iYqJmzpypOnXqyM/PTy4uLhnWnTJlijp27KgBAwaoXLlyqlOnjj766CMtXLhQ8fHxlnrNmjVT7969Va5cOY0cOVLXrl3TM888o7Zt26p8+fIaOnSooqOj9ddff1nF8cknn6h27dp6+umntWDBAu3YsUO7d+/OMJ6JEyfKw8PDsnl7e2fnVgEAAAAAgBxEUuoJdvz4ce3evdsywsjBwUHt27fX/PnzMzwnb968qly5cpba37dvnyIiIuTq6mrZgoODlZKSotOnT1vq3d1ekSJFJEmVKlVKU3bx4kVLmYODg2rUqGHZr1Chgjw9PRUdHZ1hPGFhYYqNjbVsTPcDAAAAACD3sND5E2zevHlKSkpS8eLFLWWGYShPnjz6+++/0z3HyclJJpMpS+2npKSod+/eeuONN9IcS11MXZLy5Mlj+Tm17fTKUlJSrNpIL47MYjObzTKbzVmKHQAAAAAAPFokpZ5QSUlJWrhwoaZOnar//Oc/VsfatGmjxYsX66mnnnqoPqpXr66jR4/K19f3odpJT1JSkvbu3auaNWtKujPq6+rVq6pQoUKO9wUAAAAAAHIe0/eeUGvXrtXff/+t0NBQPfXUU1bbyy+/rHnz5j10H0OHDtXOnTv1+uuvKyoqSidPntSaNWvUv3//h247T5486t+/v37++Wft379f3bt317PPPmtJUgEAAAAAgH82klJPqHnz5un555+Xh4dHmmNt2rRRVFSU9u/f/1B9VK5cWVu2bNHJkydVr149VatWTSNGjFDRokUfql1JcnZ21tChQ9WxY0fVrl1bTk5OWrZs2UO3CwAAAAAAbMNkGIaR20EA2REREaEBAwbo6tWrD9VOXFycPDw8VKX/bNmbnXImuEds35SuuR0CAAAAAACZSv2+HRsbK3d39wzrMVIKAAAAAAAANkdSCgAAAAAAADZHUgr/OiEhIQ89dQ8AAAAAAOQuklIAAAAAAACwOZJSAAAAAAAAsDmSUgAAAAAAALA5klIAAAAAAACwOYfcDgDIbVvHdZC7u3tuhwEAAAAAwBOFkVIAAAAAAACwOZJSAAAAAAAAsDmSUgAAAAAAALA5klIAAAAAAACwOZJSAAAAAAAAsDmSUgAAAAAAALA5h9wOAMht9Ycvlb3ZKbfDyNC+KV1zOwQAAAAAAHIcI6UAAAAAAABgcySlAAAAAAAAYHMkpQAAAAAAAGBzJKUAAAAAAABgcySlAAAAAAAAYHMkpQAAAAAAAGBzJKUAAAAAAABgcySl8I8TEREhT0/P3A4DAAAAAAA8QiSl/mVMJlOmW0hISK7ENXr0aEsMDg4OKliwoOrXr68ZM2YoISHhoduuWrVqzgQKAAAAAAD+ERxyOwBkT0xMjOXn5cuXa+TIkTp+/LilzMnJKTfCkiRVrFhRGzduVEpKii5fvqzIyEiNGzdOn3/+uSIjI+Xm5pZrsQEAAAAAgH8WRkr9y3h5eVk2Dw8PmUwmq7KtW7fq6aeflqOjo3x8fDRmzBglJSVZzjeZTJozZ45atGghZ2dn+fv7a+fOnfr1118VGBgoFxcX1a5dW6dOnbKckzpSac6cOfL29pazs7Patm2rq1evWsXm4OAgLy8vFStWTJUqVVL//v21ZcsWHTlyRJMmTbLUu337toYMGaLixYvLxcVFtWrVUmRkZLrXGxERoTFjxujgwYOWkVgRERGSpGnTpqlSpUpycXGRt7e3+vbtq+vXr+fYvQYAAAAAAI8OSanHyPfff6/OnTvrjTfe0LFjxzRnzhxFRERo/PjxVvXGjh2rrl27KioqShUqVFDHjh3Vu3dvhYWFae/evZKkfv36WZ3z66+/asWKFfrmm2+0fv16RUVF6fXXX79vTBUqVFDTpk315ZdfWsq6d++u7du3a9myZTp06JDatm2rJk2a6OTJk2nOb9++vQYNGqSKFSsqJiZGMTExat++vSTJzs5OH330kY4cOaIFCxboxx9/1JAhQzKMJSEhQXFxcVYbAAAAAADIHSSlHiPjx4/XO++8o27dusnHx0eNGzfW2LFjNWfOHKt63bt3V7t27VS+fHkNHTpUZ86cUadOnRQcHCx/f3+9+eabaUYuxcfHa8GCBapatarq16+vjz/+WMuWLdOFCxfuG1eFChV05swZSdKpU6e0dOlSrVy5UvXq1VPZsmU1ePBgPffccwoPD09zrpOTk1xdXS2jsLy8vCxTFAcMGKCgoCCVKVNGDRs21NixY7VixYoM45g4caI8PDwsm7e3931jBwAAAAAAjwZrSj1G9u3bpz179liNjEpOTlZ8fLxu3rwpZ2dnSVLlypUtx4sUKSJJqlSpklVZfHy84uLi5O7uLkkqWbKkSpQoYalTu3ZtpaSk6Pjx4/Ly8so0LsMwZDKZJEn79++XYRgqX768VZ2EhAQVKFAgW9e7efNmTZgwQceOHVNcXJySkpIUHx+vGzduyMXFJU39sLAwDRw40LIfFxdHYgoAAAAAgFxCUuoxkpKSojFjxqh169Zpjjk6Olp+zpMnj+Xn1GRRemUpKSkZ9pVaJ/W/mYmOjlaZMmUsbdrb22vfvn2yt7e3qufq6nrftlL9/vvvatasmfr06aOxY8cqf/782rZtm0JDQ5WYmJjuOWazWWazOct9AAAAAACAR4ek1GOkevXqOn78uHx9fXO87bNnz+r8+fMqVqyYJGnnzp2ys7NLM+LpXr/88ovWr1+vsLAwSVK1atWUnJysixcvql69elnqO2/evEpOTrYq27t3r5KSkjR16lTZ2d2ZhZrZ1D0AAAAAAPDPQlLqMTJy5Ei1aNFC3t7eatu2rezs7HTo0CEdPnxY48aNe6i2HR0d1a1bN33wwQeKi4vTG2+8oXbt2llN3UtKStKFCxeUkpKiy5cvKzIyUuPGjVPVqlX19ttvS5LKly+vTp06qWvXrpo6daqqVaum//3vf/rxxx9VqVIlNWvWLE3fpUuX1unTpxUVFaUSJUrIzc1NZcuWVVJSkj7++GO98MIL2r59u2bPnv1Q1wgAAAAAAGyHhc4fI8HBwVq7dq02bNigZ555Rs8++6ymTZumUqVKPXTbvr6+at26tZo1a6b//Oc/euqppzRz5kyrOkePHlXRokVVsmRJBQYGasWKFQoLC9NPP/1kNTUvPDxcXbt21aBBg+Tn56cXX3xRP//8c4brO7Vp00ZNmjRRUFCQChUqpKVLl6pq1aqaNm2aJk2apKeeekqLFy/WxIkTH/o6AQAAAACAbZgMwzByOwj8s40ePVqrV69WVFRUboeSo+Li4uTh4aEq/WfL3uyU2+FkaN+UrrkdAgAAAAAAWZb6fTs2NtbyALX0MFIKAAAAAAAANkdSCgAAAAAAADZHUgr3NXr06Mdu6h4AAAAAAMhdJKUAAAAAAABgcySlAAAAAAAAYHMkpQAAAAAAAGBzJKUAAAAAAABgcw65HQCQ27aO6yB3d/fcDgMAAAAAgCcKI6UAAAAAAABgcySlAAAAAAAAYHMkpQAAAAAAAGBzJKUAAAAAAABgcySlAAAAAAAAYHM8fQ9PvPrDl8re7PTI+9k3pesj7wMAAAAAgH8LRkoBAAAAAADA5khKAQAAAAAAwOZISgEAAAAAAMDmSEoBAAAAAADA5khKAQAAAAAAwOZISgEAAAAAAMDmSEoBAAAAAADA5khK/UudOXNGJpNJUVFRuRrH6NGjVbVq1YduJyIiQp6eng/dDgAAAAAA+HcgKZUDTCZTpltISEiuxFW6dOl043n//fdzJZ6745oxY4ZVWfv27XXixIncCQgAAAAAANicQ24H8DiIiYmx/Lx8+XKNHDlSx48ft5Q5OTlZ1U9MTFSePHlsEtt7772nXr16WZW5ubnZpO/scHJySnOfAAAAAADA44uRUjnAy8vLsnl4eMhkMln24+Pj5enpqRUrVigwMFCOjo5atGiRLl++rA4dOqhEiRJydnZWpUqVtHTpUqt2U1JSNGnSJPn6+spsNqtkyZIaP358ujGkpKSoV69eKl++vH7//XdLuZubm1V8Xl5ecnFxUUpKikqUKKHZs2dbtbN//36ZTCb99ttvkqSzZ8+qZcuWcnV1lbu7u9q1a6e//vorw3sRGBioAQMGWJW1atXKMlosMDBQv//+u9566y3LyC0p/el7s2bNUtmyZZU3b175+fnp888/tzpuMpk0d+5cvfTSS3J2dla5cuW0Zs2aDGMDAAAAAAD/HCSlbGTo0KF64403FB0dreDgYMXHx+vpp5/W2rVrdeTIEb366qvq0qWLfv75Z8s5YWFhmjRpkkaMGKFjx45pyZIlKlKkSJq2b9++rXbt2mnv3r3atm2bSpUqdd947Ozs9Morr2jx4sVW5UuWLFHt2rXl4+MjwzDUqlUrXblyRVu2bNGGDRt06tQptW/f/oHvw5dffqkSJUrovffeU0xMjNUos7t99dVXevPNNzVo0CAdOXJEvXv3Vvfu3bV582aremPGjFG7du106NAhNWvWTJ06ddKVK1ceOD4AAAAAAGAbTN+zkQEDBqh169ZWZYMHD7b83L9/f61fv14rV65UrVq1dO3aNX344Yf65JNP1K1bN0lS2bJl9dxzz1m1cf36dTVv3ly3bt1SZGSkPDw8rI4PHTpUw4cPtypbu3atAgMD1alTJ02bNk2///67SpUqpZSUFC1btkzDhg2TJG3cuFGHDh3S6dOn5e3tLUn6/PPPVbFiRe3Zs0fPPPNMtu9D/vz5ZW9vbxnBlZEPPvhAISEh6tu3ryRp4MCB2rVrlz744AMFBQVZ6oWEhKhDhw6SpAkTJujjjz/W7t271aRJkzRtJiQkKCEhwbIfFxeX7fgBAAAAAEDOYKSUjdSoUcNqPzk5WePHj1flypVVoEABubq66ocfftDZs2clSdHR0UpISFCjRo0ybbdDhw66fv26fvjhhzQJKUl6++23FRUVZbXVqlVLklStWjVVqFDBMm1wy5Ytunjxotq1a2eJwdvb25KQkqSAgAB5enoqOjr6wW9GFkRHR6tu3bpWZXXr1k3Tb+XKlS0/u7i4yM3NTRcvXky3zYkTJ8rDw8Oy3X1dAAAAAADAtkhK2YiLi4vV/tSpUzV9+nQNGTJEP/74o6KiohQcHKzbt29LSrs4ekaaNWumQ4cOadeuXekeL1iwoHx9fa22u9vu1KmTlixZIunO1L3g4GAVLFhQkmQYhmXNp7tlVC7dmRZoGIZVWWJiYpau5V739pFev/cuGG8ymZSSkpJue2FhYYqNjbVs586de6C4AAAAAADAwyMplUt++ukntWzZUp07d1aVKlXk4+OjkydPWo6XK1dOTk5O2rRpU6btvPbaa3r//ff14osvasuWLdmOo2PHjjp8+LD27dunL774Qp06dbIcCwgI0NmzZ62SN8eOHVNsbKz8/f3Tba9QoUJW60QlJyfryJEjVnXy5s2r5OTkTOPy9/fXtm3brMp27NiRYb9ZYTab5e7ubrUBAAAAAIDcwZpSucTX11erVq3Sjh07lC9fPk2bNk0XLlywJF0cHR01dOhQDRkyRHnz5lXdunV16dIlHT16VKGhoVZt9e/fX8nJyWrRooW+++47q3Wnrl27pgsXLljVd3Z2tiRkypQpozp16ig0NFRJSUlq2bKlpd7zzz+vypUrq1OnTpoxY4aSkpLUt29fNWjQIM10xFQNGzbUwIEDtW7dOpUtW1bTp0/X1atXreqULl1aW7du1SuvvCKz2WwZmXW3t99+W+3atVP16tXVqFEjffPNN/ryyy+1cePGrN9kAAAAAADwj8VIqVwyYsQIVa9eXcHBwQoMDJSXl5datWqVps6gQYM0cuRI+fv7q3379hmulzRgwACNGTNGzZo1044dOyzlI0eOVNGiRa22IUOGWJ3bqVMnHTx4UK1bt7aa2mcymbR69Wrly5dP9evX1/PPPy8fHx8tX748w+vq0aOHunXrpq5du6pBgwYqU6aM1cLkkvTee+/pzJkzKlu2rAoVKpRuO61atdKHH36oKVOmqGLFipozZ47Cw8MVGBiYYd8AAAAAAODfw2TcuwAQ8ISIi4uTh4eHqvSfLXtz1tbwehj7pnR95H0AAAAAAJDbUr9vx8bGZrp0DiOlAAAAAAAAYHMkpQAAAAAAAGBzJKUAAAAAAABgcySlAAAAAAAAYHMkpQAAAAAAAGBzD5SUOnXqlIYPH64OHTro4sWLkqT169fr6NGjORocAAAAAAAAHk/ZTkpt2bJFlSpV0s8//6wvv/xS169flyQdOnRIo0aNyvEAAQAAAAAA8PgxGYZhZOeE2rVrq23btho4cKDc3Nx08OBB+fj4aM+ePWrVqpX+/PPPRxUrkKPi4uLk4eGh2NhYubu753Y4AAAAAAA8FrL6fTvbI6UOHz6sl156KU15oUKFdPny5ew2BwAAAAAAgCdQtpNSnp6eiomJSVN+4MABFS9ePEeCAgAAAAAAwOMt20mpjh07aujQobpw4YJMJpNSUlK0fft2DR48WF27dn0UMQIAAAAAAOAxk+2k1Pjx41WyZEkVL15c169fV0BAgOrXr686depo+PDhjyJGAAAAAAAAPGaytdC5YRg6e/asChUqpAsXLmj//v1KSUlRtWrVVK5cuUcZJ5DjWOgcAAAAAICcl9Xv2w7ZadQwDJUrV05Hjx5VuXLl5OPj89CBAgAAAAAA4MmTraSUnZ2dypUrp8uXLzMyCo+N+sOXyt7s9Eja3jeFddYAAAAAAEhPtteUmjx5st5++20dOXLkUcQDAAAAAACAJ0C2RkpJUufOnXXz5k1VqVJFefPmlZOT9QiTK1eu5FhwAAAAAAAAeDxlOyk1Y8aMRxAGAAAAAAAAniTZTkp169btUcQBAAAAAACAJ0i2k1Jnz57N9HjJkiUfOBgAAAAAAAA8GbKdlCpdurRMJlOGx5OTkx8qIAAAAAAAADz+sp2UOnDggNV+YmKiDhw4oGnTpmn8+PE5FhgAAAAAAAAeX3bZPaFKlSpWW40aNdSrVy998MEH+uijjx5FjPgHiIyMlMlk0tWrV7N13ujRo1WkSBGZTCatXr06wzIAAAAAAPBkyXZSKiPly5fXnj17cqo5PICQkBCZTKY026+//prjfaUmqdLbLly4IEmKjo7WmDFjNGfOHMXExKhp06bplj2s0aNHq2rVqg/dDgAAAAAAsJ1sT9+Li4uz2jcMQzExMRo9erTKlSuXY4HhwTRp0kTh4eFWZYUKFXpk/R0/flzu7u5WZYULF5YknTp1SpLUsmVLyzpk6ZUBAAAAAIAnT7ZHSnl6eipfvnyWLX/+/AoICNDOnTs1a9asRxEjssFsNsvLy8tqCw0NVatWrazqDRgwQIGBgZZ9wzA0efJk+fj4yMnJSVWqVNEXX3xx3/4KFy6cpj87OzuNHj1aL7zwgiTJzs5OJpMp3bJU4eHh8vf3l6OjoypUqKCZM2da9fPHH3/olVdeUf78+eXi4qIaNWro559/VkREhMaMGaODBw9aRmpFREQ82M0DAAAAAAA2k+2RUps3b7bat7OzU6FCheTr6ysHh2w3h3+I4cOH68svv9SsWbNUrlw5bd26VZ07d1ahQoXUoEGDbLc3ePBglS5dWt27d1dMTIwkydXVNU2ZJH322WcaNWqUPvnkE1WrVk0HDhxQr1695OLiom7duun69etq0KCBihcvrjVr1sjLy0v79+9XSkqK2rdvryNHjmj9+vXauHGjJMnDwyNnbgoAAAAAAHhksp1FMplMqlOnTpoEVFJSkrZu3ar69evnWHDIvrVr18rV1dWy37RpU7m4uGR6zo0bNzRt2jT9+OOPql27tiTJx8dH27Zt05w5czJNSpUoUcJqv3jx4jp+/LhcXV3l6ekpSfLy8rIcT69s7Nixmjp1qlq3bi1JKlOmjI4dO6Y5c+aoW7duWrJkiS5duqQ9e/Yof/78kiRfX1/L+a6urnJwcLBqMz0JCQlKSEiw7N87FRUAAAAAANhOtpNSQUFBiomJsawblCo2NlZBQUFKTk7OseCQfUFBQVbTKF1cXBQWFpbpOceOHVN8fLwaN25sVX779m1Vq1Yt03N/+uknubm5WfazO1ru0qVLOnfunEJDQ9WrVy9LeVJSkmXEU1RUlKpVq2ZJSD2oiRMnasyYMQ/VBgAAAAAAyBnZTkoZhpHuAtWXL1++74gcPHouLi5Wo4ikO1MsDcOwKktMTLT8nJKSIklat26dihcvblXPbDZn2l+ZMmUso58eRGrfn332mWrVqmV1zN7eXpLk5OT0wO3fLSwsTAMHDrTsx8XFydvbO0faBgAAAAAA2ZPlpFTq1CqTyaSQkBCrZEVycrIOHTqkOnXq5HyEeGiFChXSkSNHrMqioqKUJ08eSVJAQIDMZrPOnj37QOtHPYwiRYqoePHi+u2339SpU6d061SuXFlz587VlStX0h0tlTdv3iyN0DObzfdNsgEAAAAAANvIclIqdSqVYRhyc3OzGr2SN29ePfvss1bTr/DP0bBhQ02ZMkULFy5U7dq1tWjRIh05csQyNc/NzU2DBw/WW2+9pZSUFD333HOKi4vTjh075Orqqm7dumXY9sWLFxUfH29VVqBAAUvCKytGjx6tN954Q+7u7mratKkSEhK0d+9e/f333xo4cKA6dOigCRMmqFWrVpo4caKKFi2qAwcOqFixYqpdu7ZKly6t06dPKyoqSiVKlJCbmxvJJwAAAAAA/uGynJQKDw+XJJUuXVqDBw9mqt6/SHBwsEaMGKEhQ4YoPj5ePXr0UNeuXXX48GFLnbFjx6pw4cKaOHGifvvtN3l6eqp69eoaNmxYpm37+fmlKdu5c6eeffbZLMfXs2dPOTs7a8qUKRoyZIhcXFxUqVIlDRgwQNKdpOcPP/ygQYMGqVmzZkpKSlJAQIA+/fRTSVKbNm305ZdfKigoSFevXlV4eLhCQkKy3D8AAAAAALA9k3HvYkPAEyIuLk4eHh6q0n+27M05s27VvfZN6fpI2gUAAAAA4J8q9ft2bGys3N3dM6yX7YXOJemLL77QihUrdPbsWd2+fdvq2P79+x+kSQAAAAAAADxB7LJ7wkcffaTu3burcOHCOnDggGrWrKkCBQrot99+U9OmTR9FjAAAAAAAAHjMZDspNXPmTP33v//VJ598orx582rIkCHasGGD3njjDcXGxj6KGAEAAAAAAPCYyXZS6uzZs6pTp44kycnJSdeuXZMkdenSRUuXLs3Z6AAAAAAAAPBYynZSysvLS5cvX5YklSpVSrt27ZIknT59WqyZDgAAAAAAgKzIdlKqYcOG+uabbyRJoaGheuutt9S4cWO1b99eL730Uo4HCAAAAAAAgMdPtp++99///lcpKSmSpD59+ih//vzatm2bXnjhBfXp0yfHAwQAAAAAAMDjx2Qw5w5PqLi4OHl4eCg2Nlbu7u65HQ4AAAAAAI+FrH7fzvb0PUn66aef1LlzZ9WuXVt//vmnJOnzzz/Xtm3bHixaAAAAAAAAPFGynZRatWqVgoOD5eTkpAMHDighIUGSdO3aNU2YMCHHAwQAAAAAAMDjJ9tJqXHjxmn27Nn67LPPlCdPHkt5nTp1tH///hwNDgAAAAAAAI+nbCeljh8/rvr166cpd3d319WrV3MiJgAAAAAAADzmsp2UKlq0qH799dc05du2bZOPj0+OBAUAAAAAAIDHW7aTUr1799abb76pn3/+WSaTSefPn9fixYs1ePBg9e3b91HECAAAAAAAgMeMQ1YqHTp0SE899ZTs7Ow0ZMgQxcbGKigoSPHx8apfv77MZrMGDx6sfv36Pep4gRxXf/hS2ZudHqqNfVO65lA0AAAAAAA8GbKUlKpWrZpiYmJUuHBh+fj4aM+ePRo2bJiio6OVkpKigIAAubq6PupYAQAAAAAA8JjIUlLK09NTp0+fVuHChXXmzBmlpKTIxcVFNWrUeNTxAQAAAAAA4DGUpaRUmzZt1KBBAxUtWlQmk0k1atSQvb19unV/++23HA0QAAAAAAAAj58sJaX++9//qnXr1vr111/1xhtvqFevXnJzc3vUsQEAAAAAAOAxlaWklCQ1adJEkrRv3z69+eabJKUAAAAAAADwwLKclEoVHh7+KOIAAAAAAADAE8QutwMAAAAAAADAk4ekFB6ZM2fOyGQyKSoqKsM6kZGRMplMunr1qiQpIiJCnp6eNokPAAAAAADkHpJSj7mQkBC1atUqTfm9yaBHwdvbWzExMXrqqaeyfE779u114sQJy/7o0aNVtWrVRxAdAAAAAADITdleUwrIKnt7e3l5eWXrHCcnJzk5OT2iiAAAAAAAwD8FI6WQ7mikGTNmqHTp0pb91BFXEyZMUJEiReTp6akxY8YoKSlJb7/9tvLnz68SJUpo/vz5lnPSm7737bffqnz58nJyclJQUJDOnDlj1e/d0/ciIiI0ZswYHTx4UCaTSSaTSREREerRo4datGhhdV5SUpK8vLys+gcAAAAAAP9cjJRClv34448qUaKEtm7dqu3btys0NFQ7d+5U/fr19fPPP2v58uXq06ePGjduLG9v7zTnnzt3Tq1bt1afPn302muvae/evRo0aFCG/bVv315HjhzR+vXrtXHjRkmSh4eHypcvr/r16ysmJkZFixaVdCfZdf36dbVr1y7D9hISEpSQkGDZj4uLe9BbAQAAAAAAHhIjpZ4Aa9eulaurq9XWtGnTbLeTP39+ffTRR/Lz81OPHj3k5+enmzdvatiwYSpXrpzCwsKUN29ebd++Pd3zZ82aJR8fH02fPl1+fn7q1KmTQkJCMuzPyclJrq6ucnBwkJeXl7y8vOTk5KQ6derIz89Pn3/+uaVueHi42rZtK1dX1wzbmzhxojw8PCxbeokzAAAAAABgGySlngBBQUGKioqy2ubOnZvtdipWrCg7u///kilSpIgqVapk2be3t1eBAgV08eLFdM+Pjo7Ws88+K5PJZCmrXbt2tuOQpJ49eyo8PFySdPHiRa1bt049evTI9JywsDDFxsZatnPnzj1Q3wAAAAAA4OExfe8J4OLiIl9fX6uyP/74w/KznZ2dDMOwOp6YmJimnTx58ljtm0ymdMtSUlLSjePePh5G165d9c4772jnzp3auXOnSpcurXr16mV6jtlsltlszrEYAAAAAADAgyMpBRUqVEgXLlyQYRiWUUx3L06eUwICArR69Wqrsl27dmV6Tt68eZWcnJymvECBAmrVqpXCw8O1c+dOde/ePSdDBQAAAAAAjxjT96DAwEBdunRJkydP1qlTp/Tpp5/qu+++y/F++vTpo1OnTmngwIE6fvy4lixZooiIiEzPKV26tE6fPq2oqCj973//s1qovGfPnlqwYIGio6PVrVu3HI8XAAAAAAA8OiSlIH9/f82cOVOffvqpqlSpot27d2vw4ME53k/JkiW1atUqffPNN6pSpYpmz56tCRMmZHpOmzZt1KRJEwUFBalQoUJaunSp5djzzz+vokWLKjg4WMWKFcvxeAEAAAAAwKNjMnJyoR/Ahm7evKlixYpp/vz5at26dbbPj4uLk4eHh6r0ny17s9NDxbJvSteHOh8AAAAAgMdF6vft2NhYubu7Z1iPNaXwr5OSkqILFy5o6tSp8vDw0IsvvpjbIQEAAAAAgGwiKYV/nbNnz6pMmTIqUaKEIiIi5ODAyxgAAAAAgH8bvs3jX6d06dJi1ikAAAAAAP9uLHQOAAAAAAAAmyMpBQAAAAAAAJsjKQUAAAAAAACbIykFAAAAAAAAm2Ohczzxto7rIHd399wOAwAAAACAJwojpQAAAAAAAGBzJKUAAAAAAABgcySlAAAAAAAAYHMkpQAAAAAAAGBzJKUAAAAAAABgcySlAAAAAAAAYHMOuR0AkNvqD18qe7PTA527b0rXHI4GAAAAAIAnAyOlAAAAAAAAYHMkpQAAAAAAAGBzJKUAAAAAAABgcySlAAAAAAAAYHMkpQAAAAAAAGBzJKUAAAAAAABgcySlAAAAAAAAYHMkpXBfZ86ckclkUlRUVG6HAgAAAAAAHhMkpf5lTCZTpltISIhN44mMjLxvTBERETaNCQAAAAAA/PM55HYAyJ6YmBjLz8uXL9fIkSN1/PhxS5mTk5NV/cTEROXJk+eRxVOnTh2rmN58803FxcUpPDzcUubh4fHI+gcAAAAAAP9OjJT6l/Hy8rJsHh4eMplMlv34+Hh5enpqxYoVCgwMlKOjoxYtWqTLly+rQ4cOKlGihJydnVWpUiUtXbrUqt2UlBRNmjRJvr6+MpvNKlmypMaPH59uDCkpKerVq5fKly+vmJgYq5icnJxkNpst+0WKFNHHH38sHx8fOTk5qUqVKvriiy8sbaWOtPr+++9VrVo1OTk5qWHDhrp48aK+++47+fv7y93dXR06dNDNmzct5wUGBqpfv37q16+fPD09VaBAAQ0fPlyGYTyaGw8AAAAAAHIUI6UeQ0OHDtXUqVMVHh4us9ms+Ph4Pf300xo6dKjc3d21bt06denSRT4+PqpVq5YkKSwsTJ999pmmT5+u5557TjExMfrll1/StH379m117NhRp06d0rZt21S4cOFMYxk+fLi+/PJLzZo1S+XKldPWrVvVuXNnFSpUSA0aNLDUGz16tD755BM5OzurXbt2ateuncxms5YsWaLr16/rpZde0scff6yhQ4dazlmwYIFCQ0P1888/a+/evXr11VdVqlQp9erVK91YEhISlJCQYNmPi4vL1n0FAAAAAAA5h6TUY2jAgAFq3bq1VdngwYMtP/fv31/r16/XypUrVatWLV27dk0ffvihPvnkE3Xr1k2SVLZsWT333HNWbVy/fl3NmzfXrVu3FBkZed9peTdu3NC0adP0448/qnbt2pIkHx8fbdu2TXPmzLFKSo0bN05169aVJIWGhiosLEynTp2Sj4+PJOnll1/W5s2brZJS3t7emj59ukwmk/z8/HT48GFNnz49w6TUxIkTNWbMmExjBgAAAAAAtsH0vcdQjRo1rPaTk5M1fvx4Va5cWQUKFJCrq6t++OEHnT17VpIUHR2thIQENWrUKNN2O3TooOvXr+uHH37I0jpRx44dU3x8vBo3bixXV1fLtnDhQp06dcqqbuXKlS0/FylSRM7OzpaEVGrZxYsXrc559tlnZTKZLPu1a9fWyZMnlZycnG48YWFhio2NtWznzp277zUAAAAAAIBHg5FSjyEXFxer/alTp2r69OmaMWOGKlWqJBcXFw0YMEC3b9+WlHZx9Iw0a9ZMixYt0q5du9SwYcP71k9JSZEkrVu3TsWLF7c6ZjabrfbvXozdZDKlWZzdZDJZ2ntQZrM5Tb8AAAAAACB3kJR6Avz0009q2bKlOnfuLOlOsujkyZPy9/eXJJUrV05OTk7atGmTevbsmWE7r732mp566im9+OKLWrdundX0u/QEBATIbDbr7Nmz9637IHbt2pVmv1y5crK3t8/xvgAAAAAAQM4iKfUE8PX11apVq7Rjxw7ly5dP06ZN04ULFyxJKUdHRw0dOlRDhgxR3rx5VbduXV26dElHjx5VaGioVVv9+/dXcnKyWrRooe+++y7NulN3c3Nz0+DBg/XWW28pJSVFzz33nOLi4rRjxw65urpa1q96UOfOndPAgQPVu3dv7d+/Xx9//LGmTp36UG0CAAAAAADbICn1BBgxYoROnz6t4OBgOTs769VXX1WrVq0UGxtrVcfBwUEjR47U+fPnVbRoUfXp0yfd9gYMGKCUlBQ1a9ZM69evV506dTLse+zYsSpcuLAmTpyo3377TZ6enqpevbqGDRv20NfVtWtX3bp1SzVr1pS9vb369++vV1999aHbBQAAAAAAj57JMAwjt4MAsiswMFBVq1bVjBkzHriNuLg4eXh4qEr/2bI3Z21drXvtm9L1gfsHAAAAAOBxlPp9OzY2Vu7u7hnW4+l7AAAAAAAAsDmSUgAAAAAAALA51pTCv1JkZGRuhwAAAAAAAB4CI6UAAAAAAABgcySlAAAAAAAAYHMkpQAAAAAAAGBzJKUAAAAAAABgcyx0jife1nEd5O7untthAAAAAADwRGGkFAAAAAAAAGyOpBQAAAAAAABsjqQUAAAAAAAAbI6kFAAAAAAAAGyOpBQAAAAAAABsjqfv4YlXf/hS2ZudsnXOvildH1E0AAAAAAA8GRgpBQAAAAAAAJsjKQUAAAAAAACbIykFAAAAAAAAmyMpBQAAAAAAAJsjKQUAAAAAAACbIykFAAAAAAAAmyMpBQAAAAAAAJsjKfUYioyMlMlk0tWrVx+qnZCQELVq1SpHYnrUzpw5I5PJpKioqNwOBQAAAAAAZAFJqX+42bNny83NTUlJSZay69evK0+ePKpXr55V3Z9++kkmk0nFihVTTEyMPDw8cjSWixcvqnfv3ipZsqTMZrO8vLwUHBysnTt35mg/AAAAAADg8eeQ2wEgc0FBQbp+/br27t2rZ599VtKd5JOXl5f27NmjmzdvytnZWdKdEVLFihVT+fLlH0ksbdq0UWJiohYsWCAfHx/99ddf2rRpk65cufJI+gMAAAAAAI8vRkr9w/n5+alYsWKKjIy0lEVGRqply5YqW7asduzYYVUeFBSUZvpeRESEPD099f3338vf31+urq5q0qSJYmJiLOcmJydr4MCB8vT0VIECBTRkyBAZhmE5fvXqVW3btk2TJk1SUFCQSpUqpZo1ayosLEzNmze31DOZTJo1a5aaNm0qJycnlSlTRitXrrS6pj///FPt27dXvnz5VKBAAbVs2VJnzpyxqhMeHi5/f385OjqqQoUKmjlzptXx3bt3q1q1anJ0dFSNGjV04MCBB73FAAAAAAAgF5CU+hcIDAzU5s2bLfubN29WYGCgGjRoYCm/ffu2du7cqaCgoHTbuHnzpj744AN9/vnn2rp1q86ePavBgwdbjk+dOlXz58/XvHnztG3bNl25ckVfffWV5birq6tcXV21evVqJSQkZBrviBEj1KZNGx08eFCdO3dWhw4dFB0dbYkjKChIrq6u2rp1q7Zt22ZJkt2+fVuS9Nlnn+ndd9/V+PHjFR0drQkTJmjEiBFasGCBJOnGjRtq0aKF/Pz8tG/fPo0ePdrqWgAAAAAAwD8fSal/gcDAQG3fvl1JSUm6du2aDhw4oPr166tBgwaWEVS7du3SrVu3MkxKJSYmavbs2apRo4aqV6+ufv36adOmTZbjM2bMUFhYmNq0aSN/f3/Nnj3bak0qBwcHRUREaMGCBfL09FTdunU1bNgwHTp0KE1fbdu2Vc+ePVW+fHmNHTtWNWrU0McffyxJWrZsmezs7DR37lxVqlRJ/v7+Cg8P19mzZy3XMnbsWE2dOlWtW7dWmTJl1Lp1a7311luaM2eOJGnx4sVKTk7W/PnzVbFiRbVo0UJvv/32fe9jQkKC4uLirDYAAAAAAJA7SEr9CwQFBenGjRvas2ePfvrpJ5UvX16FCxdWgwYNtGfPHt24cUORkZEqWbKkfHx80m3D2dlZZcuWtewXLVpUFy9elCTFxsYqJiZGtWvXthx3cHBQjRo1rNpo06aNzp8/rzVr1ig4OFiRkZGqXr26IiIirOrd3U7qfupIqX379unXX3+Vm5ubZfRV/vz5FR8fr1OnTunSpUs6d+6cQkNDLcddXV01btw4nTp1SpIUHR2tKlWqWNbSSq/P9EycOFEeHh6Wzdvb+77nAAAAAACAR4OFzv8FfH19VaJECW3evFl///23GjRoIEny8vJSmTJltH37dm3evFkNGzbMsI08efJY7ZtMJqs1o7LK0dFRjRs3VuPGjTVy5Ej17NlTo0aNUkhISKbnmUwmSVJKSoqefvppLV68OE2dQoUKKT4+XtKdKXy1atWyOm5vby9JDxS3JIWFhWngwIGW/bi4OBJTAAAAAADkEkZK/UukLmAeGRmpwMBAS3mDBg30/fffa9euXRlO3bsfDw8PFS1aVLt27bKUJSUlad++ffc9NyAgQDdu3LAqu7ud1P0KFSpIkqpXr66TJ0+qcOHC8vX1tdo8PDxUpEgRFS9eXL/99lua42XKlLH0efDgQd26dSvDPtNjNpvl7u5utQEAAAAAgNxBUupfIigoSNu2bVNUVJRlpJR0Jyn12WefKT4+/oGTUpL05ptv6v3339dXX32lX375RX379rU8vU+SLl++rIYNG2rRokU6dOiQTp8+rZUrV2ry5Mlq2bKlVVsrV67U/PnzdeLECY0aNUq7d+9Wv379JEmdOnVSwYIF1bJlS/300086ffq0tmzZojfffFN//PGHJGn06NGaOHGiPvzwQ504cUKHDx9WeHi4pk2bJknq2LGj7OzsFBoaqmPHjunbb7/VBx988MDXDgAAAAAAbI/pe/8SQUFBunXrlipUqKAiRYpYyhs0aKBr166pbNmyDzUVbdCgQYqJiVFISIjs7OzUo0cPvfTSS4qNjZV05+l7tWrV0vTp03Xq1CklJibK29tbvXr10rBhw6zaGjNmjJYtW6a+ffvKy8tLixcvVkBAgKQ7a1tt3bpVQ4cOVevWrXXt2jUVL15cjRo1soxc6tmzp5ydnTVlyhQNGTJELi4uqlSpkgYMGGCJ5ZtvvlGfPn1UrVo1BQQEaNKkSWrTps0DXz8AAAAAALAtk/GgC/QA6TCZTPrqq6/UqlWr3A7lvuLi4uTh4aEq/WfL3uyUrXP3Ten6iKICAAAAAODfLfX7dmxsbKZL5zB9DwAAAAAAADZHUgoAAAAAAAA2x5pSyFHMBgUAAAAAAFnBSCkAAAAAAADYHEkpAAAAAAAA2BxJKQAAAAAAANgcSSkAAAAAAADYHAud44m3dVwHubu753YYAAAAAAA8URgpBQAAAAAAAJsjKQUAAAAAAACbIykFAAAAAAAAmyMpBQAAAAAAAJsjKQUAAAAAAACbIykFAAAAAAAAm3PI7QCA3FZ/+FLZm50s+/umdM3FaAAAAAAAeDIwUgoAAAAAAAA2R1IKAAAAAAAANkdSCgAAAAAAADZHUgoAAAAAAAA2R1IKAAAAAAAANkdSCgAAAAAAADZHUgoAAAAAAAA2R1IKGTpz5oxMJpOioqJyOxQAAAAAAPCYISn1fy5cuKD+/fvLx8dHZrNZ3t7eeuGFF7Rp06bcDu1fY9WqVapVq5Y8PDzk5uamihUratCgQVZ1bt26pVGjRsnPz09ms1kFCxbUyy+/rKNHj1rVGz16tEwmU5pt7ty56ZbfvY0ePdqGVw0AAAAAAB6EQ24H8E9w5swZ1a1bV56enpo8ebIqV66sxMREff/993r99df1yy+/5HaI/3gbN27UK6+8ogkTJujFF1+UyWTSsWPHrJJ6CQkJev7553X27FlNnTpVtWrV0l9//aWJEyeqVq1a2rhxo5599llL/YoVK2rjxo1W/eTLl08tWrSw7H/wwQdav369VT1XV9dHeKUAAAAAACAnMFJKUt++fWUymbR79269/PLLKl++vCpWrKiBAwdq165dkqSzZ8+qZcuWcnV1lbu7u9q1a6e//vrL0sbo0aNVtWpVzZ8/XyVLlpSrq6tee+01JScna/LkyfLy8lLhwoU1fvx4q75NJpNmzZqlpk2bysnJSWXKlNHKlSut6hw+fFgNGzaUk5OTChQooFdffVXXr1+3HA8MDNSAAQOszmnVqpVCQkIs+6VLl9aECRPUo0cPubm5qWTJkvrvf/9rdc7u3btVrVo1OTo6qkaNGjpw4ECW7+HatWv13HPP6e2335afn5/Kly+vVq1a6eOPP7bUmTFjhnbu3Km1a9eqXbt2KlWqlGrWrKlVq1bJ399foaGhMgzDUt/BwUFeXl5Wm9lsttp3dXVNU4+kFAAAAAAA/3xPfFLqypUrWr9+vV5//XW5uLikOe7p6SnDMNSqVStduXJFW7Zs0YYNG3Tq1Cm1b9/equ6pU6f03Xffaf369Vq6dKnmz5+v5s2b648//tCWLVs0adIkDR8+3JLoSjVixAi1adNGBw8eVOfOndWhQwdFR0dLkm7evKkmTZooX7582rNnj1auXKmNGzeqX79+2b7WqVOnWpJNffv21WuvvWYZBXbjxg21aNFCfn5+2rdvn0aPHq3BgwdnuW0vLy8dPXpUR44cybDOkiVL1LhxY1WpUsWq3M7OTm+99ZaOHTumgwcPZvu6AAAAAADAv88Tn5T69ddfZRiGKlSokGGdjRs36tChQ1qyZImefvpp1apVS59//rm2bNmiPXv2WOqlpKRo/vz5CggI0AsvvKCgoCAdP35cM2bMkJ+fn7p37y4/Pz9FRkZatd+2bVv17NlT5cuX19ixY1WjRg3LCKPFixfr1q1bWrhwoZ566ik1bNhQn3zyiT7//HOrkVpZ0axZM/Xt21e+vr4aOnSoChYsaIll8eLFSk5O1vz581WxYkW1aNFCb7/9dpbb7t+/v5555hlVqlRJpUuX1iuvvKL58+crISHBUufEiRPy9/dP9/zU8hMnTljKDh8+LFdXV8tWs2bNbF3vvRISEhQXF2e1AQAAAACA3PHEJ6VSp4uZTKYM60RHR8vb21ve3t6WsoCAAHl6elpGNEl3psi5ublZ9osUKaKAgADZ2dlZlV28eNGq/dq1a6fZT203OjpaVapUsRrFVbduXaWkpOj48ePZuVRVrlzZ8rPJZJKXl5clltR+nJ2dM4wrMy4uLlq3bp1+/fVXDR8+XK6urho0aJBq1qypmzdv3vf89H4Pfn5+ioqKsmyrVq3KcjzpmThxojw8PCzb3b9PAAAAAABgW098UqpcuXIymUxWyaV7GYaRbtLq3vI8efJYHTeZTOmWpaSk3Deu1HYz6vvuOnZ2dlZrMUlSYmJimvqZxXLv+Q+qbNmy6tmzp+bOnav9+/fr2LFjWr58uSSpfPnyOnbsWLrnpU4jLFeunKUsb9688vX1tWwPm0QKCwtTbGysZTt37txDtQcAAAAAAB7cE5+Uyp8/v4KDg/Xpp5/qxo0baY5fvXpVAQEBOnv2rFUS49ixY4qNjc1wOlp23LvG1K5duyzTCQMCAhQVFWUV2/bt22VnZ6fy5ctLkgoVKqSYmBjL8eTk5EzXdkpPQECADh48qFu3bmUYV3aVLl1azs7OlthfeeUVbdy4Mc26USkpKZo+fboCAgLSrDeVk8xms9zd3a02AAAAAACQO574pJQkzZw5U8nJyZYnwZ08eVLR0dH66KOPVLt2bT3//POqXLmyOnXqpP3792v37t3q2rWrGjRooBo1ajx0/ytXrtT8+fN14sQJjRo1Srt377YsZN6pUyc5OjqqW7duOnLkiDZv3qz+/furS5cuKlKkiCSpYcOGWrdundatW6dffvlFffv21dWrV7MVQ8eOHWVnZ6fQ0FAdO3ZM3377rT744IMsnz969GgNGTJEkZGROn36tA4cOKAePXooMTFRjRs3liS99dZbqlmzpl544QWtXLlSZ8+e1Z49e9SmTRtFR0dr3rx5mU6jBAAAAAAAjw+SUpLKlCmj/fv3KygoSIMGDdJTTz2lxo0ba9OmTZo1a5ZMJpNWr16tfPnyqX79+nr++efl4+NjmZb2sMaMGaNly5apcuXKWrBggRYvXqyAgABJkrOzs77//ntduXJFzzzzjF5++WU1atRIn3zyieX8Hj16qFu3bpZEWZkyZRQUFJStGFxdXfXNN9/o2LFjqlatmt59911NmjQpy+c3aNBAv/32m7p27aoKFSqoadOmunDhgn744Qf5+flJkhwdHfXjjz+qW7duGjZsmHx9fdWkSRPZ29tr165devbZZ7MVMwAAAAAA+PcyGTm1mBAeiMlk0ldffaVWrVrldihPnLi4OHl4eKhK/9myNztZyvdN6ZqLUQEAAAAA8O+W+n37/7V353FVlfsex78bUEZBRQX0oIgoKqioZFI5kCknlJs5VWZKxzqRpalXTdNwIDWHcLqODUKm0qDZFckhwxS1kyKYJXGvXA1fBTlUoJgDsu8fXvZtBxIQ7C3yeb9e63XYz3rWs75r7+fwkl9rPTsvL6/MpXO4UwoAAAAAAAAWR1EK5RIVFSUXF5dSt6ioKGvHAwAAAAAANYydtQPUdjXl6ck5c+Zo0qRJpe7jW+wAAAAAAEBFUZRCuTRp0kRNmjSxdgwAAAAAAHCX4PE9AAAAAAAAWBxFKQAAAAAAAFgcRSkAAAAAAABYHGtKodbb/9oTLNYOAAAAAICFcacUAAAAAAAALI6iFAAAAAAAACyOohQAAAAAAAAsjqIUAAAAAAAALI6iFAAAAAAAACyOohQAAAAAAAAszs7aAQBr6zljs2ztHU2vUxeNtGIaAAAAAABqB+6UAgAAAAAAgMVRlAIAAAAAAIDFUZQCAAAAAACAxVGUAgAAAAAAgMVRlAIAAAAAAIDFUZQCAAAAAACAxVGUAgAAAAAAgMVRlEKVi4uLU/369St0TGRkpAYOHFgteQAAAAAAwJ2HopQVGQyGMrfIyEhrR7ytTZs2ydbWVlFRUVUy3rJlyxQXF1clYwEAAAAAgDsfRSkrysnJMW1Lly6Vq6urWduyZcusHfG23nnnHU2ZMkUJCQm6cuXKXx7Pzc2twndXAQAAAACAmouilBV5enqaNjc3NxkMBrO2/fv3q2vXrnJwcJCvr69mz56twsJC0/GxsbHq0KGDnJ2d5e3trTFjxujy5cum/cWP0SUmJsrf319OTk4aMmSICgoKFB8fLx8fHzVo0EBjx47VzZs3y537zJkzOnTokKZOnaq2bdvqo48+KrP/rFmzFBQUpLVr18rb21tOTk4aOnSofv31V1OfPz6+17t3b40bN05TpkxRw4YN5enpqVmzZpmNm5eXp3/+859q0qSJXF1d9eCDD+r48ePlvg4AAAAAAGA9FKXuULt27dKIESM0btw4nTx5UmvXrlVcXJzmzp1r6mNjY6Ply5frm2++UXx8vD7//HNNmTLFbJwrV65o+fLlSkhI0M6dO7Vv3z4NGjRISUlJSkpK0oYNG7Ru3bo/LSz93jvvvKP+/fvLzc1NI0aM0Ntvv/2nx5w6dUoffPCBtm/frp07dyo9PV0vvPBCmcfEx8fL2dlZ//rXv7Rw4ULNmTNHe/bskSQZjUb1799fubm5SkpKUmpqqrp06aI+ffro559/LnW8a9euKT8/32wDAAAAAADWQVHqDjV37lxNnTpVo0aNkq+vr/r27auYmBitXbvW1Gf8+PEKDQ1Vy5Yt9eCDDyomJkYffPCB2Tg3btzQ6tWr1blzZ/Xs2VNDhgxRSkqK3n77bbVv314DBgxQaGiokpOTy5WrqKhIcXFxGjFihCTp8ccf1+HDh3Xq1Kkyj7t69ari4+MVFBSknj17asWKFUpISFBubu5tj+nYsaNmzpyp1q1ba+TIkQoODtbevXslScnJyTpx4oQ+/PBDBQcHq3Xr1lq8eLHq169/2wLb/Pnz5ebmZtq8vb3Ldc0AAAAAAKDqUZS6Q6WmpmrOnDlycXExbc8++6xycnJMazglJyerb9++atasmerVq6eRI0fq4sWLKigoMI3j5OSkVq1amV57eHjIx8dHLi4uZm3nzp0rV67du3eroKBADz/8sCSpUaNG6tevn955550yj2vevLn+9re/mV6HhISoqKhImZmZtz2mY8eOZq+9vLxMOVNTU3X58mW5u7ubvUenT59WVlZWqeNNmzZNeXl5pu3s2bPlumYAAAAAAFD17KwdAKUrKirS7NmzNWjQoBL7HBwc9P333ys8PFxRUVGKiYlRw4YNlZKSotGjR+vGjRumvnXq1DE71mAwlNpWVFRUrlzvvPOOfv75Zzk5OZllTUtLU0xMjGxtbcs1jsFgMPvf0pSVs6ioSF5eXtq3b1+J4263YLq9vb3s7e3LlQ8AAAAAAFQvilJ3qC5duigzM1N+fn6l7j969KgKCwv1xhtvyMbm1g1vf3x0r6pdvHhRn3zyiRISEhQQEGBqLyoqUo8ePfTpp59qwIABpR6bnZ2tH3/8UU2bNpUkHT58WDY2NmrTpk2lsnTp0kW5ubmys7OTj49PpcYAAAAAAADWQ1HqDhUdHa0BAwbI29tbQ4cOlY2Njb7++mudOHFCr732mlq1aqXCwkKtWLFCEREROnjwoNasWVOtmTZs2CB3d3dTnt8bMGCA3n777dsWpRwcHDRq1CgtXrxY+fn5GjdunIYNGyZPT89KZXnooYcUEhKigQMHasGCBfL399ePP/6opKQkDRw4UMHBwZUaFwAAAAAAWAZrSt2hwsLClJiYqD179uiee+5R9+7dFRsbqxYtWkiSgoKCFBsbqwULFigwMFAbN27U/PnzqzXTO++8o0cffbREQUqSBg8erMTERP3000+lHuvn56dBgwYpPDxc/fr1U2BgoFatWlXpLAaDQUlJSerZs6f+8Y9/qE2bNnr88cd15swZeXh4VHpcAAAAAABgGQaj0Wi0dgjc3WbNmqVt27YpPT3d2lHM5Ofny83NTZ3GrpGtvaOpPXXRSCumAgAAAACgZiv+ezsvL0+urq637cedUgAAAAAAALA4ilIwOXDggFxcXG67AQAAAAAAVBUe34PJb7/9ph9++OG2+2/3TYA1FY/vAQAAAABQ9cr7+B7fvgcTR0fHu67wBAAAAAAA7kw8vgcAAAAAAACLoygFAAAAAAAAi6MoBQAAAAAAAItjTSnUevtfe6LMhdcAAAAAAEDV404pAAAAAAAAWBxFKQAAAAAAAFgcRSkAAAAAAABYHEUpAAAAAAAAWBxFKQAAAAAAAFgcRSkAAAAAAABYnJ21AwDW1nPGZtnaO0qSUheNtHIaAAAAAABqB+6UAgAAAAAAgMVRlAIAAAAAAIDFUZQCAAAAAACAxVGUAgAAAAAAgMVRlAIAAAAAAIDFUZQCAAAAAACAxVGUAgAAAAAAgMVRlAIAAAAAAIDF1YiilMFgKHOLjIy0dsQSevfurfHjx5doj4uLU/369S2e5/ciIyNLfR9PnTolSdq/f78iIiLUtGlTGQwGbdu2rczxevfuXebn4+PjU/0XBQAAAAAAahQ7awcoj5ycHNPP77//vqKjo5WZmWlqc3R0tEasGu3vf/+71q9fb9bWuHFjSVJBQYE6deqkp59+WoMHD/7TsbZu3arr169Lks6ePatu3brps88+U0BAgCTJ1ta2itMDAAAAAICarkbcKeXp6Wna3NzcZDAYzNr279+vrl27ysHBQb6+vpo9e7YKCwtNx8fGxqpDhw5ydnaWt7e3xowZo8uXL5v2F9+9lJiYKH9/fzk5OWnIkCEqKChQfHy8fHx81KBBA40dO1Y3b96s0mvLysrSI488Ig8PD7m4uOiee+7RZ599ZtbnvffeU3BwsOrVqydPT08NHz5c586dM+3/5Zdf9OSTT6px48ZydHRU69atSxSc/sje3t7sPfT09DQVjx5++GG99tprGjRoULmuoWHDhqYxigtb7u7uprbz588rPDxcLi4u8vDw0FNPPaULFy6Yjt+5c6ceeOAB1a9fX+7u7howYICysrJM+8+cOSODwaAPPvhAPXr0kKOjo+655x7913/9l44cOaLg4GC5uLjo73//u86fP1+uzAAAAAAAwLpqRFGqLLt27dKIESM0btw4nTx5UmvXrlVcXJzmzp1r6mNjY6Ply5frm2++UXx8vD7//HNNmTLFbJwrV65o+fLlSkhI0M6dO7Vv3z4NGjRISUlJSkpK0oYNG7Ru3Tp99NFHVZr/8uXLCg8P12effaa0tDSFhYUpIiJC2dnZpj7Xr19XTEyMjh8/rm3btun06dNmjyy++uqrOnnypD799FNlZGRo9erVatSoUZXmrKycnBz16tVLQUFBOnr0qHbu3KmffvpJw4YNM/UpKCjQxIkTdeTIEe3du1c2NjZ69NFHVVRUZDbWzJkzNWPGDB07dkx2dnZ64oknNGXKFC1btkwHDhxQVlaWoqOjb5vl2rVrys/PN9sAAAAAAICVGGuY9evXG93c3Eyve/ToYZw3b55Znw0bNhi9vLxuO8YHH3xgdHd3NxtTkvHUqVOmtueee87o5ORkvHTpkqktLCzM+Nxzz5UrZ69evYx16tQxOjs7m2329vZm+UvTvn1744oVK267/6uvvjJKMmWLiIgwPv300+XKZTQajaNGjTLa2tqa5RoyZEipfSUZP/7443KPffr0aaMkY1pamtFoNBpfffVVY79+/cz6nD171ijJmJmZWeoY586dM0oynjhxwmzMt956y9Rn8+bNRknGvXv3mtrmz59v9Pf3v222mTNnGiWV2DqNXWPsMine2GVSfLmvEwAAAAAAlC4vL88oyZiXl1dmvxqxplRZUlNTdeTIEbM7o27evKmrV6/qypUrcnJyUnJysubNm6eTJ08qPz9fhYWFunr1qgoKCuTs7CxJcnJyUqtWrUxjeHh4yMfHRy4uLmZtv39s7s88+eSTmj59ulnb1q1bNW/ePNPrgoICzZ49W4mJifrxxx9VWFio3377zexOqbS0NM2aNUvp6en6+eefTXcQZWdnq3379nr++ec1ePBgHTt2TP369dPAgQN13333lZktNDRUq1evNr0ufh+qWmpqqpKTk83ex2JZWVlq06aNsrKy9Oqrr+rLL7/UhQsXzK4vMDDQ1L9jx46mnz08PCRJHTp0MGsr6/OZNm2aJk6caHqdn58vb2/vyl8cAAAAAACotBpflCoqKtLs2bNLXf/IwcFB33//vcLDwxUVFaWYmBg1bNhQKSkpGj16tG7cuGHqW6dOHbNjDQZDqW1/fKSsLG5ubvLz8zNra9KkidnryZMna9euXVq8eLH8/Pzk6OioIUOGmBYOLygoUL9+/dSvXz+99957aty4sbKzsxUWFmbq8/DDD+v777/Xjh079Nlnn6lPnz564YUXtHjx4ttmc3Z2LpGtOhQVFSkiIkILFiwosc/Ly0uSFBERIW9vb7355ptq2rSpioqKFBgYaLq+Yr//PAwGQ6ltZX0+9vb2sre3/0vXAwAAAAAAqkaNL0p16dJFmZmZty2wHD16VIWFhXrjjTdkY3NrCa0PPvjAkhHLdODAAUVGRurRRx+VdGuNqTNnzpj2f/fdd7pw4YJef/110109R48eLTFO48aNFRkZqcjISPXo0UOTJ08usyhlKV26dNGWLVvk4+MjO7uS0+3ixYvKyMjQ2rVr1aNHD0lSSkqKpWMCAAAAAAALq/FFqejoaA0YMEDe3t4aOnSobGxs9PXXX+vEiRN67bXX1KpVKxUWFmrFihWKiIjQwYMHtWbNGmvHNvHz89PWrVsVEREhg8GgV1991exun+bNm6tu3bpasWKFoqKi9M033ygmJsZsjOjoaHXt2lUBAQG6du2aEhMT1a5du0pnunz5sk6dOmV6ffr0aaWnp6thw4Zq3rx5hcZ64YUX9Oabb+qJJ57Q5MmT1ahRI506dUoJCQl688031aBBA7m7u2vdunXy8vJSdna2pk6dWunsAAAAAACgZqjx374XFhamxMRE7dmzR/fcc4+6d++u2NhYtWjRQpIUFBSk2NhYLViwQIGBgdq4caPmz59v5dT/b8mSJWrQoIHuu+8+RUREKCwsTF26dDHtb9y4seLi4vThhx+qffv2ev3110vcAVW3bl1NmzZNHTt2VM+ePWVra6uEhIRKZzp69Kg6d+6szp07S5ImTpyozp07l/nNdrfTtGlTHTx4UDdv3lRYWJgCAwP10ksvyc3NTTY2NrKxsVFCQoJSU1MVGBioCRMmaNGiRZXODgAAAAAAagaD0Wg0WjsEYA35+flyc3NTp7FrZGvvKElKXTTSyqkAAAAAAKjZiv/ezsvLk6ur62371fg7pQAAAAAAAFDzUJSqhAMHDsjFxeW2GwAAAAAAAMpW4xc6t4bg4GClp6dbOwYAAAAAAECNRVGqEhwdHeXn52ftGAAAAAAAADUWj+8BAAAAAADA4ihKAQAAAAAAwOIoSgEAAAAAAMDiWFMKtd7+156Qq6urtWMAAAAAAFCrcKcUAAAAAAAALI6iFAAAAAAAACyOohQAAAAAAAAsjqIUAAAAAAAALI6iFAAAAAAAACyOb99DrddzxmbZ2jtKklIXjbRyGgAAAAAAagfulAIAAAAAAIDFUZQCAAAAAACAxVGUAgAAAAAAgMVRlAIAAAAAAIDFUZQCAAAAAACAxVGUAgAAAAAAgMVRlAIAAAAAAIDFUZS6A+zbt08Gg0G//vprtZ8rMjJSAwcONL3u3bu3xo8fX+3n/TN3Sg4AAAAAAGAZVitKGQyGMrfIyEhrRbut3r17m/LVrVtXrVq10rRp03Tt2rVqP7ePj4/p3La2tmratKlGjx6tX375pVrPGxcXZ/a5eHh4KCIiQt9++22Vnmfr1q2KiYmp0jEBAAAAAMCdy2pFqZycHNO2dOlSubq6mrUtW7bMWtHK9OyzzyonJ0enTp3SwoULtXLlSs2aNcsi554zZ45ycnKUnZ2tjRs3av/+/Ro3bly1n7f4s/nxxx+1Y8cOFRQUqH///rp+/XqVnaNhw4aqV69elY0HAAAAAADubFYrSnl6epo2Nzc3GQwGs7b9+/era9eucnBwkK+vr2bPnq3CwkLT8bGxserQoYOcnZ3l7e2tMWPG6PLly6b9cXFxql+/vhITE+Xv7y8nJycNGTJEBQUFio+Pl4+Pjxo0aKCxY8fq5s2b5c7t5OQkT09PNW/eXIMHD1bfvn21e/du036j0aiFCxfK19dXjo6O6tSpkz766COzMZKSktSmTRs5OjoqNDRUZ86cKde569WrJ09PTzVr1kyhoaEaOXKkjh07Zto/a9YsBQUFmR2zdOlS+fj4lPv6SlP82Xh5eSk4OFgTJkzQ999/r8zMTFOfP/s8JOngwYPq1auXnJyc1KBBA4WFhZnu9Prj43s+Pj6aN2+e/vGPf6hevXpq3ry51q1bZzbeoUOHFBQUJAcHBwUHB2vbtm0yGAxKT0//S9cLAAAAAACq3x25ptSuXbs0YsQIjRs3TidPntTatWsVFxenuXPnmvrY2Nho+fLl+uabbxQfH6/PP/9cU6ZMMRvnypUrWr58uRISErRz507t27dPgwYNUlJSkpKSkrRhwwatW7euRNGovI4fP66DBw+qTp06prYZM2Zo/fr1Wr16tb799ltNmDBBI0aM0BdffCFJOnv2rAYNGqTw8HClp6frmWee0dSpUyt87h9++EGJiYm69957K5W9sn799Vdt2rRJksyu+88+j/T0dPXp00cBAQE6fPiwUlJSFBERUWZB8I033lBwcLDS0tI0ZswYPf/88/ruu+8kSZcuXVJERIQ6dOigY8eOKSYmRi+//HI1XTUAAAAAAKhqdtYOUJq5c+dq6tSpGjVqlCTJ19dXMTExmjJlimbOnClJZnfVtGzZUjExMXr++ee1atUqU/uNGze0evVqtWrVSpI0ZMgQbdiwQT/99JNcXFzUvn17hYaGKjk5WY899li5sq1atUpvvfWWbty4oevXr8vGxkYrV66UJBUUFCg2Nlaff/65QkJCTNlTUlK0du1a9erVS6tXr5avr6+WLFkig8Egf39/nThxQgsWLPjTc7/88suaMWOGbt68qatXr+ree+9VbGxsuXL/FXl5eXJxcZHRaNSVK1ckSf/2b/+mtm3bmvr82eexcOFCBQcHm30+AQEBZZ43PDxcY8aMkXTr2pcsWaJ9+/apbdu22rhxowwGg9588005ODioffv2+uGHH/Tss8/edrxr166Zrf+Vn59f/jcBAAAAAABUqTuyKJWamqojR46Y3RlVXIi5cuWKnJyclJycrHnz5unkyZPKz89XYWGhrl69qoKCAjk7O0u69ahdcUFKkjw8POTj4yMXFxeztnPnzpU725NPPqnp06crPz9fCxYskKurqwYPHixJOnnypK5evaq+ffuaHXP9+nV17txZkpSRkaHu3bvLYDCY9hcXsP7M5MmTFRkZKaPRqLNnz+qVV15R//79tX//ftna2pb7GiqqXr16OnbsmAoLC/XFF19o0aJFWrNmjVmfP/s80tPTNXTo0Aqdt2PHjqafix8hLP6sMjMz1bFjRzk4OJj6dOvWrczx5s+fr9mzZ1coAwAAAAAAqB53ZFGqqKhIs2fP1qBBg0rsc3Bw0Pfff6/w8HBFRUUpJiZGDRs2VEpKikaPHq0bN26Y+v7+8TLpVmGjtLaioqJyZ3Nzc5Ofn58k6b333lNAQIDefvttjR492jTOjh071KxZM7Pj7O3tJd1ac6qyGjVqZDp369attXTpUoWEhCg5OVkPPfSQbGxsSoz/+/ejsmxsbEznbdu2rXJzc/XYY49p//79klSuz8PR0bHC5y3rszIajWaFveK2skybNk0TJ040vc7Pz5e3t3eFcwEAAAAAgL/ujlxTqkuXLsrMzJSfn1+JzcbGRkePHlVhYaHeeOMNde/eXW3atNGPP/5o8Zx16tTRK6+8ohkzZujKlStq37697O3tlZ2dXSJ3cfGjffv2+vLLL83G+ePr8iq+O+q3336TJDVu3Fi5ublmxZnqWPR7woQJOn78uD7++GNJKtfn0bFjR+3du7fKMrRt21Zff/212eN4R48eLfMYe3t7ubq6mm0AAAAAAMA67siiVHR0tN59913NmjVL3377rTIyMvT+++9rxowZkqRWrVqpsLBQK1as0P/8z/9ow4YNJR4ns5Thw4fLYDBo1apVqlevniZNmqQJEyYoPj5eWVlZSktL08qVKxUfHy9JioqKUlZWliZOnKjMzExt2rRJcXFx5TrXpUuXlJubq5ycHH311VeaPHmyGjVqpPvuu0/SrW+wO3/+vBYuXKisrCytXLlSn376aZVfs6urq5555hnNnDlTRqOxXJ/HtGnTdOTIEY0ZM0Zff/21vvvuO61evVoXLlyoVIbhw4erqKhI//znP5WRkaFdu3Zp8eLFklTiDioAAAAAAHDnuSOLUmFhYUpMTNSePXt0zz33qHv37oqNjVWLFi0kSUFBQYqNjdWCBQsUGBiojRs3av78+VbJWrduXb344otauHChLl++rJiYGEVHR2v+/Plq166dwsLCtH37drVs2VKS1Lx5c23ZskXbt29Xp06dtGbNGs2bN69c54qOjpaXl5eaNm2qAQMGyNnZWXv27JG7u7skqV27dlq1apVWrlypTp066auvvtKkSZOq5bpfeuklZWRk6MMPPyzX59GmTRvt3r1bx48fV7du3RQSEqJPPvlEdnaVe4LU1dVV27dvV3p6uoKCgjR9+nRFR0dLktk6UwAAAAAA4M5kMP6VRY6AO8jGjRv19NNPKy8vr1xrWOXn58vNzU2dxq6Rrf2t/qmLRlZ3TAAAAAAA7mrFf2/n5eWVuXTOHbnQOVAe7777rnx9fdWsWTMdP35cL7/8soYNG1apRdUBAAAAAIBlUZT6PwcOHNDDDz982/2XL1+2YBqUR25urqKjo5WbmysvLy8NHTpUc+fOtXYsAAAAAABQDhSl/k9wcHC1fFMdqs+UKVM0ZcoUa8cAAAAAAACVQFHq/zg6OsrPz8/aMQAAAAAAAGqFO/Lb9wAAAAAAAHB3oygFAAAAAAAAi6MoBQAAAAAAAItjTSnUevtfe0Kurq7WjgEAAAAAQK3CnVIAAAAAAACwOIpSAAAAAAAAsDge30OtZTQaJUn5+flWTgIAAAAAwN2j+O/s4r+7b4eiFGqtixcvSpK8vb2tnAQAAAAAgLvPpUuX5Obmdtv9FKVQazVs2FCSlJ2dXeb/SYA7SX5+vry9vXX27FkW6EeNwbxFTcS8RU3EvEVNxLy9OxmNRl26dElNmzYtsx9FKdRaNja3llRzc3Pjlx9qHFdXV+YtahzmLWoi5i1qIuYtaiLm7d2nPDd/sNA5AAAAAAAALI6iFAAAAAAAACyOohRqLXt7e82cOVP29vbWjgKUG/MWNRHzFjUR8xY1EfMWNRHztnYzGP/s+/kAAAAAAACAKsadUgAAAAAAALA4ilIAAAAAAACwOIpSAAAAAAAAsDiKUrirrVq1Si1btpSDg4O6du2qAwcOlNn/iy++UNeuXeXg4CBfX1+tWbPGQkmB/1eReZuTk6Phw4fL399fNjY2Gj9+vOWCAr9TkXm7detW9e3bV40bN5arq6tCQkK0a9cuC6YFbqnIvE1JSdH9998vd3d3OTo6qm3btlqyZIkF0wK3VPTft8UOHjwoOzs7BQUFVW9AoBQVmbf79u2TwWAosX333XcWTAxLoSiFu9b777+v8ePHa/r06UpLS1OPHj308MMPKzs7u9T+p0+fVnh4uHr06KG0tDS98sorGjdunLZs2WLh5KjNKjpvr127psaNG2v69Onq1KmThdMCt1R03u7fv199+/ZVUlKSUlNTFRoaqoiICKWlpVk4OWqzis5bZ2dnvfjii9q/f78yMjI0Y8YMzZgxQ+vWrbNwctRmFZ23xfLy8jRy5Ej16dPHQkmB/1fZeZuZmamcnBzT1rp1awslhiXx7Xu4a917773q0qWLVq9ebWpr166dBg4cqPnz55fo//LLL+s///M/lZGRYWqLiorS8ePHdfjwYYtkBio6b3+vd+/eCgoK0tKlS6s5JWDur8zbYgEBAXrssccUHR1dXTEBM1UxbwcNGiRnZ2dt2LChumICZio7bx9//HG1bt1atra22rZtm9LT0y2QFrilovN23759Cg0N1S+//KL69etbMCmsgTulcFe6fv26UlNT1a9fP7P2fv366dChQ6Uec/jw4RL9w8LCdPToUd24caPasgLFKjNvAWurinlbVFSkS5cuqWHDhtURESihKuZtWlqaDh06pF69elVHRKCEys7b9evXKysrSzNnzqzuiEAJf+X3befOneXl5aU+ffooOTm5OmPCiuysHQCoDhcuXNDNmzfl4eFh1u7h4aHc3NxSj8nNzS21f2FhoS5cuCAvL69qywtIlZu3gLVVxbx94403VFBQoGHDhlVHRKCEvzJv//a3v+n8+fMqLCzUrFmz9Mwzz1RnVMCkMvP2v//7vzV16lQdOHBAdnb86QfLq8y89fLy0rp169S1a1ddu3ZNGzZsUJ8+fbRv3z717NnTErFhQfxmwl3NYDCYvTYajSXa/qx/ae1AdarovAXuBJWdt5s3b9asWbP0ySefqEmTJtUVDyhVZebtgQMHdPnyZX355ZeaOnWq/Pz89MQTT1RnTMBMeeftzZs3NXz4cM2ePVtt2rSxVDygVBX5fevv7y9/f3/T65CQEJ09e1aLFy+mKHUXoiiFu1KjRo1ka2tbovp+7ty5ElX6Yp6enqX2t7Ozk7u7e7VlBYpVZt4C1vZX5u3777+v0aNH68MPP9RDDz1UnTEBM39l3rZs2VKS1KFDB/3000+aNWsWRSlYREXn7aVLl3T06FGlpaXpxRdflHTrcWmj0Sg7Ozvt3r1bDz74oEWyo/aqqn/fdu/eXe+9915Vx8MdgDWlcFeqW7euunbtqj179pi179mzR/fdd1+px4SEhJTov3v3bgUHB6tOnTrVlhUoVpl5C1hbZeft5s2bFRkZqU2bNql///7VHRMwU1W/b41Go65du1bV8YBSVXTeurq66sSJE0pPTzdtUVFR8vf3V3p6uu69915LRUctVlW/b9PS0lhO5S7FnVK4a02cOFFPPfWUgoODFRISonXr1ik7O1tRUVGSpGnTpumHH37Qu+++K+nWN+39x3/8hyZOnKhnn31Whw8f1ttvv63Nmzdb8zJQy1R03koyfYPO5cuXdf78eaWnp6tu3bpq3769NS4BtVBF5+3mzZs1cuRILVu2TN27dzf911NHR0e5ublZ7TpQu1R03q5cuVLNmzdX27ZtJUkpKSlavHixxo4da7VrQO1TkXlrY2OjwMBAs+ObNGkiBweHEu1Adaro79ulS5fKx8dHAQEBun79ut577z1t2bJFW7ZsseZloJpQlMJd67HHHtPFixc1Z84c5eTkKDAwUElJSWrRooUkKScnR9nZ2ab+LVu2VFJSkiZMmKCVK1eqadOmWr58uQYPHmytS0AtVNF5K936ZpJiqamp2rRpk1q0aKEzZ85YMjpqsYrO27Vr16qwsFAvvPCCXnjhBVP7qFGjFBcXZ+n4qKUqOm+Lioo0bdo0nT59WnZ2dmrVqpVef/11Pffcc9a6BNRClfl3AmBtFZ23169f16RJk/TDDz/I0dFRAQEB2rFjh8LDw611CahGBmPxSs4AAAAAAACAhbCmFAAAAAAAACyOohQAAAAAAAAsjqIUAAAAAAAALI6iFAAAAAAAACyOohQAAAAAAAAsjqIUAAAAAAAALI6iFAAAAAAAACyOohQAAAAAAAAsjqIUAAAATHr37q3x48dbOwYAAKgFDEaj0WjtEAAAALgz/Pzzz6pTp47q1atn7Sgl7Nu3T6Ghofrll19Uv359a8cBAAB/kZ21AwAAAODO0bBhQ2tHKNWNGzesHQEAAFQxHt8DAACAye8f3/Px8dFrr72mkSNHysXFRS1atNAnn3yi8+fP65FHHpGLi4s6dOigo0ePmo6Pi4tT/fr1tW3bNrVp00YODg7q27evzp49a3ae1atXq1WrVqpbt678/f21YcMGs/0Gg0Fr1qzRI488ImdnZz3zzDMKDQ2VJDVo0EAGg0GRkZGSpJ07d+qBBx5Q/fr15e7urgEDBigrK8s01pkzZ2QwGLR161aFhobKyclJnTp10uHDh83OefDgQfXq1UtOTk5q0KCBwsLC9Msvv0iSjEajFi5cKF9fXzk6OqpTp0766KOPquQ9BwCgtqIoBQAAgNtasmSJ7r//fqWlpal///566qmnNHLkSI0YMULHjh2Tn5+fRo4cqd+vCHHlyhXNnTtX8fHxOnjwoPLz8/X444+b9n/88cd66aWX9O///u/65ptv9Nxzz+npp59WcnKy2blnzpypRx55RCdOnNCcOXO0ZcsWSVJmZqZycnK0bNkySVJBQYEmTpyoI0eOaO/evbKxsdGjjz6qoqIis/GmT5+uSZMmKT09XW3atNETTzyhwsJCSVJ6err69OmjgIAAHT58WCkpKYqIiNDNmzclSTNmzND69eu1evVqffvtt5owYYJGjBihL774ourfdAAAagnWlAIAAIBJ7969FRQUpKVLl8rHx0c9evQw3cWUm5srLy8vvfrqq5ozZ44k6csvv1RISIhycnLk6empuLg4Pf300/ryyy917733SpK+++47tWvXTv/617/UrVs33X///QoICNC6detM5x02bJgKCgq0Y8cOSbfulBo/fryWLFli6lPeNaXOnz+vJk2a6MSJEwoMDNSZM2fUsmVLvfXWWxo9erQk6eTJkwoICFBGRobatm2r4cOHKzs7WykpKSXGKygoUKNGjfT5558rJCTE1P7MM8/oypUr2rRpUyXfbQAAajfulAIAAMBtdezY0fSzh4eHJKlDhw4l2s6dO2dqs7OzU3BwsOl127ZtVb9+fWVkZEiSMjIydP/995ud5/777zftL/b7McqSlZWl4cOHy9fXV66urmrZsqUkKTs7+7bX4uXlZZa7+E6p0pw8eVJXr15V37595eLiYtreffdds8cEAQBAxbDQOQAAAG6rTp06pp8NBsNt2/74qFxx++3a/rjfaDSWaHN2di5XxoiICHl7e+vNN99U06ZNVVRUpMDAQF2/fv1Pr6U4t6Oj423HL+6zY8cONWvWzGyfvb19uTICAICSuFMKAAAAVaqwsNBs8fPMzEz9+uuvatu2rSSpXbt2JR6TO3TokNq1a1fmuHXr1pUk0zpPknTx4kVlZGRoxowZ6tOnj9q1a2danLwiOnbsqL1795a6r3379rK3t1d2drb8/PzMNm9v7wqfCwAA3MKdUgAAAKhSderU0dixY7V8+XLVqVNHL774orp3765u3bpJkiZPnqxhw4apS5cu6tOnj7Zv366tW7fqs88+K3PcFi1ayGAwKDExUeHh4XJ0dFSDBg3k7u6udevWycvLS9nZ2Zo6dWqFM0+bNk0dOnTQmDFjFBUVpbp16yo5OVlDhw5Vo0aNNGnSJE2YMEFFRUV64IEHlJ+fr0OHDsnFxUWjRo2q1PsEAEBtx51SAAAAqFJOTk56+eWXNXz4cIWEhMjR0VEJCQmm/QMHDtSyZcu0aNEiBQQEaO3atVq/fr169+5d5rjNmjXT7NmzNXXqVHl4eOjFF1+UjY2NEhISlJqaqsDAQE2YMEGLFi2qcOY2bdpo9+7dOn78uLp166aQkBB98sknsrO79d9wY2JiFB0drfnz56tdu3YKCwvT9u3bTetXAQCAiuPb9wAAAFBl4uLiNH78eP3666/WjgIAAO5w3CkFAAAAAAAAi6MoBQAAAAAAAIvj8T0AAAAAAABYHHdKAQAAAAAAwOIoSgEAAAAAAMDiKEoBAAAAAADA4ihKAQAAAAAAwOIoSgEAAAAAAMDiKEoBAAAAAADA4ihKAQAAAAAAwOIoSgEAAAAAAMDiKEoBAAAAAADA4v4Xo3xwU/yqWhEAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 1200x600 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Training models for Mexico City Grand Prix\n",
"\n",
"Model Performance for Mexico City Grand Prix:\n",
"\n",
"Linear Regression:\n",
"RMSE: 5.77 seconds\n",
"R2 Score: 0.681\n",
"Cross-validation R2: 0.686 (±0.028)\n",
"\n",
"Random Forest:\n",
"RMSE: 1.96 seconds\n",
"R2 Score: 0.963\n",
"Cross-validation R2: 0.945 (±0.010)\n",
"\n",
"XGBoost:\n",
"RMSE: 2.39 seconds\n",
"R2 Score: 0.945\n",
"Cross-validation R2: 0.941 (±0.008)\n",
"\n",
"Gradient Boosting:\n",
"RMSE: 2.26 seconds\n",
"R2 Score: 0.951\n",
"Cross-validation R2: 0.939 (±0.014)\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAJOCAYAAABm7rQwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACsQElEQVR4nOzdeVwVZf//8fdhO+y4gSCiiCsmKmqamgqaYWm35po7bmWlZmYalVtuqbm1uKQC5p5l3mqlLYpLaq7kmpZLWmF6a4IbKDC/P/xxvh4BBcVDyev5eMwj5pprrvnMMMzxfLqua0yGYRgCAAAAAAAAbMguvwMAAAAAAABAwUNSCgAAAAAAADZHUgoAAAAAAAA2R1IKAAAAAAAANkdSCgAAAAAAADZHUgoAAAAAAAA2R1IKAAAAAAAANkdSCgAAAAAAADZHUgoAAAAAAAA2R1IKAB4CJpMpR0tcXNwDj+WTTz7Rc889p4oVK8rOzk6BgYFZ1ouLi8s2zu3bt9/1OCNHjpTJZJKdnZ2OHz+eafuVK1fk6ekpk8mkyMjI+zyrrB06dEgjR47UyZMnc1Q/NjZWJpNJu3bteiDx2MLixYs1bdo0mxzrXq9vVsvgwYP/ETH+Ey1btkyPPPKIXFxcZDKZFB8f/8COdevffWxsbJZ1GjduLJPJlO2zI6+YTCaNHDnygR4jK+np6VqwYIGeeOIJFStWTI6OjvLx8VGLFi20evVqpaenS5JOnjyZ6Tpt3bpVI0eO1MWLFx9IbGvWrFHLli1VokQJOTk5ycPDQ6GhoRoxYoROnTr1QI55PzLup7t9tt3+bHBwcFDJkiXVo0cP/fHHHzk6VmRkZJ7fkzdu3FClSpX07rvv3jFWPz8/Pffcc/rll1/y9Pi5kfGZ+09xp39DtG3bNr/Dy9KMGTOyfO4dPXpUTk5O2rNnj+2DAv4BHPI7AADA/du2bZvV+ujRo7VhwwatX7/eqrxy5coPPJYFCxbozJkzql27ttLT03Xjxo071h83bpzCw8OtyqpUqZLj47m7uysmJkajR4+2Kl++fLlu3LghR0fHnAefS4cOHdKoUaMUFhb2wL9A/1MsXrxYBw4c0MCBAx/4se71+sbExKhSpUpWZSVKlMjj6G76t98D586dU9euXdWsWTPNmDFDZrNZFSpUeODH9fDw0Lx58zIljE+cOKG4uDh5eno+8Bi2bdumkiVLPvDj3Co5OVmtWrXSN998o+eee04zZ86Ur6+vzp07p7Vr16pdu3ZatmyZWrZsKT8/P23btk1ly5a17L9161aNGjVKkZGRKlSoUJ7FlZ6erh49euiTTz7RU089pfHjxyswMFDXrl3Tzp07FRMTo+joaJ0+fTrPjpkfMp4N165d06ZNmzR+/Hht3LhR+/fvl5ub2x33HTZsmF555ZU8jWfGjBn6+++/1b9//2xjTU5O1g8//KCxY8dqw4YN+vnnn1W4cOE8jePfLKt/QxQtWjSformzGTNmqFixYpmeexUqVFDnzp316quvauPGjfkTHJCPSEoBwEPgscces1r39vaWnZ1dpnJbWLdunezsbnbEbdGihQ4cOHDH+uXLl7+vODt06KD58+dr1KhRluNK0rx58/Tss89q1apV99w2/s/Vq1fl6uqa32HkSJUqVVSrVq38DuO+3Lhxw9JL4kE6evSobty4oS5duqhRo0Z50mZO7pUOHTpo7ty5+uWXX1S+fHlLeXR0tPz9/RUSEqJDhw7lSTzZyY/n46BBg7Ru3TrNnz9f3bp1s9rWunVrvf7667p27ZokyWw22yzGCRMm6JNPPtH48eP1xhtvWG1r1qyZoqKiNHv27Lu2c+3aNbm4uDyoMO/brc+G8PBwpaWlafTo0Vq5cqU6d+6c5T4Z9/OtycG8kJqaqkmTJqlnz55ZJsRujTUsLExpaWkaMWKEVq5cqR49euRpLP9m9/tviOxcu3ZNzs7ONusd1q9fP9WqVUtbt25VvXr1bHJM4J+C4XsAUEBcuHBBL730kvz9/eXk5KSgoCC99dZbSklJsapnMpnUr18/zZ49WxUqVJDZbFblypW1dOnSHB3n1sSQLfTs2VOnT5/Wt99+ayk7evSotmzZop49e2a5z6lTp9SlSxf5+PjIbDYrODhYkydPtgybyTBz5kxVq1ZN7u7u8vDwUKVKlfTmm29KujnEol27dpJufrm525Ck7ERGRsrd3V0///yzIiIi5ObmJj8/P8twju3bt+vxxx+Xm5ubKlSooPnz51vtnzHU49tvv1WPHj1UpEgRubm56ZlnnslyWGN0dLSqVasmZ2dnFSlSRM8++6wOHz6cZUz79+/Xk08+KQ8PDzVp0kRhYWH68ssv9dtvv1kNlcgwatQo1alTR0WKFJGnp6dq1KihefPmyTAMq/YDAwPVokULrV27VjVq1JCLi4sqVaqk6Ohoq/PKi+ublWXLlqlu3bpyc3OTu7u7IiIitHfvXqs6u3bt0nPPPafAwEC5uLgoMDBQHTt21G+//ZbjGAMDA7McOhoWFqawsDDLesYwlAULFui1116Tv7+/zGazfv31V0nSd999pyZNmsjT01Ourq6qX7++vv/+e6s2z507p+eff14BAQEym83y9vZW/fr19d1332V7HSIjI/X4449LupkkMplMVnGtWrVKdevWlaurqzw8PNS0adNMvTIzhvTs2bNHbdu2VeHChXP05b1p06YKCAiw+p2np6dr/vz56t69e5bPEcMwNGPGDFWvXl0uLi4qXLiw2rZta3WfL126VCaTSR9++KHVviNGjJC9vb3VcyKr4Xt//PGH5To6OTmpRIkSatu2rf766y9LnZw+P2535swZzZ07VxEREZkSUhnKly+vqlWrSso8fG/kyJF6/fXXJUllypSxGpbdq1cvFSlSRFevXs3UZuPGjfXII49kG9f169c1ceJEValSJVNCKoODg4Nefvllq7KMv+MVK1YoNDRUzs7OGjVqlCTpo48+UsOGDeXj4yM3NzeFhIRo4sSJmXrOhoWFqUqVKtq5c6caNGggV1dXBQUF6d133810PX/++Wc1a9ZMrq6uKlasmPr27atLly5le145kZHMyPi7zu7Zl7Ht1t6QubnXsrJq1Sr98ccf6tq1a45izUhQ3XovJicn67XXXlP16tXl5eWlIkWKqG7duvrvf/+baf+Mz/YFCxYoODhYrq6uqlatmtasWZOp7pdffqnq1avLbDarTJkyeu+997KMKTk5WVFRUSpTpoycnJzk7++vl19+OdPw0ox7Zc2aNQoNDZWLi4uCg4Mtx46NjVVwcLDc3NxUu3btPB3ivmXLFjVp0kQeHh5ydXVVvXr19OWXX1rVyfgc/eabb9SzZ095e3vL1dXV8u+jnHxmHD9+XM8995xKlCghs9ms4sWLq0mTJpbh0IGBgTp48KA2btxo+du99X6qWbOmgoODNWvWrDw7d+BfwwAAPHS6d+9uuLm5WdavXbtmVK1a1XBzczPee+8945tvvjGGDRtmODg4GE8//bTVvpKMgIAAo3LlysaSJUuMVatWGc2aNTMkGcuXL89VHM2bNzdKly6d5bYNGzYYkgwfHx/D3t7e8PDwMJ588klj8+bNOWp7xIgRhiTj3LlzRoMGDYz27dtbtg0dOtQIDAw00tPTDTc3N6N79+6WbWfPnjX8/f0Nb29vY9asWcbatWuNfv36GZKMF1980VJvyZIlhiSjf//+xjfffGN89913xqxZs4wBAwZY2hk3bpwhyfjoo4+Mbdu2Gdu2bTPOnj2bbcwxMTGGJGPnzp2Wsu7duxtOTk5GcHCwMX36dOPbb781evToYUgyoqKijAoVKhjz5s0z1q1bZ7Ro0cKQZOzatStTmwEBAUbPnj2Nr7/+2vj4448NHx8fIyAgwPj7778tdTPi7dixo/Hll18an3zyiREUFGR4eXkZR48etYrJ0dHRCAwMNMaPH298//33xrp164yDBw8a9evXN3x9fS3nu23bNst+kZGRxrx584xvv/3W+Pbbb43Ro0cbLi4uxqhRo6yuQ+nSpY2SJUsalStXNj755BNj3bp1Rrt27QxJxsaNG+/7+m7fvt24ceOG1ZJh7NixhslkMnr27GmsWbPGWLFihVG3bl3Dzc3NOHjwoKXe8uXLjeHDhxtffPGFsXHjRmPp0qVGo0aNDG9vb+PcuXM5irF06dJW916GRo0aGY0aNbKsZ/wt+Pv7G23btjVWrVplrFmzxjh//ryxYMECw2QyGa1atTJWrFhhrF692mjRooVhb29vfPfdd5Y2IiIiDG9vb+Pjjz824uLijJUrVxrDhw83li5dmu31+vXXX42PPvrIkGSMGzfO2LZtm+UaLFq0yJBkPPnkk8bKlSuNZcuWGTVr1jScnJys/kYz/g5Lly5tDB061Pj222+NlStXZnvMjHNdvny5MWzYMKNEiRJGamqqYRiG8fXXXxsmk8n49ddfs3x29OnTx3B0dDRee+01Y+3atcbixYuNSpUqGcWLFzfOnDljqde3b1/DycnJ8nf2/fffG3Z2dsbbb79t1Z4kY8SIEZb133//3fDz8zOKFStmTJkyxfjuu++MZcuWGT179jQOHz5sGEbOnx9ZWbx4sSHJmDlz5h3rZThx4oQhyYiJiTEMwzBOnz5t9O/f35BkrFixwnK/JSYmGj/99JMhyZgzZ45VGwcPHrTcn9n54YcfLM+b3ChdurTh5+dnBAUFGdHR0caGDRuMHTt2GIZhGK+++qoxc+ZMY+3atcb69euNqVOnGsWKFTN69Ohh1UajRo2MokWLGuXLlzdmzZplfPvtt8ZLL71kSDLmz59vqXfmzBnDx8fH8Pf3N2JiYoyvvvrK6Ny5s1GqVClDkrFhw4Y7xprVs9cwDGP69OmGJOPjjz82DCP7Z1/GttvvyZzea1np2bOn4ePjk+NYP/zwQ0OS8fnnn1vKLl68aERGRhoLFiww1q9fb6xdu9YYPHiwYWdnZ3X9DOPm/R4YGGjUrl3b+PTTT42vvvrKCAsLMxwcHIxjx45Z6n333XeGvb298fjjjxsrVqwwli9fbjz66KOWa50hPT3diIiIMBwcHIxhw4YZ33zzjfHee+8Zbm5uRmhoqJGcnGypm/HMr1KlirFkyRLjq6++MurUqWM4Ojoaw4cPN+rXr2+sWLHC+OKLL4wKFSoYxYsXN65evXrH65fxLFm2bFm2z/u4uDjD0dHRqFmzprFs2TJj5cqVxpNPPmmYTCarZ2PGNff39zeef/554+uvvzY+++wzIzU1NcefGRUrVjTKlStnLFiwwNi4caPx+eefG6+99prl3tyzZ48RFBRkhIaGWv529+zZY3VOL774olGsWDEjPT39jucOPGxISgHAQ+j2pNSsWbMMScann35qVW/ChAmGJOObb76xlEkyXFxcrL7kpaamGpUqVTLKlSuXqzjulJTas2eP8corrxhffPGFsWnTJiM6OtoIDg427O3tjbVr19617VuTUjExMYbZbDbOnz9vpKamGn5+fsbIkSMNwzAyJaXeeOMNQ5Lx448/WrX34osvGiaTyThy5IhhGIbRr18/o1ChQneMYfny5Tn6QpQhu6TU7V80bty4YXh7exuSrP7Rev78ecPe3t4YNGhQpjafffZZq2NlfNEcM2aMYRiG8ffffxsuLi6ZkpCnTp0yzGaz0alTp0wxRUdHZzqHO/1Ob5WWlmbcuHHDeOedd4yiRYta/SO7dOnShrOzs/Hbb79Zyq5du2YUKVLEeOGFFyxl93p9s1pu3LhhnDp1ynBwcDD69+9vtd+lS5cMX19fq8Tm7VJTU43Lly8bbm5uxvTp03MUY26TUg0bNrSqd+XKFaNIkSLGM888Y1WelpZmVKtWzahdu7alzN3d3Rg4cGC28Wfn1iTRre2XKFHCCAkJMdLS0izlly5dMnx8fIx69epZyjL+DocPH57r4x0/ftwwmUzGmjVrDMMwjHbt2hlhYWGGYWS+z7Zt22ZIMiZPnmzV3unTpw0XFxdjyJAhlrLk5GQjNDTUKFOmjHHo0CGjePHiRqNGjSzJrwy3J6V69uxpODo6GocOHco2/pw+P7Ly7rvvGpJy9HwzjMxJKcMwjEmTJhmSjBMnTmSq36hRI6N69eqZ4vL09DQuXbqU7XGWLl1qSDJmzZqVaVt2X/YN4+b9bW9vf8dzNoz/exZ88sknhr29vXHhwgWrmLO6npUrVzYiIiIs60OHDjVMJpMRHx9vVa9p06a5SkplJKwvXbpkrFmzxvD29jY8PDwsn3d3evZllZTK6b2WleDgYKNZs2Y5inXt2rWGr6+v0bBhw0y/h1ulpqYaN27cMHr16mWEhoZabZNkFC9e3EhKSrKUnTlzxrCzszPGjx9vKatTp45RokQJ49q1a5aypKQko0iRIlZJqbVr1xqSjIkTJ1odZ9myZVaJPsO4ea+4uLgYv//+u6UsPj7ekGT4+fkZV65csZSvXLnSkGSsWrUq2/M0jP97lmS1/PLLL4ZhGMZjjz1m+Pj4WN3/qampRpUqVYySJUtaPpcyrnm3bt2sjpHTz4z//e9/hiRj2rRpd4z5kUcesXr2327OnDmGJEsSHCgoGL4HAAXA+vXr5ebmlumNNBlDi24fCtSkSRMVL17csm5vb68OHTro119/1e+//54nMYWGhmratGlq1aqVGjRooB49emjr1q3y8/PTkCFDctVWu3bt5OTkpEWLFumrr77SmTNnsn3j3vr161W5cmXVrl3bqjwyMlKGYVgmh69du7YuXryojh076r///a/+97//3dN55oTJZNLTTz9tWXdwcFC5cuXk5+en0NBQS3mRIkXk4+NjNYQsw+3zodSrV0+lS5fWhg0bJN2c1PnatWuZrktAQIAaN26c6R6QpDZt2uTqPNavX68nnnhCXl5esre3l6Ojo4YPH67z58/r7NmzVnWrV6+uUqVKWdadnZ1VoUKFLM8ttz755BPt3LnTanFwcNC6deuUmpqqbt26KTU11bI4OzurUaNGVm/wunz5soYOHapy5crJwcFBDg4Ocnd315UrVzINd8wrt1/vrVu36sKFC+revbtVvOnp6WrWrJl27typK1euSLp5v8bGxmrMmDHavn37XV8wcCdHjhzRn3/+qa5du1oNo3N3d1ebNm20ffv2TMPEcnuvSDeHoIWFhSk6Olrnz5/Xf//732yH3K5Zs0Ymk0ldunSxuha+vr6qVq2a1e/ObDbr008/1fnz51WjRg0ZhqElS5bI3t7+jvF8/fXXCg8PV3BwcLZ1cvr8yA+vvPKK4uPj9cMPP0iSkpKStGDBAnXv3l3u7u65bu/ixYtydHS0Wm4fVlW1atUsJ8bfu3ev/vOf/6ho0aKWZ0G3bt2Ulpamo0ePWtX19fXNdD2rVq1q9SzYsGGDHnnkEVWrVs2qXqdOnXJ1To899pgcHR3l4eGhFi1ayNfXV19//bXV552U8/v5Xu81Sfrzzz/l4+OTo1ibNWumwoUL67///W+meeaWL1+u+vXry93dXQ4ODnJ0dNS8efOyfE6Fh4fLw8PDsl68eHGrz5QrV65o586dat26tZydnS31PDw89Mwzz1i1lXGv3/6Z0q5dO7m5uWX6TKlevbr8/f0t6xl/Z2FhYVZz0GWU5/SzYMKECZme9wEBAbpy5Yp+/PFHtW3b1ur+t7e3V9euXfX777/ryJEjVm3d/nvP6WdGkSJFVLZsWU2aNElTpkzR3r177zqcNysZ90NO3wgJPCxISgFAAXD+/Hn5+vpmmrDTx8dHDg4OOn/+vFW5r69vpjYyym6vm5cKFSqkFi1aaN++fZbJfnPCzc1NHTp0UHR0tObNm6cnnnhCpUuXzrLu+fPn5efnl6k84+1sGefXtWtXRUdH67ffflObNm3k4+OjOnXq3HWekHvh6upq9QVAkpycnFSkSJFMdZ2cnJScnJypPLvfWcb5ZPw3u3O//ffq6uqaqzeg7dixQ08++aQkac6cOfrhhx+0c+dOvfXWW5KU6feZ1duRzGZzrn7v2QkODlatWrWsFun/5mJ59NFHM33ZXrZsmVXisVOnTvrwww/Vu3dvrVu3Tjt27NDOnTvl7e2dJzFm5fbfTUa8bdu2zRTvhAkTZBiGLly4IOnmnCfdu3fX3LlzVbduXRUpUkTdunXTmTNnch3H3e6V9PR0/f3333eMPad69eql1atXa8qUKXJxccn2Ve5//fWXDMNQ8eLFM12L7du3Z0oalytXTg0aNFBycrI6d+6co/jOnTt317fx5fT5kZWMJOyJEyfuGsu9aNmypQIDA/XRRx9JujlPzpUrVzLNBZVdXLcnATw8PCxf8keMGJHlvlldi1OnTqlBgwb6448/NH36dG3evFk7d+60xHUvz4KMz7DbZVV2JxkJ67179+rPP//Uvn37VL9+fas6uX323cu9Jv3fRNp3i3X9+vV64YUXdPjwYXXs2NGqzooVK9S+fXv5+/tr4cKF2rZtm3bu3KmePXtm+Tlxt2v9999/Kz09PUfX+vz583JwcJC3t7dVuclksvrsyXD755mTk9Mdy7OKPytBQUGZnvdms1l///23DMPI1d9rds/gu31mmEwmff/994qIiNDEiRNVo0YNeXt7a8CAAbma9yzjfnhQnzHAPxVv3wOAAqBo0aL68ccfZRiGVWLq7NmzSk1NVbFixazqZ/VFNqPsQb9q2fj/k2Ln9o03PXv21Ny5c7Vv3z4tWrQo23pFixZVQkJCpvI///xTkqyuRY8ePdSjRw9duXJFmzZt0ogRI9SiRQsdPXo026RXfsnud1auXDlJ//d7y+7cb78Hcnv9ly5dKkdHR61Zs8bqi9bKlStz1c6DlHGOn3322R1/f4mJiVqzZo1GjBhhNfFzSkqKJQmUE87OzpleJCBJ//vf/zJdbynzNc+o88EHH2T7dqmMHh7FihXTtGnTNG3aNJ06dUqrVq3SG2+8obNnz2rt2rU5jlm6+71iZ2eX6ZX09/qGqtatW+vll1/Wu+++qz59+mT75rZixYrJZDJp8+bNMpvNmbbfXjZ37lx9+eWXql27tj788EN16NBBderUuWMs3t7ed+0Jmpvnx+3Cw8Pl6OiolStXqm/fvnc8zr2ws7PTyy+/rDfffFOTJ0/WjBkz1KRJE1WsWPGO+9WsWVOFCxfW6tWrNW7cOEu5vb29JaGb3VtUs/q9r1y5UleuXNGKFSus/s4yJny+F0WLFr3j51JOZSSs7yS39/K93GvSzXvlTs+TW2PNeFPg3Llz9dlnn1mStwsXLlSZMmW0bNkyq7izeu7kROHChWUymXJ0rYsWLarU1FSdO3fOKjFlGIbOnDmjRx999J5iyCuFCxeWnZ1drv5es3sG3+0zQ5JKly6tefPmSbr5spVPP/1UI0eO1PXr13M8eXnG/XCn5wjwMKKnFAAUAE2aNNHly5czJQg++eQTy/Zbff/991Zv+ElLS9OyZctUtmzZu/YkuB9///231qxZo+rVq9/x/yBnpW7duurZs6eeffZZPfvss9nWa9KkiQ4dOqQ9e/ZYlX/yyScymUwKDw/PtI+bm5ueeuopvfXWW7p+/boOHjwo6f++CP8T/q/m7Ym4rVu36rfffrO8Ta1u3bpycXHRwoULrer9/vvvWr9+faZ7IDvZ9WYymUxycHCwGrZy7do1LViwIJdnYn2sjHbyQkREhBwcHHTs2LFM/2f91h5VJpNJhmFkmehIS0vLcYyBgYHat2+fVdnRo0czDRnJTv369VWoUCEdOnQo23gzehXcqlSpUurXr5+aNm2a6T7PiYoVK8rf31+LFy+2enPilStX9Pnnn1veyJcXXFxcNHz4cD3zzDN68cUXs63XokULGYahP/74I8vrEBISYqm7f/9+DRgwQN26ddPmzZtVtWpVdejQIVPvrts99dRT2rBhwx1/P/fy/Mjg6+tr6XmX8ey93bFjxzLdM7e6299E79695eTkpM6dO+vIkSPq169ftm1lcHJy0uuvv64DBw5owoQJd61/Nxlf7G/9+zEMQ3PmzLnnNsPDw3Xw4EH99NNPVuWLFy++5zbzwr3ea5JUqVIlHTt2LMfHmjhxogoXLqzhw4dbhoaZTCY5OTlZJVPOnDmT5dv3ciLj7XcrVqyw6ql06dIlrV692qpuxmfG7Z8pn3/+ua5cuZLjz5QHxc3NTXXq1NGKFSus/l7S09O1cOFClSxZMsuhp7fK6WfG7SpUqKC3335bISEhVs+Ku/UGPn78uOzs7O6aSAYeNvSUAoACoFu3bvroo4/UvXt3nTx5UiEhIdqyZYvGjRunp59+Wk888YRV/WLFiqlx48YaNmyY3NzcNGPGDP38889aunTpXY916NAhHTp0SNLNfxxfvXpVn332mSSpcuXKqly5sqSbw6NKlSqlWrVqqVixYvrll180efJk/fXXX5ZXoOdWxv+lvJNXX31Vn3zyiZo3b6533nlHpUuX1pdffqkZM2boxRdftPwjNaPXRv369eXn56czZ85o/Pjx8vLysvwf4CpVqkiSPv74Y3l4eMjZ2VllypR54L3JsrJr1y717t1b7dq10+nTp/XWW2/J399fL730kqSbQyOHDRumN998U926dVPHjh11/vx5jRo1Ss7OztkOz7ldSEiIVqxYoZkzZ6pmzZqys7NTrVq11Lx5c02ZMkWdOnXS888/r/Pnz+u9997LsldLTuX19Q0MDNQ777yjt956S8ePH7fM0/LXX39px44dcnNz06hRo+Tp6amGDRtq0qRJKlasmAIDA7Vx40bNmzdPhQoVynGMXbt2VZcuXfTSSy+pTZs2+u233zRx4sRMw12y4+7urg8++EDdu3fXhQsX1LZtW/n4+OjcuXP66aefdO7cOc2cOVOJiYkKDw9Xp06dVKlSJcuwq7Vr16p169a5vk52dnaaOHGiOnfurBYtWuiFF15QSkqKJk2apIsXL+rdd9/NdZt3MmjQIA0aNOiOderXr6/nn39ePXr00K5du9SwYUO5ubkpISFBW7ZsUUhIiF588UVduXJF7du3V5kyZTRjxgw5OTnp008/VY0aNdSjR4879tx755139PXXX6thw4Z68803FRISoosXL2rt2rUaNGiQKlWqlOPnR3amTJmi48ePKzIyUuvWrdOzzz6r4sWL63//+5++/fZbxcTEaOnSpapatWqW+2ck36ZPn67u3bvL0dFRFStWtMwTVKhQIXXr1k0zZ85U6dKlM80DlJ2hQ4fq559/1htvvKFNmzapQ4cOCgwMVEpKio4fP665c+fK3t4+R8nIpk2bysnJSR07dtSQIUOUnJysmTNn5ihRk52BAwcqOjpazZs315gxY1S8eHEtWrRIP//88z23eb/u516Tbs6l9M477+jq1as5uq6FCxdWVFSUhgwZosWLF6tLly5q0aKFVqxYoZdeeklt27bV6dOnNXr0aPn5+emXX365p/MaPXq0mjVrpqZNm+q1115TWlqaJkyYIDc3N6ueXU2bNlVERISGDh2qpKQk1a9fX/v27dOIESMUGhqqrl273tPx89L48ePVtGlThYeHa/DgwXJyctKMGTN04MABLVmy5K694nL6mbFv3z7169dP7dq1U/ny5eXk5KT169dr3759Vr1tQ0JCtHTpUi1btkxBQUFydna2Sqhv375d1atXz9QTFXjo5cfs6gCAB+v2t+8Zxs03t/Xt29fw8/MzHBwcjNKlSxtRUVFWr202jJtv6Hn55ZeNGTNmGGXLljUcHR2NSpUqGYsWLcrRsTPexpXVcuubrsaPH29Ur17d8PLyMuzt7Q1vb2/j2WeftbxSPKfHOXfu3B3r3f72PcMwjN9++83o1KmTUbRoUcPR0dGoWLGiMWnSJKs3jc2fP98IDw83ihcvbjg5ORklSpQw2rdvb+zbt8+qrWnTphllypQx7O3tM70p63bZvX3v9t+VYdx8K9UjjzySqbx06dJG8+bNM7X5zTffGF27djUKFSpkectexhuIbjV37lyjatWqhpOTk+Hl5WW0bNnS6rXWd4rJMAzjwoULRtu2bY1ChQoZJpPJ6m1M0dHRRsWKFQ2z2WwEBQUZ48ePN+bNm5fpbWG3n8Ot53z7m4nu9/pmZeXKlUZ4eLjh6elpmM1mo3Tp0kbbtm2N7777zlLn999/N9q0aWMULlzY8PDwMJo1a2YcOHAgyzfqZRdjenq6MXHiRCMoKMhwdnY2atWqZaxfvz7bt+/d+ga8W23cuNFo3ry5UaRIEcPR0dHw9/c3mjdvbqmfnJxs9O3b16hatarh6elpuLi4GBUrVjRGjBhh9VarrNzp2CtXrjTq1KljODs7G25ubkaTJk2MH374wapOTv8Oc3quGbJ7y2N0dLRRp04dw83NzXBxcTHKli1rdOvWzdi1a5dhGIbRpUsXw9XVNdM9nfGWxKlTp1rKbn8mGcbNt/n17NnT8PX1NRwdHS1/93/99ZelTk6eH3eSmppqzJ8/32jcuLFRpEgRw8HBwfD29jaeeuopY/HixZZ2snr7nmEYRlRUlFGiRAnDzs4uyzfPxcXFGZKMd999N0fx3GrVqlXGM888YxQvXtxwcHAwPDw8jOrVqxuvvfaa8fPPP1vVze7v2DAMY/Xq1Ua1atUMZ2dnw9/f33j99deNr7/+OlO82T3nsnrT3aFDh4ymTZsazs7ORpEiRYxevXoZ//3vf3P19r27PRvu9Oy7Pabc3GtZ+fXXXw2TyZTprbh3ivXatWtGqVKljPLly1ve8Pfuu+8agYGBhtlsNoKDg405c+ZY/i5vlfHZfrusnmmrVq2yfE6UKlXKePfdd7Ns89q1a8bQoUON0qVLG46Ojoafn5/x4osvGn///XemY2R1r2QVU8Z9P2nSpEz1b5XTZ8nmzZuNxo0bW54Zjz32mLF69WqrOne7P+72mfHXX38ZkZGRRqVKlQw3NzfD3d3dqFq1qjF16lSrNzGePHnSePLJJw0PDw9DktX9dOnSJcPV1TXTG0aBgsBkGLf0ywYAFHgmk0kvv/yyPvzww/wOBTkQGxurHj16aOfOnXedKwXAw++1117TzJkzdfr06XzptYmce+aZZ5Samqqvv/46v0NBPps3b55eeeUVnT59mp5SKHAYvgcAAAD8y23fvl1Hjx7VjBkz9MILL5CQ+hcYP368QkNDtXPnznyfGBz5JzU1VRMmTFBUVBQJKRRIJKUAAACAf7mMCehbtGihMWPG5Hc4yIEqVaooJiYm128RxMPl9OnT6tKli1577bX8DgXIFwzfAwAAAAAAgM3Z5XcAAAAAAAAAKHhISgEAAAAAAMDmSEoBAAAAAADA5pjoHAVWenq6/vzzT3l4eMhkMuV3OAAAAAAAPBQMw9ClS5dUokQJ2dll3x+KpBQKrD///FMBAQH5HQYAAAAAAA+l06dPq2TJktluJymFAsvDw0PSzT8ST0/PfI4GAAAAAICHQ1JSkgICAizfu7NDUgoFVsaQPU9PT5JSAAAAAADksbtNlcNE5wAAAAAAALA5ekqhwGv49hLZm13yOwwAAAAAAKzsntQtv0N4oOgpBQAAAAAAAJsjKQUAAAAAAACbIykFAAAAAAAAmyMpBQAAAAAAAJsjKQUAAAAAAACbIykFAAAAAAAAmyMpBQAAAAAAAJsjKYV/pJMnT8pkMik+Pj6/QwEAAAAAAA8ASakC7uzZs3rhhRdUqlQpmc1m+fr6KiIiQtu2bcvv0KxklaR65ZVXVLNmTZnNZlWvXj3fYgMAAAAAALnnkN8BIH+1adNGN27c0Pz58xUUFKS//vpL33//vS5cuJDfod2VYRjq2bOnfvzxR+3bty+/wwEAAAAAALlAT6kC7OLFi9qyZYsmTJig8PBwlS5dWrVr11ZUVJSaN28uSTKZTJo5c6aeeuopubi4qEyZMlq+fLlVO3/88Yc6dOigwoULq2jRomrZsqVOnjxpVScmJkbBwcFydnZWpUqVNGPGDKvtO3bsUGhoqJydnVWrVi3t3bv3rvG///77evnllxUUFHR/FwIAAAAAANgcSakCzN3dXe7u7lq5cqVSUlKyrTds2DC1adNGP/30k7p06aKOHTvq8OHDkqSrV68qPDxc7u7u2rRpk7Zs2SJ3d3c1a9ZM169flyTNmTNHb731lsaOHavDhw9r3LhxGjZsmObPny9JunLlilq0aKGKFStq9+7dGjlypAYPHpzn55uSkqKkpCSrBQAAAAAA5A+SUgWYg4ODYmNjNX/+fBUqVEj169fXm2++mWkoXLt27dS7d29VqFBBo0ePVq1atfTBBx9IkpYuXSo7OzvNnTtXISEhCg4OVkxMjE6dOqW4uDhJ0ujRozV58mS1bt1aZcqUUevWrfXqq69q9uzZkqRFixYpLS1N0dHReuSRR9SiRQu9/vrreX6+48ePl5eXl2UJCAjI82MAAAAAAICcISlVwLVp00Z//vmnVq1apYiICMXFxalGjRqKjY211Klbt67VPnXr1rX0lNq9e7d+/fVXeXh4WHpeFSlSRMnJyTp27JjOnTun06dPq1evXpbt7u7uGjNmjI4dOyZJOnz4sKpVqyZXV9dsj5kXoqKilJiYaFlOnz6d58cAAAAAAAA5w0TnkLOzs5o2baqmTZtq+PDh6t27t0aMGKHIyMhs9zGZTJKk9PR01axZU4sWLcpUx9vbW8nJyZJuDuGrU6eO1XZ7e3tJNycstwWz2Syz2WyTYwEAAAAAgDujpxQyqVy5sq5cuWJZ3759u9X27du3q1KlSpKkGjVq6JdffpGPj4/KlStntXh5eal48eLy9/fX8ePHM20vU6aM5Xg//fSTrl27lu0xAQAAAADAw4WkVAF2/vx5NW7cWAsXLtS+fft04sQJLV++XBMnTlTLli0t9ZYvX67o6GgdPXpUI0aM0I4dO9SvXz9JUufOnVWsWDG1bNlSmzdv1okTJ7Rx40a98sor+v333yVJI0eO1Pjx4zV9+nQdPXpU+/fvV0xMjKZMmSJJ6tSpk+zs7NSrVy8dOnRIX331ld577727xv/rr78qPj5eZ86c0bVr1xQfH6/4+HjLBOsAAAAAAOCfi+F7BZi7u7vq1KmjqVOn6tixY7px44YCAgLUp08fvfnmm5Z6o0aN0tKlS/XSSy/J19dXixYtUuXKlSVJrq6u2rRpk4YOHarWrVvr0qVL8vf3V5MmTeTp6SlJ6t27t1xdXTVp0iQNGTJEbm5uCgkJ0cCBAy1xrF69Wn379lVoaKgqV66sCRMmqE2bNneMv3fv3tq4caNlPTQ0VJJ04sQJBQYG5uGVAgAAAAAAec1k2GpCH/wrmUwmffHFF2rVqlV+h5LnkpKS5OXlpWr9Z8ne7JLf4QAAAAAAYGX3pG75HcI9yfi+nZiYaOmwkhWG7wEAAAAAAMDmSEoBAAAAAADA5phTCnfE6E4AAAAAAPAg0FMKAAAAAAAANkdSCgAAAAAAADZHUgoAAAAAAAA2R1IKAAAAAAAANsdE5yjwNo3pKE9Pz/wOAwAAAACAAoWeUgAAAAAAALA5klIAAAAAAACwOZJSAAAAAAAAsDmSUgAAAAAAALA5klIAAAAAAACwOd6+hwKv4dtLZG92ye8wAADAv9juSd3yOwQAAP516CkFAAAAAAAAmyMpBQAAAAAAAJsjKQUAAAAAAACbIykFAAAAAAAAmyMpBQAAAAAAAJsjKQUAAAAAAACbIykFAAAAAAAAmyMphX+kkydPymQyKT4+Pr9DAQAAAAAADwBJqQLu7NmzeuGFF1SqVCmZzWb5+voqIiJC27Zty+/QrNyepPrpp5/UsWNHBQQEyMXFRcHBwZo+fXr+BgkAAAAAAHLMIb8DQP5q06aNbty4ofnz5ysoKEh//fWXvv/+e124cCG/Q7uj3bt3y9vbWwsXLlRAQIC2bt2q559/Xvb29urXr19+hwcAAAAAAO6CnlIF2MWLF7VlyxZNmDBB4eHhKl26tGrXrq2oqCg1b95ckmQymTRz5kw99dRTcnFxUZkyZbR8+XKrdv744w916NBBhQsXVtGiRdWyZUudPHnSqk5MTIyCg4Pl7OysSpUqacaMGVbbd+zYodDQUDk7O6tWrVrau3fvHWPv2bOn3n//fTVq1EhBQUHq0qWLevTooRUrVtz/hQEAAAAAAA8cSakCzN3dXe7u7lq5cqVSUlKyrTds2DC1adNGP/30k7p06aKOHTvq8OHDkqSrV68qPDxc7u7u2rRpk7Zs2SJ3d3c1a9ZM169flyTNmTNHb731lsaOHavDhw9r3LhxGjZsmObPny9JunLlilq0aKGKFStq9+7dGjlypAYPHpzr80lMTFSRIkXu4UoAAAAAAABbY/heAebg4KDY2Fj16dNHs2bNUo0aNdSoUSM999xzqlq1qqVeu3bt1Lt3b0nS6NGj9e233+qDDz7QjBkztHTpUtnZ2Wnu3LkymUySbvaKKlSokOLi4vTkk09q9OjRmjx5slq3bi1JKlOmjA4dOqTZs2ere/fuWrRokdLS0hQdHS1XV1c98sgj+v333/Xiiy/m+Fy2bdumTz/9VF9++WW2dVJSUqySb0lJSbm6XgAAAAAAIO/QU6qAa9Omjf7880+tWrVKERERiouLU40aNRQbG2upU7duXat96tata+kptXv3bv3666/y8PCw9LwqUqSIkpOTdezYMZ07d06nT59Wr169LNvd3d01ZswYHTt2TJJ0+PBhVatWTa6urtke804OHjyoli1bavjw4WratGm29caPHy8vLy/LEhAQkONjAAAAAACAvEVPKcjZ2VlNmzZV06ZNNXz4cPXu3VsjRoxQZGRktvtk9IpKT09XzZo1tWjRokx1vL29lZycLOnmEL46depYbbe3t5ckGYZxz7EfOnRIjRs3Vp8+ffT222/fsW5UVJQGDRpkWU9KSiIxBQAAAABAPiEphUwqV66slStXWta3b9+ubt26Wa2HhoZKkmrUqKFly5bJx8dHnp6emdry8vKSv7+/jh8/rs6dO2d7vAULFujatWtycXGxHONuDh48qMaNG6t79+4aO3bsXeubzWaZzea71gMAAAAAAA8ew/cKsPPnz6tx48ZauHCh9u3bpxMnTmj58uWaOHGiWrZsaam3fPlyRUdH6+jRoxoxYoR27Nihfv36SZI6d+6sYsWKqWXLltq8ebNOnDihjRs36pVXXtHvv/8uSRo5cqTGjx+v6dOn6+jRo9q/f79iYmI0ZcoUSVKnTp1kZ2enXr166dChQ/rqq6/03nvv3TH2gwcPKjw8XE2bNtWgQYN05swZnTlzRufOnXtAVwsAAAAAAOQlekoVYO7u7qpTp46mTp2qY8eO6caNGwoICFCfPn305ptvWuqNGjVKS5cu1UsvvSRfX18tWrRIlStXliS5urpq06ZNGjp0qFq3bq1Lly7J399fTZo0sfSc6t27t1xdXTVp0iQNGTJEbm5uCgkJ0cCBAy1xrF69Wn379lVoaKgqV66sCRMmqE2bNtnGvnz5cp07d06LFi2yGjpYunRpnTx5Mu8vFgAAAAAAyFMm434m9MFDz2Qy6YsvvlCrVq3yO5Q8l5SUJC8vL1XrP0v2Zpf8DgcAAPyL7Z7U7e6VAAAoIDK+bycmJmY51U8Ghu8BAAAAAADA5khKAQAAAAAAwOaYUwp3xOhOAAAAAADwINBTCgAAAAAAADZHUgoAAAAAAAA2R1IKAAAAAAAANkdSCgAAAAAAADbHROco8DaN6ShPT8/8DgMAAAAAgAKFnlIAAAAAAACwOZJSAAAAAAAAsDmSUgAAAAAAALA5klIAAAAAAACwOZJSAAAAAAAAsDmSUgAAAAAAALA5h/wOAMhvDd9eInuzS36HAeSZ3ZO65XcIAAAAAHBX9JQCAAAAAACAzZGUAgAAAAAAgM2RlAIAAAAAAIDNkZQCAAAAAACAzZGUAgAAAAAAgM2RlAIAAAAAAIDNkZQCAAAAAACAzZGUQrbi4uJkMpl08eLF/A4FAAAAAAA8ZEhKQVu3bpW9vb2aNWtmVV6vXj0lJCTIy8sr230DAwNlMpmyXcLCwh5w9AAAAAAA4N/IIb8DQP6Ljo5W//79NXfuXJ06dUqlSpWSJDk5OcnX1zfb/dLS0vTjjz/KMAxJN5Nbbdq00ZEjR+Tp6WlpAwAAAAAA4Hb0lCrgrly5ok8//VQvvviiWrRoodjYWMu224fvxcbGqlChQlqzZo0qV64ss9msq1evytfXV76+vipSpIgkycfHx1L2888/q2HDhnJxcVFAQIAGDBigK1euWI4RGBioMWPGqFu3bnJ3d1fp0qX13//+V+fOnVPLli3l7u6ukJAQ7dq1y7JPRhwrV65UhQoV5OzsrKZNm+r06dM2uWYAAAAAAOD+kZQq4JYtW6aKFSuqYsWK6tKli2JiYiw9n7Jy9epVjR8/XnPnztXBgwfl4+OTbd39+/crIiJCrVu31r59+7Rs2TJt2bJF/fr1s6o3depU1a9fX3v37lXz5s3VtWtXdevWTV26dNGePXtUrlw5devWzSquq1evauzYsZo/f75++OEHJSUl6bnnnrv/CwIAAAAAAGyCpFQBN2/ePHXp0kWS1KxZM12+fFnff/99tvVv3LihGTNmqF69eqpYsaLc3NyyrTtp0iR16tRJAwcOVPny5VWvXj29//77+uSTT5ScnGyp9/TTT+uFF15Q+fLlNXz4cF26dEmPPvqo2rVrpwoVKmjo0KE6fPiw/vrrL6s4PvzwQ9WtW1c1a9bU/PnztXXrVu3YsSPbeFJSUpSUlGS1AAAAAACA/EFSqgA7cuSIduzYYelh5ODgoA4dOig6OjrbfZycnFS1atUctb97927FxsbK3d3dskRERCg9PV0nTpyw1Lu1veLFi0uSQkJCMpWdPXvWUubg4KBatWpZ1itVqqRChQrp8OHD2cYzfvx4eXl5WZaAgIAcnQcAAAAAAMh7THRegM2bN0+pqany9/e3lBmGIUdHR/39999Z7uPi4iKTyZSj9tPT0/XCCy9owIABmbZlTKYuSY6OjpafM9rOqiw9Pd2qjaziuFNsUVFRGjRokGU9KSmJxBQAAAAAAPmEpFQBlZqaqk8++USTJ0/Wk08+abWtTZs2WrRokapUqXJfx6hRo4YOHjyocuXK3Vc7WUlNTdWuXbtUu3ZtSTd7fV28eFGVKlXKdh+z2Syz2ZznsQAAAAAAgNxj+F4BtWbNGv3999/q1auXqlSpYrW0bdtW8+bNu+9jDB06VNu2bdPLL7+s+Ph4/fLLL1q1apX69+9/3207Ojqqf//++vHHH7Vnzx716NFDjz32mCVJBQAAAAAA/tlIShVQ8+bN0xNPPCEvL69M29q0aaP4+Hjt2bPnvo5RtWpVbdy4Ub/88osaNGig0NBQDRs2TH5+fvfVriS5urpq6NCh6tSpk+rWrSsXFxctXbr0vtsFAAAAAAC2YTIMw8jvIIDciI2N1cCBA3Xx4sX7aicpKUleXl6q1n+W7M0ueRMc8A+we1K3/A4BAAAAQAGW8X07MTFRnp6e2dajpxQAAAAAAABsjqQUAAAAAAAAbI6kFP51IiMj73voHgAAAAAAyF8kpQAAAAAAAGBzJKUAAAAAAABgcySlAAAAAAAAYHMkpQAAAAAAAGBzDvkdAJDfNo3pKE9Pz/wOAwAAAACAAoWeUgAAAAAAALA5klIAAAAAAACwOZJSAAAAAAAAsDmSUgAAAAAAALA5klIAAAAAAACwOZJSAAAAAAAAsDmH/A4AyG8N314ie7NLfoeBf6Ddk7rldwgAAAAA8NCipxQAAAAAAABsjqQUAAAAAAAAbI6kFAAAAAAAAGyOpBQAAAAAAABsjqQUAAAAAAAAbI6kFAAAAAAAAGyOpBQAAAAAAABsjqQU/nHi4uJkMpl08eJFS9nKlStVrlw52dvba+DAgfkWGwAAAAAAyBskpQo4k8l0xyUyMvKBHDcwMFDTpk3Lclu9evWUkJAgLy8vS9kLL7ygtm3b6vTp0xo9evQDiQkAAAAAANiOQ34HgPyVkJBg+XnZsmUaPny4jhw5YilzcXHJVXs3btyQo6PjfcXk5OQkX19fy/rly5d19uxZRUREqESJEvfVNgAAAAAA+Gegp1QB5+vra1m8vLxkMpnk6+ur4sWL6/HHH9ecOXOs6h84cEB2dnY6duyYpJs9rWbNmqWWLVvKzc1NY8aMkSStXr1aNWvWlLOzs4KCgjRq1CilpqbmKKZbh+/FxcXJw8NDktS4cWOZTCbFxcVJkrZu3aqGDRvKxcVFAQEBGjBggK5cuZJHVwYAAAAAADxIJKWQJZPJpJ49eyomJsaqPDo6Wg0aNFDZsmUtZSNGjFDLli21f/9+9ezZU+vWrVOXLl00YMAAHTp0SLNnz1ZsbKzGjh2b6zjq1atn6bn1+eefKyEhQfXq1dP+/fsVERGh1q1ba9++fVq2bJm2bNmifv36ZdtWSkqKkpKSrBYAAAAAAJA/SEohWz169NCRI0e0Y8cOSTeH5i1cuFA9e/a0qtepUyf17NlTQUFBKl26tMaOHas33nhD3bt3V1BQkJo2barRo0dr9uzZuY7ByclJPj4+kqQiRYrI19dXTk5OmjRpkjp16qSBAweqfPnyqlevnt5//3198sknSk5OzrKt8ePHy8vLy7IEBATkOh4AAAAAAJA3SEohW35+fmrevLmio6MlSWvWrFFycrLatWtnVa9WrVpW67t379Y777wjd3d3y9KnTx8lJCTo6tWreRLb7t27FRsba3WMiIgIpaen68SJE1nuExUVpcTERMty+vTpPIkFAAAAAADkHhOd44569+6trl27aurUqYqJiVGHDh3k6upqVcfNzc1qPT09XaNGjVLr1q0ztefs7JwncaWnp+uFF17QgAEDMm0rVapUlvuYzWaZzeY8OT4AAAAAALg/JKVwR08//bTc3Nw0c+ZMff3119q0adNd96lRo4aOHDmicuXKPbC4atSooYMHDz7QYwAAAAAAgAeHpBTuyN7eXpGRkYqKilK5cuVUt27du+4zfPhwtWjRQgEBAWrXrp3s7Oy0b98+7d+/3/J2Pkn6448/FB8fb7Vvdr2cbjd06FA99thjevnll9WnTx+5ubnp8OHD+vbbb/XBBx/k6hwBAAAAAIDtMacU7qpXr166fv16pgnOsxMREaE1a9bo22+/1aOPPqrHHntMU6ZMUenSpa3qvffeewoNDbVaVq1alaNjVK1aVRs3btQvv/yiBg0aKDQ0VMOGDZOfn1+uzw8AAAAAANieyTAMI7+DwD/bDz/8oLCwMP3+++8qXrx4foeTZ5KSkuTl5aVq/WfJ3uyS3+HgH2j3pG75HQIAAAAA/OtkfN9OTEyUp6dntvUYvodspaSk6PTp0xo2bJjat2//UCWkAAAAAABA/mL4HrK1ZMkSVaxYUYmJiZo4cWJ+hwMAAAAAAB4iJKWQrcjISKWlpWn37t3y9/fP73AAAAAAAMBDhKQUAAAAAAAAbI6kFAAAAAAAAGyOpBQAAAAAAABsjqQUAAAAAAAAbM4hvwMA8tumMR3l6emZ32EAAAAAAFCg0FMKAAAAAAAANkdSCgAAAAAAADZHUgoAAAAAAAA2R1IKAAAAAAAANkdSCgAAAAAAADZHUgoAAAAAAAA255DfAQD5reHbS2RvdsnvMB5quyd1y+8QAAAAAAD/MPSUAgAAAAAAgM2RlAIAAAAAAIDNkZQCAAAAAACAzZGUAgAAAAAAgM2RlAIAAAAAAIDNkZQCAAAAAACAzZGUAgAAAAAAgM2RlEKOxMXFyWQy6eLFi7nab+TIkSpevLhMJpNWrlyZbRkAAAAAAChYSEo9RCIjI2UymTItv/76a54fKyNJldVy5swZSdLhw4c1atQozZ49WwkJCXrqqaeyLLtfI0eOVPXq1e+7HQAAAAAAYDsO+R0A8lazZs0UExNjVebt7f3AjnfkyBF5enpalfn4+EiSjh07Jklq2bKlTCZTtmUAAAAAAKDgoafUQ8ZsNsvX19dq6dWrl1q1amVVb+DAgQoLC7OsG4ahiRMnKigoSC4uLqpWrZo+++yzux7Px8cn0/Hs7Ow0cuRIPfPMM5IkOzs7mUymLMsyxMTEKDg4WM7OzqpUqZJmzJhhdZzff/9dzz33nIoUKSI3NzfVqlVLP/74o2JjYzVq1Cj99NNPlp5asbGx93bxAAAAAACAzdBTCpKkt99+WytWrNDMmTNVvnx5bdq0SV26dJG3t7caNWqU6/YGDx6swMBA9ejRQwkJCZIkd3f3TGWSNGfOHI0YMUIffvihQkNDtXfvXvXp00dubm7q3r27Ll++rEaNGsnf31+rVq2Sr6+v9uzZo/T0dHXo0EEHDhzQ2rVr9d1330mSvLy8sowpJSVFKSkplvWkpKRcnxcAAAAAAMgbJKUeMmvWrJG7u7tl/amnnpKbm9sd97ly5YqmTJmi9evXq27dupKkoKAgbdmyRbNnz75jUqpkyZJW6/7+/jpy5Ijc3d1VqFAhSZKvr69le1Zlo0eP1uTJk9W6dWtJUpkyZXTo0CHNnj1b3bt31+LFi3Xu3Dnt3LlTRYoUkSSVK1fOsr+7u7scHBys2szK+PHjNWrUqDvWAQAAAAAAtkFS6iETHh6umTNnWtbd3NwUFRV1x30OHTqk5ORkNW3a1Kr8+vXrCg0NveO+mzdvloeHh2XdwSF3t9S5c+d0+vRp9erVS3369LGUp6amWno8xcfHKzQ01JKQuldRUVEaNGiQZT0pKUkBAQH31SYAAAAAALg3JKUeMm5ubla9iKSb8zcZhmFVduPGDcvP6enpkqQvv/xS/v7+VvXMZvMdj1emTBlL76d7kXHsOXPmqE6dOlbb7O3tJUkuLi733P6tzGbzXc8HAAAAAADYBkmpAsDb21sHDhywKouPj5ejo6MkqXLlyjKbzTp16tQ9zR91P4oXLy5/f38dP35cnTt3zrJO1apVNXfuXF24cCHL3lJOTk5KS0t70KECAAAAAIA8RFKqAGjcuLEmTZqkTz75RHXr1tXChQt14MABy9A8Dw8PDR48WK+++qrS09P1+OOPKykpSVu3bpW7u7u6d++ebdtnz55VcnKyVVnRokUtCa+cGDlypAYMGCBPT0899dRTSklJ0a5du/T3339r0KBB6tixo8aNG6dWrVpp/Pjx8vPz0969e1WiRAnVrVtXgYGBOnHihOLj41WyZEl5eHjQIwoAAAAAgH84u/wOAA9eRESEhg0bpiFDhujRRx/VpUuX1K1bN6s6o0eP1vDhwzV+/HgFBwcrIiJCq1evVpkyZe7YdsWKFeXn52e17N69O1fx9e7dW3PnzlVsbKxCQkLUqFEjxcbGWo7t5OSkb775Rj4+Pnr66acVEhKid9991zK8r02bNmrWrJnCw8Pl7e2tJUuW5Or4AAAAAADA9kzG7ZMNAQVEUlKSvLy8VK3/LNmb82beKmRt96Rud68EAAAAAHgoZHzfTkxMlKenZ7b16CkFAAAAAAAAmyMpBQAAAAAAAJsjKQUAAAAAAACbIykFAAAAAAAAmyMpBQAAAAAAAJsjKQUAAAAAAACbIykFAAAAAAAAm3PI7wCA/LZpTEd5enrmdxgAAAAAABQo9JQCAAAAAACAzZGUAgAAAAAAgM2RlAIAAAAAAIDNkZQCAAAAAACAzZGUAgAAAAAAgM2RlAIAAAAAAIDNOeR3AEB+a/j2EtmbXfI7jH+N3ZO65XcIAAAAAICHAD2lAAAAAAAAYHMkpQAAAAAAAGBzJKUAAAAAAABgcySlAAAAAAAAYHMkpQAAAAAAAGBzJKUAAAAAAABgcySlAAAAAAAAYHMkpfDAnDx5UiaTSfHx8dnWiYuLk8lk0sWLFyVJsbGxKlSokE3iAwAAAAAA+Yek1EMuMjJSrVq1ylR+ezLoQQgICFBCQoKqVKmS4306dOigo0ePWtZHjhyp6tWrP4DoAAAAAABAfnLI7wDw8LK3t5evr2+u9nFxcZGLi8sDiggAAAAAAPxT0FMKWfZGmjZtmgIDAy3rGT2uxo0bp+LFi6tQoUIaNWqUUlNT9frrr6tIkSIqWbKkoqOjLftkNXzvq6++UoUKFeTi4qLw8HCdPHnS6ri3Dt+LjY3VqFGj9NNPP8lkMslkMik2NlY9e/ZUixYtrPZLTU2Vr6+v1fEBAAAAAMA/Fz2lkGPr169XyZIltWnTJv3www/q1auXtm3bpoYNG+rHH3/UsmXL1LdvXzVt2lQBAQGZ9j99+rRat26tvn376sUXX9SuXbv02muvZXu8Dh066MCBA1q7dq2+++47SZKXl5cqVKighg0bKiEhQX5+fpJuJrsuX76s9u3bZ9teSkqKUlJSLOtJSUn3eikAAAAAAMB9oqdUAbBmzRq5u7tbLU899VSu2ylSpIjef/99VaxYUT179lTFihV19epVvfnmmypfvryioqLk5OSkH374Icv9Z86cqaCgIE2dOlUVK1ZU586dFRkZme3xXFxc5O7uLgcHB/n6+srX11cuLi6qV6+eKlasqAULFljqxsTEqF27dnJ3d8+2vfHjx8vLy8uyZJU4AwAAAAAAtkFSqgAIDw9XfHy81TJ37txct/PII4/Izu7/bpnixYsrJCTEsm5vb6+iRYvq7NmzWe5/+PBhPfbYYzKZTJayunXr5joOSerdu7diYmIkSWfPntWXX36pnj173nGfqKgoJSYmWpbTp0/f07EBAAAAAMD9Y/heAeDm5qZy5cpZlf3++++Wn+3s7GQYhtX2GzduZGrH0dHRat1kMmVZlp6enmUctx/jfnTr1k1vvPGGtm3bpm3btikwMFANGjS44z5ms1lmsznPYgAAAAAAAPeOpBTk7e2tM2fOyDAMSy+mWycnzyuVK1fWypUrrcq2b99+x32cnJyUlpaWqbxo0aJq1aqVYmJitG3bNvXo0SMvQwUAAAAAAA8Yw/egsLAwnTt3ThMnTtSxY8f00Ucf6euvv87z4/Tt21fHjh3ToEGDdOTIES1evFixsbF33CcwMFAnTpxQfHy8/ve//1lNVN67d2/Nnz9fhw8fVvfu3fM8XgAAAAAA8OCQlIKCg4M1Y8YMffTRR6pWrZp27NihwYMH5/lxSpUqpc8//1yrV69WtWrVNGvWLI0bN+6O+7Rp00bNmjVTeHi4vL29tWTJEsu2J554Qn5+foqIiFCJEiXyPF4AAAAAAPDgmIy8nOgHsKGrV6+qRIkSio6OVuvWrXO9f1JSkry8vFSt/yzZm10eQIQPp92TuuV3CAAAAACAf7CM79uJiYny9PTMth5zSuFfJz09XWfOnNHkyZPl5eWl//znP/kdEgAAAAAAyCWSUvjXOXXqlMqUKaOSJUsqNjZWDg7cxgAAAAAA/NvwbR7/OoGBgWLUKQAAAAAA/25MdA4AAAAAAACbIykFAAAAAAAAmyMpBQAAAAAAAJsjKQUAAAAAAACbY6JzFHibxnSUp6dnfocBAAAAAECBQk8pAAAAAAAA2BxJKQAAAAAAANgcSSkAAAAAAADYHEkpAAAAAAAA2BxJKQAAAAAAANgcb99Dgdfw7SWyN7vkdxj/CrsndcvvEAAAAAAADwl6SgEAAAAAAMDmSEoBAAAAAADA5khKAQAAAAAAwOZISgEAAAAAAMDmSEoBAAAAAADA5khKAQAAAAAAwOZISgEAAAAAAMDmSEr9S508eVImk0nx8fH5GsfIkSNVvXr1+24nNjZWhQoVuu92AAAAAADAvwNJqTxgMpnuuERGRuZLXIGBgVnG8+677+ZLPLfGNW3aNKuyDh066OjRo/kTEAAAAAAAsDmH/A7gYZCQkGD5edmyZRo+fLiOHDliKXNxcbGqf+PGDTk6OtoktnfeeUd9+vSxKvPw8LDJsXPDxcUl03UCAAAAAAAPL3pK5QFfX1/L4uXlJZPJZFlPTk5WoUKF9OmnnyosLEzOzs5auHChzp8/r44dO6pkyZJydXVVSEiIlixZYtVuenq6JkyYoHLlyslsNqtUqVIaO3ZsljGkp6erT58+qlChgn777TdLuYeHh1V8vr6+cnNzU3p6ukqWLKlZs2ZZtbNnzx6ZTCYdP35cknTq1Cm1bNlS7u7u8vT0VPv27fXXX39ley3CwsI0cOBAq7JWrVpZeouFhYXpt99+06uvvmrpuSVlPXxv5syZKlu2rJycnFSxYkUtWLDAarvJZNLcuXP17LPPytXVVeXLl9eqVauyjQ0AAAAAAPxzkJSykaFDh2rAgAE6fPiwIiIilJycrJo1a2rNmjU6cOCAnn/+eXXt2lU//vijZZ+oqChNmDBBw4YN06FDh7R48WIVL148U9vXr19X+/bttWvXLm3ZskWlS5e+azx2dnZ67rnntGjRIqvyxYsXq27dugoKCpJhGGrVqpUuXLigjRs36ttvv9WxY8fUoUOHe74OK1asUMmSJfXOO+8oISHBqpfZrb744gu98soreu2113TgwAG98MIL6tGjhzZs2GBVb9SoUWrfvr327dunp59+Wp07d9aFCxfuOT4AAAAAAGAbDN+zkYEDB6p169ZWZYMHD7b83L9/f61du1bLly9XnTp1dOnSJU2fPl0ffvihunfvLkkqW7asHn/8cas2Ll++rObNm+vatWuKi4uTl5eX1fahQ4fq7bfftipbs2aNwsLC1LlzZ02ZMkW//fabSpcurfT0dC1dulRvvvmmJOm7777Tvn37dOLECQUEBEiSFixYoEceeUQ7d+7Uo48+muvrUKRIEdnb21t6cGXnvffeU2RkpF566SVJ0qBBg7R9+3a99957Cg8Pt9SLjIxUx44dJUnjxo3TBx98oB07dqhZs2aZ2kxJSVFKSoplPSkpKdfxAwAAAACAvEFPKRupVauW1XpaWprGjh2rqlWrqmjRonJ3d9c333yjU6dOSZIOHz6slJQUNWnS5I7tduzYUZcvX9Y333yTKSElSa+//rri4+Otljp16kiSQkNDValSJcuwwY0bN+rs2bNq3769JYaAgABLQkqSKleurEKFCunw4cP3fjFy4PDhw6pfv75VWf369TMdt2rVqpaf3dzc5OHhobNnz2bZ5vjx4+Xl5WVZbj0vAAAAAABgWySlbMTNzc1qffLkyZo6daqGDBmi9evXKz4+XhEREbp+/bqkzJOjZ+fpp5/Wvn37tH379iy3FytWTOXKlbNabm27c+fOWrx4saSbQ/ciIiJUrFgxSZJhGJY5n26VXbl0c1igYRhWZTdu3MjRudzu9mNkddzbJ4w3mUxKT0/Psr2oqCglJiZaltOnT99TXAAAAAAA4P6RlMonmzdvVsuWLdWlSxdVq1ZNQUFB+uWXXyzby5cvLxcXF33//fd3bOfFF1/Uu+++q//85z/auHFjruPo1KmT9u/fr927d+uzzz5T586dLdsqV66sU6dOWSVvDh06pMTERAUHB2fZnre3t9U8UWlpaTpw4IBVHScnJ6Wlpd0xruDgYG3ZssWqbOvWrdkeNyfMZrM8PT2tFgAAAAAAkD+YUyqflCtXTp9//rm2bt2qwoULa8qUKTpz5owl6eLs7KyhQ4dqyJAhcnJyUv369XXu3DkdPHhQvXr1smqrf//+SktLU4sWLfT1119bzTt16dIlnTlzxqq+q6urJSFTpkwZ1atXT7169VJqaqpatmxpqffEE0+oatWq6ty5s6ZNm6bU1FS99NJLatSoUabhiBkaN26sQYMG6csvv1TZsmU1depUXbx40apOYGCgNm3apOeee05ms9nSM+tWr7/+utq3b68aNWqoSZMmWr16tVasWKHvvvsu5xcZAAAAAAD8Y9FTKp8MGzZMNWrUUEREhMLCwuTr66tWrVplqvPaa69p+PDhCg4OVocOHbKdL2ngwIEaNWqUnn76aW3dutVSPnz4cPn5+VktQ4YMsdq3c+fO+umnn9S6dWuroX0mk0krV65U4cKF1bBhQz3xxBMKCgrSsmXLsj2vnj17qnv37urWrZsaNWqkMmXKWE1MLknvvPOOTp48qbJly8rb2zvLdlq1aqXp06dr0qRJeuSRRzR79mzFxMQoLCws22MDAAAAAIB/D5Nx+wRAQAGRlJQkLy8vVes/S/bmnM3hVdDtntQtv0MAAAAAAPzDZXzfTkxMvOPUOfSUAgAAAAAAgM2RlAIAAAAAAIDNkZQCAAAAAACAzZGUAgAAAAAAgM2RlAIAAAAAAIDN3VNS6tixY3r77bfVsWNHnT17VpK0du1aHTx4ME+DAwAAAAAAwMMp10mpjRs3KiQkRD/++KNWrFihy5cvS5L27dunESNG5HmAAAAAAAAAePiYDMMwcrND3bp11a5dOw0aNEgeHh766aefFBQUpJ07d6pVq1b6448/HlSsQJ5KSkqSl5eXEhMT5enpmd/hAAAAAADwUMjp9+1c95Tav3+/nn322Uzl3t7eOn/+fG6bAwAAAAAAQAGU66RUoUKFlJCQkKl879698vf3z5OgAAAAAAAA8HDLdVKqU6dOGjp0qM6cOSOTyaT09HT98MMPGjx4sLp16/YgYgQAAAAAAMBDJtdJqbFjx6pUqVLy9/fX5cuXVblyZTVs2FD16tXT22+//SBiBAAAAAAAwEMmVxOdG4ahU6dOydvbW2fOnNGePXuUnp6u0NBQlS9f/kHGCeQ5JjoHAAAAACDv5fT7tkNuGjUMQ+XLl9fBgwdVvnx5BQUF3XegAAAAAAAAKHhylZSys7NT+fLldf78eXpG4aHR8O0lsje75HcY/wq7JzFvHAAAAAAgb+R6TqmJEyfq9ddf14EDBx5EPAAAAAAAACgActVTSpK6dOmiq1evqlq1anJycpKLi3UPkwsXLuRZcAAAAAAAAHg45TopNW3atAcQBgAAAAAAAAqSXCelunfv/iDiAAAAAAAAQAGS66TUqVOn7ri9VKlS9xwMAAAAAAAACoZcJ6UCAwNlMpmy3Z6WlnZfAQEAAAAAAODhl+uk1N69e63Wb9y4ob1792rKlCkaO3ZsngUGAAAAAACAh1euk1LVqlXLVFarVi2VKFFCkyZNUuvWrfMkMAAAAAAAADy87PKqoQoVKmjnzp151dy/lslkuuMSGRn5QI8/btw42dvb6913331gx8jqvB5//PH7bvfkyZMymUyKj4+//yABAAAAAMA/Wq57SiUlJVmtG4ahhIQEjRw5UuXLl8+zwP6tEhISLD8vW7ZMw4cP15EjRyxlLi4uuWrvxo0bcnR0zHH9mJgYDRkyRNHR0XrjjTdydazciImJUbNmzSzrTk5OD+xY9yK31w0AAAAAANhWrntKFSpUSIULF7YsRYoUUeXKlbVt2zbNnDnzQcT4r+Lr62tZvLy8ZDKZ5Ovrq+LFi+vxxx/XnDlzrOofOHBAdnZ2OnbsmKSbvZBmzZqlli1bys3NTWPGjJEkrV69WjVr1pSzs7OCgoI0atQopaamWrW1ceNGXbt2Te+8846uXLmiTZs2ZYpvzJgx8vHxkYeHh3r37q033nhD1atXt6oTExOj4OBgOTs7q1KlSpoxY0amdgoVKmR1rkWKFNH58+fVsWNHlSxZUq6urgoJCdGSJUus9ktPT9eECRNUrlw5mc1mlSpVyjIXWZkyZSRJoaGhMplMCgsLs+zzzjvvqGTJkjKbzapevbrWrl1raTOjh9Wnn36qsLAwOTs7a+HChXf7VQEAAAAAgHyU655SGzZssFq3s7OTt7e3ypUrJweHXDdXYJhMJvXs2VMxMTEaPHiwpTw6OloNGjRQ2bJlLWUjRozQ+PHjNXXqVNnb22vdunXq0qWL3n//fTVo0EDHjh3T888/b6mbYd68eerYsaMcHR3VsWNHzZs3Tw0bNrRsX7RokcaOHasZM2aofv36Wrp0qSZPnmxJBknSnDlzNGLECH344YcKDQ3V3r171adPH7m5ual79+53PMfk5GTVrFlTQ4cOlaenp7788kt17dpVQUFBqlOnjiQpKipKc+bM0dSpU/X4448rISFBP//8syRpx44dql27tr777js98sgjlt5X06dP1+TJkzV79myFhoYqOjpa//nPf3Tw4EGr3nlDhw7V5MmTFRMTI7PZnOvfEQAAAAAAsB2TYRhGbnbYtGmT6tWrlykBlZqaqq1bt1olQQq62NhYDRw4UBcvXpR0c2hfQECAtm7dqtq1a+vGjRvy9/fXpEmTLAkfk8mkgQMHaurUqZZ2GjZsqKeeekpRUVGWsoULF2rIkCH6888/Jd0cVunn56etW7eqWrVqio+PV/369ZWQkCBPT09J0mOPPaZatWrpww8/tLTz+OOP6/Lly5Z5nEqVKqUJEyaoY8eOljpjxozRV199pa1bt1pidHZ2lr29vVU8rVq1ynQNmjdvruDgYL333nu6dOmSvL299eGHH6p3796Z6p48eVJlypTR3r17rXpv+fv76+WXX9abb75pKatdu7YeffRRffTRR5b9pk2bpldeeSXb30dKSopSUlIs60lJSQoICFC1/rNkb87dsMqCavekbvkdAgAAAADgHy4pKUleXl5KTEy05CSykuvhe+Hh4bpw4UKm8sTERIWHh+e2uQLFz89PzZs3V3R0tCRpzZo1Sk5OVrt27azq1apVy2p99+7deuedd+Tu7m5Z+vTpo4SEBF29elWStHjxYgUFBVnejli9enUFBQVp6dKllnaOHDmi2rVrW7V96/q5c+d0+vRp9erVy+pYY8aMsQwvzDB16lTFx8dblqZNmyotLU1jx45V1apVVbRoUbm7u+ubb77RqVOnJEmHDx9WSkqKmjRpkuNrlpSUpD///FP169e3Kq9fv74OHz58x+t2u/Hjx8vLy8uyBAQE5DgOAAAAAACQt3I93s4wDJlMpkzl58+fl5ubW54E9TDr3bu3unbtqqlTpyomJkYdOnSQq6urVZ3br2N6erpGjRql1q1bZ2rP2dlZ0s1hgAcPHrTqwZaenq558+ZZhvpJyvS7u7WjXHp6uqSbQ/gyhttluLVXlHRz7qxy5cpZlU2cOFFTp07VtGnTFBISIjc3Nw0cOFDXr1+XlPtJ3m+VVdy3l93t/ouKitKgQYMs6xk9pQAAAAAAgO3lOCmVkRAxmUyKjIy0mrMnLS1N+/btU7169fI+wofM008/LTc3N82cOVNff/11lpOR365GjRo6cuRIpiRQhv3792vXrl2Ki4tTkSJFLOUXL15Uw4YNdeDAAVWpUkUVK1bUjh071LVrV0udXbt2WX4uXry4/P39dfz4cXXu3DnX57Z582a1bNlSXbp0kXQzyfXLL78oODhYklS+fHm5uLjo+++/z3L4XsYcUmlpaZYyT09PlShRQlu2bLEaGpoxBDI3zGYzc00BAAAAAPAPkeOklJeXl6SbPVQ8PDyser04OTnpscceU58+ffI+woeMvb29IiMjFRUVpXLlyqlu3bp33Wf48OFq0aKFAgIC1K5dO9nZ2Wnfvn3av3+/xowZo3nz5ql27dpZzudVt25dzZs3T1OnTlX//v3Vp08f1apVS/Xq1dOyZcu0b98+BQUFWeqPHDlSAwYMkKenp5566imlpKRo165d+vvvv616GWWlXLly+vzzz7V161YVLlxYU6ZM0ZkzZyxJKWdnZw0dOlRDhgyRk5OT6tevr3PnzungwYPq1auXfHx85OLiorVr16pkyZJydnaWl5eXXn/9dY0YMUJly5ZV9erVFRMTo/j4eC1atCiXVx8AAAAAAPxT5DgpFRMTI0kKDAzU4MGDGap3H3r16qVx48apZ8+eOaofERGhNWvW6J133tHEiRPl6OioSpUqqXfv3rp+/boWLlyooUOHZrlvmzZtNH78eE2YMEGdO3fW8ePHNXjwYCUnJ6t9+/aKjIzUjh07LPV79+4tV1dXTZo0SUOGDJGbm5tCQkI0cODAu8Y5bNgwnThxQhEREXJ1ddXzzz+vVq1aKTEx0aqOg4ODhg8frj///FN+fn7q27evJMnBwUHvv/++3nnnHQ0fPlwNGjRQXFycBgwYoKSkJL322ms6e/asKleurFWrVlm9eQ8AAAAAAPy75Prte7h/P/zwg8LCwvT777+rePHi+RpL06ZN5evrqwULFuRrHPkh420AvH0v53j7HgAAAADgbnL69r1cT3QuSZ999pk+/fRTnTp1yjKJdYY9e/bcS5MFQkpKik6fPq1hw4apffv2Nk9IXb16VbNmzVJERITs7e21ZMkSfffdd/r2229tGgcAAAAAAIBdbnd4//331aNHD/n4+Gjv3r2qXbu2ihYtquPHj+upp556EDE+NJYsWaKKFSsqMTFREydOtPnxTSaTvvrqKzVo0EA1a9bU6tWr9fnnn+uJJ56weSwAAAAAAKBgy/XwvUqVKmnEiBHq2LGjPDw89NNPPykoKEjDhw/XhQsX9OGHHz6oWIE8xfC93GP4HgAAAADgbnI6fC/XPaVOnTqlevXqSZJcXFx06dIlSVLXrl21ZMmSewwXAAAAAAAABUmuk1K+vr46f/68JKl06dLavn27JOnEiRNiznQAAAAAAADkRK6TUo0bN9bq1aslSb169dKrr76qpk2bqkOHDnr22WfzPEAAAAAAAAA8fHL99r2PP/5Y6enpkqS+ffuqSJEi2rJli5555hn17ds3zwMEAAAAAADAwyfXE50DD4ucTrwGAAAAAABy7oFNdC5JmzdvVpcuXVS3bl398ccfkqQFCxZoy5Yt9xYtAAAAAAAACpRcJ6U+//xzRUREyMXFRXv37lVKSook6dKlSxo3blyeBwgAAAAAAICHT66TUmPGjNGsWbM0Z84cOTo6Wsrr1aunPXv25GlwAAAAAAAAeDjlOil15MgRNWzYMFO5p6enLl68mBcxAQAAAAAA4CGX66SUn5+ffv3110zlW7ZsUVBQUJ4EBQAAAAAAgIdbrpNSL7zwgl555RX9+OOPMplM+vPPP7Vo0SINHjxYL7300oOIEQAAAAAAAA8Zh5xU2rdvn6pUqSI7OzsNGTJEiYmJCg8PV3Jysho2bCiz2azBgwerX79+DzpeIM81fHuJ7M0uD6Tt3ZO6PZB2AQAAAAD4t8tRUio0NFQJCQny8fFRUFCQdu7cqTfffFOHDx9Wenq6KleuLHd39wcdKwAAAAAAAB4SOUpKFSpUSCdOnJCPj49Onjyp9PR0ubm5qVatWg86PgAAAAAAADyEcpSUatOmjRo1aiQ/Pz+ZTCbVqlVL9vb2WdY9fvx4ngYIAAAAAACAh0+OklIff/yxWrdurV9//VUDBgxQnz595OHh8aBjAwAAAAAAwEMqR0kpSWrWrJkkaffu3XrllVdISgEAAAAAAOCe5TgplSEmJuZBxAEAAAAAAIACxC6/AwAAAAAAAEDBQ1LqIRQXFyeTyaSLFy/eVzuRkZFq1apVnsT0oJ08eVImk0nx8fH5HQoAAAAAAMgBklL/cLNmzZKHh4dSU1MtZZcvX5ajo6MaNGhgVXfz5s0ymUwqUaKEEhIS5OXllaexnD17Vi+88IJKlSols9ksX19fRUREaNu2bXl6HAAAAAAA8PDL9ZxSsK3w8HBdvnxZu3bt0mOPPSbpZvLJ19dXO3fu1NWrV+Xq6irpZg+pEiVKqEKFCg8kljZt2ujGjRuaP3++goKC9Ndff+n777/XhQsXHsjxAAAAAADAw4ueUv9wFStWVIkSJRQXF2cpi4uLU8uWLVW2bFlt3brVqjw8PDzT8L3Y2FgVKlRI69atU3BwsNzd3dWsWTMlJCRY9k1LS9OgQYNUqFAhFS1aVEOGDJFhGJbtFy9e1JYtWzRhwgSFh4erdOnSql27tqKiotS8eXNLPZPJpJkzZ+qpp56Si4uLypQpo+XLl1ud0x9//KEOHTqocOHCKlq0qFq2bKmTJ09a1YmJiVFwcLCcnZ1VqVIlzZgxw2r7jh07FBoaKmdnZ9WqVUt79+6910sMAAAAAADyAUmpf4GwsDBt2LDBsr5hwwaFhYWpUaNGlvLr169r27ZtCg8Pz7KNq1ev6r333tOCBQu0adMmnTp1SoMHD7Zsnzx5sqKjozVv3jxt2bJFFy5c0BdffGHZ7u7uLnd3d61cuVIpKSl3jHfYsGFq06aNfvrpJ3Xp0kUdO3bU4cOHLXGEh4fL3d1dmzZt0pYtWyxJsuvXr0uS5syZo7feektjx47V4cOHNW7cOA0bNkzz58+XJF25ckUtWrRQxYoVtXv3bo0cOdLqXLKTkpKipKQkqwUAAAAAAOQPklL/AmFhYfrhhx+UmpqqS5cuae/evWrYsKEaNWpk6UG1fft2Xbt2Lduk1I0bNzRr1izVqlVLNWrUUL9+/fT9999btk+bNk1RUVFq06aNgoODNWvWLKs5qRwcHBQbG6v58+erUKFCql+/vt58803t27cv07HatWun3r17q0KFCho9erRq1aqlDz74QJK0dOlS2dnZae7cuQoJCVFwcLBiYmJ06tQpy7mMHj1akydPVuvWrVWmTBm1bt1ar776qmbPni1JWrRokdLS0hQdHa1HHnlELVq00Ouvv37X6zh+/Hh5eXlZloCAgBxdfwAAAAAAkPdISv0LhIeH68qVK9q5c6c2b96sChUqyMfHR40aNdLOnTt15coVxcXFqVSpUgoKCsqyDVdXV5UtW9ay7ufnp7Nnz0qSEhMTlZCQoLp161q2Ozg4qFatWlZttGnTRn/++adWrVqliIgIxcXFqUaNGoqNjbWqd2s7GesZPaV2796tX3/9VR4eHpbeV0WKFFFycrKOHTumc+fO6fTp0+rVq5dlu7u7u8aMGaNjx45Jkg4fPqxq1apZ5tLK6phZiYqKUmJiomU5ffr0XfcBAAAAAAAPBhOd/wuUK1dOJUuW1IYNG/T333+rUaNGkiRfX1+VKVNGP/zwgzZs2KDGjRtn24ajo6PVuslkspozKqecnZ3VtGlTNW3aVMOHD1fv3r01YsQIRUZG3nE/k8kkSUpPT1fNmjW1aNGiTHW8vb2VnJws6eYQvjp16lhtt7e3l6R7iluSzGazzGbzPe0LAAAAAADyFj2l/iUyJjCPi4tTWFiYpbxRo0Zat26dtm/fnu3Qvbvx8vKSn5+ftm/fbilLTU3V7t2777pv5cqVdeXKFauyW9vJWK9UqZIkqUaNGvrll1/k4+OjcuXKWS1eXl4qXry4/P39dfz48Uzby5QpYznmTz/9pGvXrmV7TAAAAAAA8M9GUupfIjw8XFu2bFF8fLylp5R0Myk1Z84cJScn33NSSpJeeeUVvfvuu/riiy/0888/66WXXrK8vU+Szp8/r8aNG2vhwoXat2+fTpw4oeXLl2vixIlq2bKlVVvLly9XdHS0jh49qhEjRmjHjh3q16+fJKlz584qVqyYWrZsqc2bN+vEiRPauHGjXnnlFf3++++SpJEjR2r8+PGaPn26jh49qv379ysmJkZTpkyRJHXq1El2dnbq1auXDh06pK+++krvvffePZ87AAAAAACwPYbv/UuEh4fr2rVrqlSpkooXL24pb9SokS5duqSyZcve18Tdr732mhISEhQZGSk7Ozv17NlTzz77rBITEyXdfPtenTp1NHXqVB07dkw3btxQQECA+vTpozfffNOqrVGjRmnp0qV66aWX5Ovrq0WLFqly5cqSbs5ttWnTJg0dOlStW7fWpUuX5O/vryZNmsjT01OS1Lt3b7m6umrSpEkaMmSI3NzcFBISooEDB1piWb16tfr27avQ0FBVrlxZEyZMUJs2be75/AEAAAAAgG2ZjHudoAfIgslk0hdffKFWrVrldyh3lZSUJC8vL1XrP0v2ZpcHcozdk7o9kHYBAAAAAPinyvi+nZiYaOmAkhWG7wEAAAAAAMDmSEoBAAAAAADA5phTCnmK0aAAAAAAACAn6CkFAAAAAAAAmyMpBQAAAAAAAJsjKQUAAAAAAACbIykFAAAAAAAAm2OicxR4m8Z0lKenZ36HAQAAAABAgUJPKQAAAAAAANgcSSkAAAAAAADYHEkpAAAAAAAA2BxJKQAAAAAAANgcSSkAAAAAAADYHEkpAAAAAAAA2JxDfgcA5LeGby+RvdklR3V3T+r2gKMBAAAAAKBgoKcUAAAAAAAAbI6kFAAAAAAAAGyOpBQAAAAAAABsjqQUAAAAAAAAbI6kFAAAAAAAAGyOpBQAAAAAAABsjqQUAAAAAAAAbI6kFO7q5MmTMplMio+Pz+9QAAAAAADAQ4Kk1L+MyWS64xIZGWnTeOLi4u4aU2xsrE1jAgAAAAAA/3wO+R0AcichIcHy87JlyzR8+HAdOXLEUubi4mJV/8aNG3J0dHxg8dSrV88qpldeeUVJSUmKiYmxlHl5eT2w4wMAAAAAgH8nekr9y/j6+loWLy8vmUwmy3pycrIKFSqkTz/9VGFhYXJ2dtbChQt1/vx5dezYUSVLlpSrq6tCQkK0ZMkSq3bT09M1YcIElStXTmazWaVKldLYsWOzjCE9PV19+vRRhQoVlJCQYBWTi4uLzGazZb148eL64IMPFBQUJBcXF1WrVk2fffaZpa2Mnlbr1q1TaGioXFxc1LhxY509e1Zff/21goOD5enpqY4dO+rq1auW/cLCwtSvXz/169dPhQoVUtGiRfX222/LMIwHc+EBAAAAAECeoqfUQ2jo0KGaPHmyYmJiZDablZycrJo1a2ro0KHy9PTUl19+qa5duyooKEh16tSRJEVFRWnOnDmaOnWqHn/8cSUkJOjnn3/O1Pb169fVqVMnHTt2TFu2bJGPj88dY3n77be1YsUKzZw5U+XLl9emTZvUpUsXeXt7q1GjRpZ6I0eO1IcffihXV1e1b99e7du3l9ls1uLFi3X58mU9++yz+uCDDzR06FDLPvPnz1evXr30448/ateuXXr++edVunRp9enTJ8tYUlJSlJKSYllPSkrK1XUFAAAAAAB5h6TUQ2jgwIFq3bq1VdngwYMtP/fv319r167V8uXLVadOHV26dEnTp0/Xhx9+qO7du0uSypYtq8cff9yqjcuXL6t58+a6du2a4uLi7jos78qVK5oyZYrWr1+vunXrSpKCgoK0ZcsWzZ492yopNWbMGNWvX1+S1KtXL0VFRenYsWMKCgqSJLVt21YbNmywSkoFBARo6tSpMplMqlixovbv36+pU6dmm5QaP368Ro0adceYAQAAAACAbTB87yFUq1Ytq/W0tDSNHTtWVatWVdGiReXu7q5vvvlGp06dkiQdPnxYKSkpatKkyR3b7dixoy5fvqxvvvkmR/NEHTp0SMnJyWratKnc3d0tyyeffKJjx45Z1a1atarl5+LFi8vV1dWSkMooO3v2rNU+jz32mEwmk2W9bt26+uWXX5SWlpZlPFFRUUpMTLQsp0+fvus5AAAAAACAB4OeUg8hNzc3q/XJkydr6tSpmjZtmkJCQuTm5qaBAwfq+vXrkjJPjp6dp59+WgsXLtT27dvVuHHju9ZPT0+XJH355Zfy9/e32mY2m63Wb52M3WQyZZqc3WQyWdq7V2azOdNxAQAAAABA/iApVQBs3rxZLVu2VJcuXSTdTBb98ssvCg4OliSVL19eLi4u+v7779W7d+9s23nxxRdVpUoV/ec//9GXX35pNfwuK5UrV5bZbNapU6fuWvdebN++PdN6+fLlZW9vn+fHAgAAAAAAeYukVAFQrlw5ff7559q6dasKFy6sKVOm6MyZM5aklLOzs4YOHaohQ4bIyclJ9evX17lz53Tw4EH16tXLqq3+/fsrLS1NLVq00Ndff51p3qlbeXh4aPDgwXr11VeVnp6uxx9/XElJSdq6davc3d0t81fdq9OnT2vQoEF64YUXtGfPHn3wwQeaPHnyfbUJAAAAAABsg6RUATBs2DCdOHFCERERcnV11fPPP69WrVopMTHRqo6Dg4OGDx+uP//8U35+furbt2+W7Q0cOFDp6el6+umntXbtWtWrVy/bY48ePVo+Pj4aP368jh8/rkKFCqlGjRp688037/u8unXrpmvXrql27dqyt7dX//799fzzz993uwAAAAAA4MEzGYZh5HcQQG6FhYWpevXqmjZt2j23kZSUJC8vL1XrP0v25pzNq7V7Urd7Ph4AAAAAAAVBxvftxMREeXp6ZluPt+8BAAAAAADA5khKAQAAAAAAwOaYUwr/SnFxcfkdAgAAAAAAuA/0lAIAAAAAAIDNkZQCAAAAAACAzZGUAgAAAAAAgM2RlAIAAAAAAIDNMdE5CrxNYzrK09Mzv8MAAAAAAKBAoacUAAAAAAAAbI6kFAAAAAAAAGyOpBQAAAAAAABsjqQUAAAAAAAAbI6kFAAAAAAAAGyOt++hwGv49hLZm13uWm/3pG42iAYAAAAAgIKBnlIAAAAAAACwOZJSAAAAAAAAsDmSUgAAAAAAALA5klIAAAAAAACwOZJSAAAAAAAAsDmSUgAAAAAAALA5klIAAAAAAACwOZJS+MeJjY1VoUKF8jsMAAAAAADwAJGU+pcxmUx3XCIjI/MlrpEjR1picHBwULFixdSwYUNNmzZNKSkp99129erV8yZQAAAAAADwj+CQ3wEgdxISEiw/L1u2TMOHD9eRI0csZS4uLvkRliTpkUce0Xfffaf09HSdP39ecXFxGjNmjBYsWKC4uDh5eHjkW2wAAAAAAOCfhZ5S/zK+vr6WxcvLSyaTyaps06ZNqlmzppydnRUUFKRRo0YpNTXVsr/JZNLs2bPVokULubq6Kjg4WNu2bdOvv/6qsLAwubm5qW7dujp27Jhln4yeSrNnz1ZAQIBcXV3Vrl07Xbx40So2BwcH+fr6qkSJEgoJCVH//v21ceNGHThwQBMmTLDUu379uoYMGSJ/f3+5ubmpTp06iouLy/J8Y2NjNWrUKP3000+WnlixsbGSpClTpigkJERubm4KCAjQSy+9pMuXL+fZtQYAAAAAAA8OSamHyLp169SlSxcNGDBAhw4d0uzZsxUbG6uxY8da1Rs9erS6deum+Ph4VapUSZ06ddILL7ygqKgo7dq1S5LUr18/q31+/fVXffrpp1q9erXWrl2r+Ph4vfzyy3eNqVKlSnrqqae0YsUKS1mPHj30ww8/aOnSpdq3b5/atWunZs2a6Zdffsm0f4cOHfTaa6/pkUceUUJCghISEtShQwdJkp2dnd5//30dOHBA8+fP1/r16zVkyJBcXzcAAAAAAGB7JKUeImPHjtUbb7yh7t27KygoSE2bNtXo0aM1e/Zsq3o9evRQ+/btVaFCBQ0dOlQnT55U586dFRERoeDgYL3yyiuZei4lJydr/vz5ql69uho2bKgPPvhAS5cu1ZkzZ+4aV6VKlXTy5ElJ0rFjx7RkyRItX75cDRo0UNmyZTV48GA9/vjjiomJybSvi4uL3N3dLb2wfH19LUMUBw4cqPDwcJUpU0aNGzfW6NGj9emnn2YbR0pKipKSkqwWAAAAAACQP5hT6iGye/du7dy506pnVFpampKTk3X16lW5urpKkqpWrWrZXrx4cUlSSEiIVVlycrKSkpLk6ekpSSpVqpRKlixpqVO3bl2lp6fryJEj8vX1vWNchmHIZDJJkvbs2SPDMFShQgWrOikpKSpatGiuznfDhg0aN26cDh06pKSkJKWmpio5OVlXrlyRm5tbpvrjx4/XqFGjcnUMAAAAAADwYJCUeoikp6dr1KhRat26daZtzs7Olp8dHR0tP2cki7IqS09Pz/ZYGXUy/nsnhw8fVpkyZSxt2tvba/fu3bK3t7eq5+7ufte2Mvz22296+umn1bdvX40ePVpFihTRli1b1KtXL924cSPLfaKiojRo0CDLelJSkgICAnJ8TAAAAAAAkHdISj1EatSooSNHjqhcuXJ53vapU6f0559/qkSJEpKkbdu2yc7OLlOPp9v9/PPPWrt2raKioiRJoaGhSktL09mzZ9WgQYMcHdvJyUlpaWlWZbt27VJqaqomT54sO7ubo1DvNHRPksxms8xmc46OCQAAAAAAHiySUg+R4cOHq0WLFgoICFC7du1kZ2enffv2af/+/RozZsx9te3s7Kzu3bvrvffeU1JSkgYMGKD27dtbDd1LTU3VmTNnlJ6ervPnzysuLk5jxoxR9erV9frrr0uSKlSooM6dO6tbt26aPHmyQkND9b///U/r169XSEiInn766UzHDgwM1IkTJxQfH6+SJUvKw8NDZcuWVWpqqj744AM988wz+uGHHzRr1qz7OkcAAAAAAGA7THT+EImIiNCaNWv07bff6tFHH9Vjjz2mKVOmqHTp0vfddrly5dS6dWs9/fTTevLJJ1WlShXNmDHDqs7Bgwfl5+enUqVKKSwsTJ9++qmioqK0efNmq6F5MTEx6tatm1577TVVrFhR//nPf/Tjjz9mO5SuTZs2atasmcLDw+Xt7a0lS5aoevXqmjJliiZMmKAqVapo0aJFGj9+/H2fJwAAAAAAsA2TYRhGfgeBf7aRI0dq5cqVio+Pz+9Q8lRSUpK8vLxUrf8s2Ztd7lp/96RuNogKAAAAAIB/t4zv24mJiZYXqGWFnlIAAAAAAACwOZJSAAAAAAAAsDmSUrirkSNHPnRD9wAAAAAAQP4iKQUAAAAAAACbIykFAAAAAAAAmyMpBQAAAAAAAJsjKQUAAAAAAACbc8jvAID8tmlMR3l6euZ3GAAAAAAAFCj0lAIAAAAAAIDNkZQCAAAAAACAzZGUAgAAAAAAgM2RlAIAAAAAAIDNkZQCAAAAAACAzZGUAgAAAAAAgM055HcAQH5r+PYS2ZtdLOu7J3XLx2gAAAAAACgY6CkFAAAAAAAAmyMpBQAAAAAAAJsjKQUAAAAAAACbIykFAAAAAAAAmyMpBQAAAAAAAJsjKQUAAAAAAACbIykFAAAAAAAAmyMphX+FuLg4mUwmXbx4Mb9DAQAAAAAAeeChSUqZTKY7LpGRkfkdYrYWL14se3t79e3bN1f72TpRk3Ett2/fblWekpKiokWLymQyKS4u7r6PExYWpoEDB1qV1atXTwkJCfLy8rrv9gEAAAAAQP57aJJSCQkJlmXatGny9PS0Kps+fXp+h5it6OhoDRkyREuXLtXVq1fzO5w7CggIUExMjFXZF198IXd39/tu+8aNG9luc3Jykq+vr0wm030fBwAAAAAA5L+HJinl6+trWby8vGQymazKNm3apJo1a8rZ2VlBQUEaNWqUUlNTLftPmTJFISEhcnNzU0BAgF566SVdvnzZsj02NlaFChXSmjVrVLFiRbm6uqpt27a6cuWK5s+fr8DAQBUuXFj9+/dXWlpajuM+efKktm7dqjfeeEOVKlXSZ599ZrX9t99+0zPPPKPChQvLzc1NjzzyiL766iudPHlS4eHhkqTChQtb9QZLSUnRgAED5OPjI2dnZz3++OPauXOnpc2MHlbff/+9atWqJVdXV9WrV09Hjhy5a7zdu3fX0qVLde3aNUtZdHS0unfvnqnu0KFDVaFCBbm6uiooKEjDhg2zSjyNHDlS1atXV3R0tIKCgmQ2m9W9e3dt3LhR06dPt/TMOnnyZKZeYRm/j3Xr1ik4OFju7u5q1qyZEhIScnztAQAAAABA/nloklJ3sm7dOnXp0kUDBgzQoUOHNHv2bMXGxmrs2LGWOnZ2dnr//fd14MABzZ8/X+vXr9eQIUOs2rl69aref/99LV26VGvXrlVcXJxat26tr776Sl999ZUWLFigjz/+OFNi6U6io6PVvHlzeXl5qUuXLpo3b57V9pdfflkpKSnatGmT9u/frwkTJsjd3V0BAQH6/PPPJUlHjhyx6g02ZMgQff7555o/f7727NmjcuXKKSIiQhcuXLBq+6233tLkyZO1a9cuOTg4qGfPnneNt2bNmipTpozl2KdPn9amTZvUtWvXTHU9PDwUGxurQ4cOafr06ZozZ46mTp1qVefXX3/Vp59+qs8//1zx8fF6//33VbduXfXp08fSyy0gICDLWK5evar33ntPCxYs0KZNm3Tq1CkNHjz4rucAAAAAAADyn0N+B2ALY8eO1RtvvGHpzRMUFKTRo0dryJAhGjFihCRZzWFUpkwZjR49Wi+++KJmzJhhKb9x44ZmzpypsmXLSpLatm2rBQsW6K+//pK7u7sqV66s8PBwbdiwQR06dLhrXOnp6YqNjdUHH3wg/b/27jyuqmr///j7IDMIKsqgFwUlZBIpcSBvKQ6ZU1pm5WziLUTtqmnq1Rwr0yazHLJviPp1yga7DplmzkNOYJroTe417AZpmqA4JHB+f/hl/zoyCAYHkdfz8diPx9lrrb3WZ5/9WBWf1l5H0jPPPKNRo0bp1KlTCggIkCSlpqaqR48eatSokRF7nho1akiSPD09Va1aNUlSVlaW5s+fr4SEBHXs2FGS9OGHH2rz5s366KOPNGbMGIvvpVWrVpKkcePGqXPnzrp27ZocHR2LjPvZZ59VfHy8+vbtq0WLFqlTp06qVatWvnYTJ040Pvv5+enFF1/UqlWrLJJ9v//+u5YuXWpxvb29vZydneXt7V1kHDdu3NCCBQuM5zFs2DBNmzat0PbXr1/X9evXjfPMzMwi+wcAAAAAAGWnUqyUOnTokKZNmyZXV1fjyFuJk7eH09atW9W+fXvVqVNHVatWVf/+/XX+/HllZWUZ/Tg7OxsJEEny8vKSn5+fxX5KXl5eOnv2bLHi2rRpk7KysozkUc2aNfXII48oPj7eaPPCCy/olVdeUcuWLTV58mR99913RfaZkpKiGzduqGXLlkaZnZ2dmjVrpuTkZIu24eHhxmcfHx9JKlbsffv21d69e/Xvf/9bCQkJha6w+uSTT/TXv/5V3t7ecnV11csvv6zU1FSLNvXq1SswoVUctz4PHx+fIuOfMWOG3N3djaOwFVgAAAAAAKDsVYqkVG5urqZOnaqkpCTjOHr0qH744Qc5Ojrqxx9/VKdOnRQWFqZPP/1Uhw4d0ty5cyVZbr5tZ2dn0a/JZCqwLDc3t1hxxcfH68KFC3J2dpatra1sbW21YcMGLV682NiXavDgwfr3v/+tfv366ejRo4qMjDRWVhXEbDYbcdxafmvZH2PPqytO7B4eHurSpYtiYmJ07do1I6n2R/v27dMzzzyjjh07at26dUpMTNSECRP0+++/W7RzcXG57XiFKei7z7v/gowfP14ZGRnGcebMmTseGwAAAAAA/DmV4vW9Bx54QCdPnjReibvVwYMHlZ2drbfeeks2NjfzdB9//HGZxnT+/Hl98cUXWrlypUJDQ43y3NxcPfTQQ/ryyy/VpUsXSTd/8S42NlaxsbEaP368PvzwQw0fPlz29vaSZLGxekBAgOzt7bVr1y717t1b0s3E2sGDBy1eUfyzBg0apE6dOmns2LGqUqVKvvrdu3erXr16mjBhglH2448/Fqtve3v7Em0WX1wODg5ycHAo9X4BAAAAAEDJVYqk1KRJk9SlSxf5+vqqZ8+esrGx0XfffaejR4/qlVdeUYMGDZSdna333ntPXbt21e7du7VgwYIyjWnp0qXy8PAw4vmjLl266KOPPlKXLl00YsQIdezYUYGBgfrtt9/0zTffKDg4WNLNV99MJpPWrVunTp06ycnJSa6urhoyZIjGjBmjGjVqqG7dupo1a5auXLmimJiYUov/0Ucf1blz5+Tm5lZgfUBAgFJTU7Vy5Uo1bdpU69ev1+eff16svv38/PTtt9/q9OnTcnV1NfbOAgAAAAAA945K8fpehw4dtG7dOm3evFlNmzZVixYt9Pbbb6tevXqSpIiICL399tuaOXOmwsLCtGzZMs2YMaNMY4qPj9fjjz+eLyElST169NC6dev0yy+/KCcnR0OHDlVwcLAeffRRNWzY0Nh8vU6dOpo6darGjRsnLy8vDRs2TJL0+uuvq0ePHurXr58eeOABnTp1Sl999ZWqV69eavGbTCbVrFnTWK11q27dumnkyJEaNmyYIiIitGfPHr388svF6nv06NGqUqWKQkJCVKtWrXz7UAEAAAAAgIrPZC5qEx7gHpaZmSl3d3c1Hr5AVRycjPJDb/Qvx6gAAAAAAKjY8v7ezsjIKPQNK6mSrJQCAAAAAADA3YWkVBnZuXOnXF1dCz0AAAAAAAAqs0qx0Xl5iIyMVFJSUnmHAQAAAAAAcFciKVVGnJycFBAQUN5hAAAAAAAA3JV4fQ8AAAAAAABWR1IKAAAAAAAAVkdSCgAAAAAAAFbHnlKo9Ha80ktubm7lHQYAAAAAAJUKK6UAAAAAAABgdSSlAAAAAAAAYHUkpQAAAAAAAGB1JKUAAAAAAABgdSSlAAAAAAAAYHUkpQAAAAAAAGB1tuUdAFDeHp64QlUcnCRJh97oX87RAAAAAABQObBSCgAAAAAAAFZHUgoAAAAAAABWR1IKAAAAAAAAVkdSCgAAAAAAAFZHUgoAAAAAAABWR1IKAAAAAAAAVkdSCgAAAAAAAFZHUuoecfr0aZlMJiUlJZV3KAAAAAAAALdVIZNS6enpGj58uOrXry8HBwf5+vqqa9eu2rJlS3mHViHkJbBsbW313//+16IuLS1Ntra2MplMOn36tEX7go59+/ZJkhISEoyyKlWqqHr16mrevLmmTZumjIwMizEGDhyo7t27G+etW7fWiBEj8sW5Zs0amUwm4zxvjODg4HxtP/74Y5lMJvn5+d3ZlwIAAAAAAKyqwiWlTp8+rSZNmuibb77RrFmzdPToUW3cuFHR0dEaOnRoeYdXodSuXVtLliyxKFu8eLHq1KlTYPuvv/5aaWlpFkeTJk2Mejc3N6Wlpemnn37Snj179Nxzz2nJkiWKiIjQzz//XCoxu7i46OzZs9q7d69FeXx8vOrWrVsqYwAAAAAAgLJX4ZJScXFxMplM2r9/v5588kkFBgYqNDRUo0aNMlbtpKamqlu3bnJ1dZWbm5ueeuop/fLLL0YfU6ZMUUREhJHIcHV11ZAhQ5STk6NZs2bJ29tbnp6eevXVVy3GNplMmj9/vjp27CgnJyf5+/tr9erVFm2OHj2qNm3ayMnJSR4eHnruued0+fJlo76gVUHdu3fXwIEDjXM/Pz+99tprGjRokKpWraq6detq4cKFFtfs379f999/vxwdHRUZGanExMQSf5cDBgzQokWLLMoSEhI0YMCAAtt7eHjI29vb4rCzszPqTSaTvL295ePjo+DgYMXExGjPnj26fPmyXnrppRLHVxBbW1v17t1b8fHxRtlPP/2kbdu2qXfv3qUyBgAAAAAAKHsVKil14cIFbdy4UUOHDpWLi0u++mrVqslsNqt79+66cOGCtm/frs2bNyslJUVPP/20RduUlBR9+eWX2rhxo1asWKH4+Hh17txZP/30k7Zv366ZM2dq4sSJRqIrz8svv6wePXroyJEj6tu3r3r16qXk5GRJ0pUrV/Too4+qevXqOnDggFavXq2vv/5aw4YNK/G9vvXWW0ayKS4uTkOGDNGJEyckSVlZWerSpYsaNmyoQ4cOacqUKRo9enSJx3jsscf022+/adeuXZKkXbt26cKFC+ratWuJ+yqMp6en+vTpo3/+85/KyckplT5jYmK0atUqXblyRdLNRNqjjz4qLy+vIq+7fv26MjMzLQ4AAAAAAFA+KlRS6tSpUzKbzQoKCiq0zddff63vvvtOy5cvV5MmTdS8eXMtXbpU27dv14EDB4x2ubm5io+PV0hIiLp27aro6GidPHlSs2fPVsOGDfXss8+qYcOG2rZtm0X/PXv21ODBgxUYGKjp06crMjJS7733niRp2bJlunr1qpYsWaKwsDC1adNG77//vpYuXWqxUqs4OnXqpLi4OAUEBGjs2LGqWbOmEcuyZcuUk5Oj+Ph4hYaGqkuXLhozZkyJ+pckOzs79e3b11h1FB8fr759+1qsfvqjBx98UK6urhZHcRJNQUFBunTpks6fP1/iGAsSERGhBg0a6JNPPpHZbFZCQoIGDRp02+tmzJghd3d34/D19S2VeAAAAAAAQMlVqKSU2WyWJIvNr2+VnJwsX19fi4RDSEiIqlWrZqxokm6+Ile1alXj3MvLSyEhIbKxsbEoO3v2rEX/UVFR+c7z+k1OTlbjxo0tVnG1bNlSubm5OnnyZEluVeHh4cbnvNfi8mLJG8fZ2bnQuIorJiZGq1evVnp6ulavXl1kcmfVqlVKSkqyOKpUqXLbMYrz3Epq0KBBWrRokbZv367Lly+rU6dOt71m/PjxysjIMI4zZ86UWjwAAAAAAKBkKlRS6r777pPJZLJILt3KbDYXmPy4tfzW1UAmk6nAstzc3NvGlddvYWP/sY2NjY2RpMlz48aNfO2LiuXW6/+MsLAwBQUFqVevXgoODlZYWFihbX19fRUQEGBxFEdycrLc3Nzk4eFRYL2bm1u+X+iTpIsXL8rNza3Aa/r06aN9+/ZpypQp6t+/v2xtbW8bh4ODg9zc3CwOAAAAAABQPipUUqpGjRrq0KGD5s6dq6ysrHz1Fy9eVEhIiFJTUy1WwRw/flwZGRkKDg7+0zHcusfUvn37jNcJQ0JClJSUZBHb7t27ZWNjo8DAQElSrVq1lJaWZtTn5OTo2LFjJYohJCRER44c0dWrVwuNqyQGDRqkbdu2FesVuJI6e/asli9fru7du1usQvujoKAgHTx4MF/5gQMH1LBhwwKvqVGjhh577DFt3769TOIGAAAAAABlq0IlpSRp3rx5ysnJUbNmzfTpp5/qhx9+UHJysubMmaOoqCi1a9dO4eHh6tOnjw4fPqz9+/erf//+atWqlSIjI//0+KtXr1Z8fLz+9a9/afLkydq/f7+xkXmfPn3k6OioAQMG6NixY9q6dauGDx+ufv36GZtwt2nTRuvXr9f69et14sQJxcXF6eLFiyWKoXfv3rKxsVFMTIyOHz+uDRs26M0337zje/rb3/6mc+fOafDgwUW2O3/+vNLT0y2Oa9euGfVms1np6elKS0tTcnKy4uPj9eCDD8rd3V2vv/56of3GxcUpJSVFQ4cO1ZEjR/Svf/1Lc+fO1UcffVTkXlkJCQn69ddfi9xjDAAAAAAA3J0qXFLK399fhw8fVnR0tF588UWFhYWpffv22rJli+bPny+TyaQ1a9aoevXqevjhh9WuXTvVr19fq1atKpXxp06dqpUrVyo8PFyLFy/WsmXLFBISIklydnbWV199pQsXLqhp06Z68skn1bZtW73//vvG9YMGDdKAAQOMRJm/v7+io6NLFIOrq6vWrl2r48eP6/7779eECRM0c+bMO74nW1tb1axZ87avwLVr104+Pj4Wx5o1a4z6zMxM+fj4qE6dOoqKitIHH3ygAQMGKDExUT4+PoX26+fnp507dyolJUWPPPKImjZtqoSEBCUkJKhnz56FXufk5FToK4EAAAAAAODuZjKX5gZF9ziTyaTPP/9c3bt3L+9QUAoyMzPl7u6uxsMXqIqDkyTp0Bv9yzkqAAAAAAAqtry/tzMyMorcz7nCrZQCAAAAAABAxUdS6h4UGxsrV1fXAo/Y2NjyDg8AAAAAAEBFbyIECxXlTcdp06Zp9OjRBdYVtWwOAAAAAADAWkhK3YM8PT3l6elZ3mEAAAAAAAAUitf3AAAAAAAAYHUkpQAAAAAAAGB1JKUAAAAAAABgdewphUpvxyu92AAeAAAAAAArY6UUAAAAAAAArI6kFAAAAAAAAKyOpBQAAAAAAACsjqQUAAAAAAAArI6kFAAAAAAAAKyOpBQAAAAAAACsjqQUKr2HJ65QkzFLyjsMAAAAAAAqFZJSAAAAAAAAsDqSUgAAAAAAALA6klIAAAAAAACwOpJSAAAAAAAAsDqSUgAAAAAAALA6klIAAAAAAACwOpJSAAAAAAAAsDqSUneBbdu2yWQy6eLFi2U+1sCBA9W9e3fjvHXr1hoxYkSZj3s7d0scAAAAAADAOsotKWUymYo8Bg4cWF6hFap169ZGfPb29mrQoIHGjx+v69evl/nYfn5+xthVqlRR7dq1FRMTo99++61Mx01ISLB4Ll5eXuratau+//77Uh3ns88+0/Tp00u1TwAAAAAAcPcqt6RUWlqaccyePVtubm4WZe+++255hVakv/3tb0pLS9OpU6c0a9YszZ07V1OmTLHK2NOmTVNaWppSU1O1bNky7dixQy+88EKZj5v3bH7++WetX79eWVlZ6ty5s37//fdSG6NGjRqqWrVqqfUHAAAAAADubuWWlPL29jYOd3d3mUwmi7IdO3aoSZMmcnR0VP369TV16lRlZ2cb17/99ttq1KiRXFxc5Ovrq7i4OF2+fNmoT0hIULVq1bRu3To1bNhQzs7OevLJJ5WVlaXFixfLz89P1atX1/Dhw5WTk1PsuJ2dneXt7a26deuqR48eat++vTZt2mTUm81mzZo1S/Xr15eTk5MaN26sTz75xKKPDRs2KDAwUE5OToqOjtbp06eLNXbVqlXl7e2tOnXqKDo6Wv3799fhw4eN+ilTpigiIsLimtmzZ8vPz6/Y91eQvGfj4+OjyMhIjRw5Uj/++KNOnjxptLnd85Ck3bt3q1WrVnJ2dlb16tXVoUMHY6XXra/v+fn56bXXXtOgQYNUtWpV1a1bVwsXLrTob8+ePYqIiJCjo6MiIyO1Zs0amUwmJSUl/an7BQAAAAAAZe+u3FPqq6++Ut++ffXCCy/o+PHj+uCDD5SQkKBXX33VaGNjY6M5c+bo2LFjWrx4sb755hu99NJLFv1cuXJFc+bM0cqVK7Vx40Zt27ZNTzzxhDZs2KANGzZo6dKlWrhwYb6kUXEdOXJEu3fvlp2dnVE2ceJELVq0SPPnz9f333+vkSNHqm/fvtq+fbsk6cyZM3riiSfUqVMnJSUlafDgwRo3blyJx/7vf/+rdevWqXnz5ncU+526ePGili9fLkkW932755GUlKS2bdsqNDRUe/fu1a5du9S1a9ciE4JvvfWWIiMjlZiYqLi4OA0ZMkQnTpyQJF26dEldu3ZVo0aNdPjwYU2fPl1jx44tMvbr168rMzPT4gAAAAAAAOXEfBdYtGiR2d3d3Th/6KGHzK+99ppFm6VLl5p9fHwK7ePjjz82e3h4WPQpyXzq1Cmj7Pnnnzc7OzubL126ZJR16NDB/PzzzxcrzlatWpnt7OzMLi4uZnt7e7Mks42NjfmTTz4xm81m8+XLl82Ojo7mPXv2WFwXExNj7tWrl9lsNpvHjx9vDg4ONufm5hr1Y8eONUsy//bbb4WOXa9ePbO9vb3ZxcXF7OjoaJZkbt68ucU1kydPNjdu3Njiunfeecdcr14943zAgAHmbt26WdzT3//+90LHzfseXVxczM7OzmZJZknmxx57rNBrzOb8z6NXr17mli1bFtr+1jjq1atn7tu3r3Gem5tr9vT0NM+fP99sNpvN8+fPN3t4eJivXr1qtPnwww/NksyJiYkFjjF58mQj/j8ejYcvMD8wenGR9wMAAAAAAIonIyPDLMmckZFRZDvb8kiE3c6hQ4d04MABi5VROTk5unbtmq5cuSJnZ2dt3bpVr732mo4fP67MzExlZ2fr2rVrysrKkouLi6Sbr9o1aNDA6MPLy0t+fn5ydXW1KDt79myxY+vTp48mTJigzMxMzZw5U25uburRo4ck6fjx47p27Zrat29vcc3vv/+u+++/X5KUnJysFi1ayGQyGfVRUVHFGnvMmDEaOHCgzGazzpw5o3/84x/q3LmzduzYoSpVqhT7HkqqatWqOnz4sLKzs7V9+3a98cYbWrBggUWb2z2PpKQk9ezZs0TjhoeHG5/zXiHMe1YnT55UeHi4HB0djTbNmjUrsr/x48dr1KhRxnlmZqZ8fX1LFBMAAAAAACgdd2VSKjc3V1OnTtUTTzyRr87R0VE//vijOnXqpNjYWE2fPl01atTQrl27FBMToxs3bhht//h6mXQzsVFQWW5ubrFjc3d3V0BAgCTpf//3fxUaGqqPPvpIMTExRj/r169XnTp1LK5zcHCQdHPPqTtVs2ZNY+z77rtPs2fPVlRUlLZu3ap27drJxsYmX/9//D7ulI2NjTFuUFCQ0tPT9fTTT2vHjh2SVKzn4eTkVOJxi3pWZrPZIrGXV1YUBwcH4zkAAAAAAIDydVfuKfXAAw/o5MmTCggIyHfY2Njo4MGDys7O1ltvvaUWLVooMDBQP//8s9XjtLOz0z/+8Q9NnDhRV65cUUhIiBwcHJSampov7rwVOSEhIdq3b59FP7eeF1fe6qirV69KkmrVqqX09HSL5ExZbPo9cuRIHTlyRJ9//rkkFet5hIeHa8uWLaUWQ1BQkL777jtdv37dKDt48GCp9Q8AAAAAAMrWXZmUmjRpkpYsWaIpU6bo+++/V3JyslatWqWJEydKkho0aKDs7Gy99957+ve//62lS5fme53MWnr37i2TyaR58+apatWqGj16tEaOHKnFixcrJSVFiYmJmjt3rhYvXixJio2NVUpKikaNGqWTJ09q+fLlSkhIKNZYly5dUnp6utLS0rR//36NGTNGNWvW1IMPPijp5i/YnTt3TrNmzVJKSormzp2rL7/8stTv2c3NTYMHD9bkyZNlNpuL9TzGjx+vAwcOKC4uTt99951OnDih+fPn69dff72jGHr37q3c3Fw999xzSk5O1ldffaU333xTkvKtoAIAAAAAAHefuzIp1aFDB61bt06bN29W06ZN1aJFC7399tuqV6+eJCkiIkJvv/22Zs6cqbCwMC1btkwzZswol1jt7e01bNgwzZo1S5cvX9b06dM1adIkzZgxQ8HBwerQoYPWrl0rf39/SVLdunX16aefau3atWrcuLEWLFig1157rVhjTZo0ST4+Pqpdu7a6dOkiFxcXbd68WR4eHpKk4OBgzZs3T3PnzlXjxo21f/9+jR49ukzu++9//7uSk5O1evXqYj2PwMBAbdq0SUeOHFGzZs0UFRWlL774Qra2d/YGqZubm9auXaukpCRFRERowoQJmjRpkiRZ7DMFAAAAAADuTibzn9nkCLiLLFu2TM8++6wyMjKKtYdVZmam3N3d1Xj4AlVxcNKhN/pbIUoAAAAAAO5teX9vZ2RkyM3NrdB2d+VG50BxLFmyRPXr11edOnV05MgRjR07Vk899dQdbaoOAAAAAACsi6TU/9m5c6c6duxYaP3ly5etGA2KIz09XZMmTVJ6erp8fHzUs2dPvfrqq+UdFgAAAAAAKAaSUv8nMjKyTH6pDmXnpZde0ksvvVTeYQAAAAAAgDtAUur/ODk5KSAgoLzDAAAAAAAAqBTuyl/fAwAAAAAAwL2NpBQAAAAAAACsjqQUAAAAAAAArI49pVDp7Xill9zc3Mo7DAAAAAAAKhVWSgEAAAAAAMDqSEoBAAAAAADA6khKAQAAAAAAwOpISgEAAAAAAMDqSEoBAAAAAADA6khKodJ7eOKK8g4BAAAAAIBKh6QUAAAAAAAArI6kFAAAAAAAAKyOpBQAAAAAAACsjqQUAAAAAAAArI6kFAAAAAAAAKyOpBQAAAAAAACsjqQUAAAAAAAArI6kFAynT5+WyWRSUlJSeYcCAAAAAADucZU2KZWenq7hw4erfv36cnBwkK+vr7p27aotW7aUd2gVQlEJrNatW2vEiBH5ypcvX64qVaooNjY2X922bdtkMpmMw8PDQ23atNHu3bst2k2ZMsVoY2trq5o1a+rhhx/W7Nmzdf369dK6PQAAAAAAUMYqZVLq9OnTatKkib755hvNmjVLR48e1caNGxUdHa2hQ4eWd3j3rPj4eL300ktauXKlrly5UmCbkydPKi0tTdu2bVOtWrXUuXNnnT171qJNaGio0tLSlJqaqq1bt6pnz56aMWOGHnzwQV26dMkatwIAAAAAAP6kSpmUiouLk8lk0v79+/Xkk08qMDBQoaGhGjVqlPbt2ydJSk1NVbdu3eTq6io3Nzc99dRT+uWXX4w+pkyZooiICMXHx6tu3bpydXXVkCFDlJOTo1mzZsnb21uenp569dVXLcY2mUyaP3++OnbsKCcnJ/n7+2v16tUWbY4ePao2bdrIyclJHh4eeu6553T58mWjvqCVSN27d9fAgQONcz8/P7322msaNGiQqlatqrp162rhwoUW1+zfv1/333+/HB0dFRkZqcTExD/ztRbp9OnT2rNnj8aNG6egoCB98sknBbbz9PSUt7e3GjVqpIkTJyojI0PffvutRRtbW1t5e3urdu3aatSokYYPH67t27fr2LFjmjlzZpndAwAAAAAAKD2VLil14cIFbdy4UUOHDpWLi0u++mrVqslsNqt79+66cOGCtm/frs2bNyslJUVPP/20RduUlBR9+eWX2rhxo1asWKH4+Hh17txZP/30k7Zv366ZM2dq4sSJRqIrz8svv6wePXroyJEj6tu3r3r16qXk5GRJ0pUrV/Too4+qevXqOnDggFavXq2vv/5aw4YNK/G9vvXWW0ayKS4uTkOGDNGJEyckSVlZWerSpYsaNmyoQ4cOacqUKRo9enSJxyiuvO/G3d1dffv21UcffVRk+ytXrmjRokWSJDs7u9v2HxQUpI4dO+qzzz4rlXgBAAAAAEDZsi3vAKzt1KlTMpvNCgoKKrTN119/re+++07/+c9/5OvrK0launSpQkNDdeDAATVt2lSSlJubq/j4eFWtWlUhISGKjo7WyZMntWHDBtnY2Khhw4aaOXOmtm3bphYtWhj99+zZU4MHD5YkTZ8+XZs3b9Z7772nefPmadmyZbp69aqWLFliJM3ef/99de3aVTNnzpSXl1ex77VTp06Ki4uTJI0dO1bvvPOOtm3bpqCgIC1btkw5OTmKj4+Xs7OzQkND9dNPP2nIkCEl+j4ffPBB2dhY5javXr2qiIgI4zw3N1cJCQl67733JEnPPPOMRo0apVOnTikgIMDi2r/85S+SbialzGazmjRporZt2xYrlqCgIG3atKnQ+uvXr1vsO5WZmVmsfgEAAAAAQOmrdCulzGazpJuv0RUmOTlZvr6+RkJKkkJCQlStWjVjRZN08xW5qlWrGudeXl4KCQmxSNJ4eXnl2xMpKioq33lev8nJyWrcuLHFKq6WLVsqNzdXJ0+eLMmtKjw83PhsMpnk7e1txJI3jrOzc6FxFceqVauUlJRkcURGRlq02bRpk7KystSxY0dJUs2aNfXII48oPj4+X387d+7U4cOHtWLFCtWrV08JCQnFWikl3Xy2RT3XGTNmyN3d3Tj++HwBAAAAAIB1VbqVUvfdd59MJpOSk5PVvXv3AtsUlty4tfzWZInJZCqwLDc397Zx5fVbVGIlr9zGxsZIruW5ceNGvvZFxXLr9XfK19c332onJycni/P4+HhduHDBIgGWm5urxMRETZ8+XVWqVDHK/f39Va1aNQUGBuratWt6/PHHdezYMTk4ONw2luTkZPn7+xdaP378eI0aNco4z8zMJDEFAAAAAEA5qXQrpWrUqKEOHTpo7ty5ysrKyld/8eJFhYSEKDU1VWfOnDHKjx8/royMDAUHB//pGG7dY2rfvn3G64QhISFKSkqyiG337t2ysbFRYGCgJKlWrVpKS0sz6nNycnTs2LESxRASEqIjR47o6tWrhcZVGs6fP68vvvhCK1euzLei6vLly/ryyy8LvbZfv37Kzc3VvHnzbjvOiRMntHHjRvXo0aPQNg4ODnJzc7M4AAAAAABA+ah0SSlJmjdvnnJyctSsWTN9+umn+uGHH5ScnKw5c+YoKipK7dq1U3h4uPr06aPDhw9r//796t+/v1q1apXv1bQ7sXr1asXHx+tf//qXJk+erP379xsbmffp00eOjo4aMGCAjh07pq1bt2r48OHq16+fsZ9UmzZttH79eq1fv14nTpxQXFycLl68WKIYevfuLRsbG8XExOj48ePasGGD3nzzzT99b7daunSpPDw81LNnT4WFhRlHeHi4unTpUuSG5zY2NhoxYoRef/11XblyxSjPzs5Wenq6fv75Zx09elTvvfeeWrVqpYiICI0ZM6bU7wEAAAAAAJS+SpmU8vf31+HDhxUdHa0XX3xRYWFhat++vbZs2aL58+fLZDJpzZo1ql69uh5++GG1a9dO9evX16pVq0pl/KlTp2rlypUKDw/X4sWLtWzZMoWEhEiSnJ2d9dVXX+nChQtq2rSpnnzySbVt21bvv/++cf2gQYM0YMAAI1Hm7++v6OjoEsXg6uqqtWvX6vjx47r//vs1YcIEzZw5s1Tu74/i4+P1+OOP59sMXZJ69OihdevW6Zdffin0+kGDBunGjRsW9//999/Lx8dHdevWVevWrfXxxx9r/Pjx2rlzp1xdXUv9HgAAAAAAQOkzmUtrcyEUi8lk0ueff17oflawnszMTLm7u6vx8AVKmvN8eYcDAAAAAMA9Ie/v7YyMjCK3zqmUK6UAAAAAAABQvkhKoUCxsbFydXUt8IiNjS3v8AAAAAAAQAVnW94BVDYV5W3JadOmafTo0QXW8at1AAAAAADgzyIphQJ5enrK09OzvMMAAAAAAAD3KF7fAwAAAAAAgNWRlAIAAAAAAIDVkZQCAAAAAACA1ZGUQqW345Ve5R0CAAAAAACVDkkpAAAAAAAAWB1JKQAAAAAAAFidbXkHAJQXs9ksScrMzCznSAAAAAAAuHfk/Z2d93d3YUhKodI6f/68JMnX17ecIwEAAAAA4N5z6dIlubu7F1pPUgqVVo0aNSRJqampRU4SAH9OZmamfH19debMGbm5uZV3OMA9iXkGWAdzDbAO5lrFZzabdenSJdWuXbvIdiSlUGnZ2NzcUs3d3Z1/0AFW4ObmxlwDyhjzDLAO5hpgHcy1iq04iz/Y6BwAAAAAAABWR1IKAAAAAAAAVkdSCpWWg4ODJk+eLAcHh/IOBbinMdeAssc8A6yDuQZYB3Ot8jCZb/f7fAAAAAAAAEApY6UUAAAAAAAArI6kFAAAAAAAAKyOpBQAAAAAAACsjqQU7mnz5s2Tv7+/HB0d1aRJE+3cubPI9tu3b1eTJk3k6Oio+vXra8GCBVaKFKi4SjLP0tLS1Lt3bzVs2FA2NjYaMWKE9QIFKriSzLXPPvtM7du3V61ateTm5qaoqCh99dVXVowWqLhKMtd27dqlli1bysPDQ05OTgoKCtI777xjxWiBiqukf6vl2b17t2xtbRUREVG2AcIqSErhnrVq1SqNGDFCEyZMUGJioh566CF17NhRqampBbb/z3/+o06dOumhhx5SYmKi/vGPf+iFF17Qp59+auXIgYqjpPPs+vXrqlWrliZMmKDGjRtbOVqg4irpXNuxY4fat2+vDRs26NChQ4qOjlbXrl2VmJho5ciBiqWkc83FxUXDhg3Tjh07lJycrIkTJ2rixIlauHChlSMHKpaSzrU8GRkZ6t+/v9q2bWulSFHW+PU93LOaN2+uBx54QPPnzzfKgoOD1b17d82YMSNf+7Fjx+qf//ynkpOTjbLY2FgdOXJEe/futUrMQEVT0nn2R61bt1ZERIRmz55dxlECFd+fmWt5QkND9fTTT2vSpEllFSZQ4ZXGXHviiSfk4uKipUuXllWYQIV3p3PtmWee0X333acqVapozZo1SkpKskK0KEuslMI96ffff9ehQ4f0yCOPWJQ/8sgj2rNnT4HX7N27N1/7Dh066ODBg7px40aZxQpUVHcyzwCUXGnMtdzcXF26dEk1atQoixCBe0JpzLXExETt2bNHrVq1KosQgXvCnc61RYsWKSUlRZMnTy7rEGFFtuUdAFAWfv31V+Xk5MjLy8ui3MvLS+np6QVek56eXmD77Oxs/frrr/Lx8SmzeIGK6E7mGYCSK4259tZbbykrK0tPPfVUWYQI3BP+zFz7y1/+onPnzik7O1tTpkzR4MGDyzJUoEK7k7n2ww8/aNy4cdq5c6dsbUlj3Et4mrinmUwmi3Oz2Zyv7HbtCyoH8P+VdJ4BuDN3OtdWrFihKVOm6IsvvpCnp2dZhQfcM+5kru3cuVOXL1/Wvn37NG7cOAUEBKhXr15lGSZQ4RV3ruXk5Kh3796aOnWqAgMDrRUerISkFO5JNWvWVJUqVfJl2s+ePZsvI5/H29u7wPa2trby8PAos1iBiupO5hmAkvszc23VqlWKiYnR6tWr1a5du7IME6jw/sxc8/f3lyQ1atRIv/zyi6ZMmUJSCihESefapUuXdPDgQSUmJmrYsGGSbr6WbjabZWtrq02bNqlNmzZWiR2ljz2lcE+yt7dXkyZNtHnzZovyzZs368EHHyzwmqioqHztN23apMjISNnZ2ZVZrEBFdSfzDEDJ3elcW7FihQYOHKjly5erc+fOZR0mUOGV1r/XzGazrl+/XtrhAfeMks41Nzc3HT16VElJScYRGxurhg0bKikpSc2bN7dW6CgDrJTCPWvUqFHq16+fIiMjFRUVpYULFyo1NVWxsbGSpPHjx+u///2vlixZIunmL+29//77GjVqlP72t79p7969+uijj7RixYryvA3grlbSeSbJ+JWUy5cv69y5c0pKSpK9vb1CQkLK4xaACqGkc23FihXq37+/3n33XbVo0cL4v9FOTk5yd3cvt/sA7nYlnWtz585V3bp1FRQUJEnatWuX3nzzTQ0fPrzc7gGoCEoy12xsbBQWFmZxvaenpxwdHfOVo+IhKYV71tNPP63z589r2rRpSktLU1hYmDZs2KB69epJktLS0pSammq09/f314YNGzRy5EjNnTtXtWvX1pw5c9SjR4/yugXgrlfSeSZJ999/v/H50KFDWr58uerVq6fTp09bM3SgQinpXPvggw+UnZ2toUOHaujQoUb5gAEDlJCQYO3wgQqjpHMtNzdX48eP13/+8x/Z2tqqQYMGev311/X888+X1y0AFcKd/Dck7k0mc95OzgAAAAAAAICVsKcUAAAAAAAArI6kFAAAAAAAAKyOpBQAAAAAAACsjqQUAAAAAAAArI6kFAAAAAAAAKyOpBQAAAAAAACsjqQUAAAAAAAArI6kFAAAAAAAAKyOpBQAAAAMrVu31ogRI8o7DAAAUAmYzGazubyDAAAAwN3hwoULsrOzU9WqVcs7lHy2bdum6Oho/fbbb6pWrVp5hwMAAP4k2/IOAAAAAHePGjVqlHcIBbpx40Z5hwAAAEoZr+8BAADA8MfX9/z8/PTKK6+of//+cnV1Vb169fTFF1/o3Llz6tatm1xdXdWoUSMdPHjQuD4hIUHVqlXTmjVrFBgYKEdHR7Vv315nzpyxGGf+/Plq0KCB7O3t1bBhQy1dutSi3mQyacGCBerWrZtcXFw0ePBgRUdHS5KqV68uk8mkgQMHSpI2btyov/71r6pWrZo8PDzUpUsXpaSkGH2dPn1aJpNJn332maKjo+Xs7KzGjRtr7969FmPu3r1brVq1krOzs6pXr64OHTrot99+kySZzWbNmjVL9evXl5OTkxo3bqxPPvmkVL5zAAAqK5JSAAAAKNQ777yjli1bKjExUZ07d1a/fv3Uv39/9e3bV4cPH1ZAQID69++vP+4IceXKFb366qtavHixdu/erczMTD3zzDNG/eeff66///3vevHFF3Xs2DE9//zzevbZZ7V161aLsSdPnqxu3brp6NGjmjZtmj799FNJ0smTJ5WWlqZ3331XkpSVlaVRo0bpwIED2rJli2xsbPT4448rNzfXor8JEyZo9OjRSkpKUmBgoHr16qXs7GxJUlJSktq2bavQ0FDt3btXu3btUteuXZWTkyNJmjhxohYtWqT58+fr+++/18iRI9W3b19t37699L90AAAqCfaUAgAAgKF169aKiIjQ7Nmz5efnp4ceeshYxZSeni4fHx+9/PLLmjZtmiRp3759ioqKUlpamry9vZWQkKBnn31W+/btU/PmzSVJJ06cUHBwsL799ls1a9ZMLVu2VGhoqBYuXGiM+9RTTykrK0vr16+XdHOl1IgRI/TOO+8YbYq7p9S5c+fk6empo0ePKiwsTKdPn5a/v7/+53/+RzExMZKk48ePKzQ0VMnJyQoKClLv3r2VmpqqXbt25esvKytLNWvW1DfffKOoqCijfPDgwbpy5YqWL19+h982AACVGyulAAAAUKjw8HDjs5eXlySpUaNG+crOnj1rlNna2ioyMtI4DwoKUrVq1ZScnCxJSk5OVsuWLS3GadmypVGf5499FCUlJUW9e/dW/fr15ebmJn9/f0lSampqoffi4+NjEXfeSqmCHD9+XNeuXVP79u3l6upqHEuWLLF4TRAAAJQMG50DAACgUHZ2dsZnk8lUaNmtr8rllRdWdmu92WzOV+bi4lKsGLt27SpfX199+OGHql27tnJzcxUWFqbff//9tveSF7eTk1Oh/ee1Wb9+verUqWNR5+DgUKwYAQBAfqyUAgAAQKnKzs622Pz85MmTunjxooKCgiRJwcHB+V6T27Nnj4KDg4vs197eXpKMfZ4k6fz580pOTtbEiRPVtm1bBQcHG5uTl0R4eLi2bNlSYF1ISIgcHByUmpqqgIAAi8PX17fEYwEAgJtYKQUAAIBSZWdnp+HDh2vOnDmys7PTsGHD1KJFCzVr1kySNGbMGD311FN64IEH1LZtW61du1afffaZvv766yL7rVevnkwmk9atW6dOnTrJyclJ1atXl4eHhxYuXCgfHx+lpqZq3LhxJY55/PjxatSokeLi4hQbGyt7e3tt3bpVPXv2VM2aNTV69GiNHDlSubm5+utf/6rMzEzt2bNHrq6uGjBgwB19TwAAVHaslAIAAECpcnZ21tixY9W7d29FRUXJyclJK1euNOq7d++ud999V2+88YZCQ0P1wQcfaNGiRWrdunWR/dapU0dTp07VuHHj5OXlpWHDhsnGxkYrV67UoUOHFBYWppEjR+qNN94occyBgYHatGmTjhw5ombNmikqKkpffPGFbG1v/j/c6dOna9KkSZoxY4aCg4PVoUMHrV271ti/CgAAlBy/vgcAAIBSk5CQoBEjRujixYvlHQoAALjLsVIKAAAAAAAAVkdSCgAAAAAAAFbH63sAAAAAAACwOlZKAQAAAAAAwOpISgEAAAAAAMDqSEoBAAAAAADA6khKAQAAAAAAwOpISgEAAAAAAMDqSEoBAAAAAADA6khKAQAAAAAAwOpISgEAAAAAAMDqSEoBAAAAAADA6v4f0IN2NxvjF8sAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 1200x600 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Training models for United States Grand Prix\n",
"\n",
"Model Performance for United States Grand Prix:\n",
"\n",
"Linear Regression:\n",
"RMSE: 4.67 seconds\n",
"R2 Score: 0.520\n",
"Cross-validation R2: 0.496 (±0.059)\n",
"\n",
"Random Forest:\n",
"RMSE: 2.49 seconds\n",
"R2 Score: 0.863\n",
"Cross-validation R2: 0.852 (±0.022)\n",
"\n",
"XGBoost:\n",
"RMSE: 2.45 seconds\n",
"R2 Score: 0.868\n",
"Cross-validation R2: 0.852 (±0.015)\n",
"\n",
"Gradient Boosting:\n",
"RMSE: 2.71 seconds\n",
"R2 Score: 0.838\n",
"Cross-validation R2: 0.860 (±0.020)\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAJOCAYAAABm7rQwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACvCElEQVR4nOzdeZxO9f//8ec1M8y+2AcNYyzDMLYma2GURiiyJJJdlihKfEbWbNlFtrKMrcin8omKbENE1kGIbFERkRmGYZb37w+/ub4us5hh5pricb/dzq057/M+7/M657rOdblevd/vYzHGGAEAAAAAAAB25JDTAQAAAAAAAODRQ1IKAAAAAAAAdkdSCgAAAAAAAHZHUgoAAAAAAAB2R1IKAAAAAAAAdkdSCgAAAAAAAHZHUgoAAAAAAAB2R1IKAAAAAAAAdkdSCgAAAAAAAHZHUgoAcF8sFkuGlsjIyGyPZdGiRXr55ZcVGBgoBwcH+fv7p1ovMjIyzTh37Nhxz+MMHz5cFotFDg4OOnnyZIrtsbGx8vLyksViUceOHR/wrFJ3+PBhDR8+XKdPn85Q/YiICFksFu3evTtb4rGHTz75RFOnTrXLse73+qa29O/f/x8R4z/R8uXLVb58ebm6uspisSgqKirbjnWve6BJkyZpfmbcS/Jnwp1mzpypiIiI+2rvXiwWi4YPH37PemfPnlWvXr1UpkwZubq6Km/evAoODla3bt109uxZa71vvvkmQ+2lx573Z2qSkpK0ZMkShYWFqWDBgsqVK5d8fHxUo0YNTZw4UX/99VeOxZaW5Pfkve7h5PdX8pI7d26VKFFCb775pq5cuZKhY9WrV0/16tV74JjvdOXKFeXPn1/Lli2TJBlj9Mwzzyhfvnw6f/58ivo9evRQ7ty5tW/fPpvyP//8U4MGDVLlypXl5eWl3Llz67HHHlPz5s311VdfKTEx0Vo3te/vPHnyqHr16lq4cGGWnt/9GjNmjFauXJmifMOGDfLw8NDvv/9u/6CAfwGnnA4AAPDvtH37dpv1kSNHatOmTdq4caNNeVBQULbHsnjxYp0/f17VqlVTUlKS4uPj060/ZswYhYaG2pRVqFAhw8fz8PDQggULNHLkSJvyFStWKD4+Xrly5cp48Jl0+PBhjRgxQvXq1bvvH9L/Np988ol++ukn9e3bN9uPdb/Xd8GCBSpbtqxNWZEiRbI4utv+7e+Bixcv6tVXX1XDhg01c+ZMOTs7q0yZMjkd1n3p2rWrGjZsaFM2c+ZM5c+fP9sS0/fy22+/qWrVqvLx8dHbb7+twMBARUdH6/Dhw/rss8908uRJ+fn5SbqdlJoxY8YDJabseX/e7caNG2ratKnWr1+v1q1ba9q0aSpSpIhiYmL0ww8/aMKECfrf//6n77//3u6xZaU1a9bI29tbV69e1TfffKMPPvhAO3fu1A8//JAiKXq3mTNnZnk8I0aMUJEiRdS6dWtJt5Ol8+fPtyY+V61aZa27du1azZkzR8OHD1eVKlWs5Tt27NALL7wgY4x69uypGjVqyMPDQ2fOnNGqVavUvHlzzZkzR126dLE59p3f33/99ZcWLVqkjh07KiYmRn369Mnyc82MMWPGqGXLlmrWrJlN+dNPP61q1app0KBB/5gEGvBPQlIKAHBfatSoYbNeoEABOTg4pCi3h7Vr18rB4Xbn3yZNmuinn35Kt37p0qUfKM7WrVtr4cKFGjFihPW4kjRv3jy9+OKL+uqrr+67bfyf69evy83NLafDyJAKFSooJCQkp8N4IPHx8bJYLHJyyt5/Hh47dkzx8fFq166d6tatmyVt5tR75bHHHtNjjz1m9+Om5+OPP9Zff/2lnTt3qkSJEtbyZs2aadCgQUpKSsrB6LJW3759tW7dOn3yySdq06aNzbYmTZpo8ODBWrp0abptGGMUFxcnV1fX7Az1gTz++OPKnz+/JKlBgwa6dOmSFi9erB9++EG1a9dOdZ/keyKr/8fQ5cuXNWfOHE2ZMsUmIVasWDFNnjxZXbt21YIFC9SpUyf9/fff6tKli6pWrap3333XWvfKlStq1qyZPDw8tG3bNhUuXNjmGO3atdOBAwd06dKlFMe/+/u7UaNG2rVrlz799NMcT0ql5/XXX1fr1q01atQoa1IYwG0M3wMAZJvLly+rV69eKlq0qHLnzq2AgAC9++67unnzpk09i8Wi3r17a86cOSpTpoycnZ0VFBRkHRpwL3cmhuyhc+fOOnv2rNatW2ctO3bsmLZu3arOnTunus+ZM2fUrl07FSxYUM7OzipXrpwmTZqU4gfirFmzVKlSJXl4eMjT01Nly5bVoEGDJN0e8tGqVStJUmhoqHUIQ2aHCnXs2FEeHh76+eefFRYWJnd3dxUuXFjvv/++pNv/B/vJJ5+Uu7u7ypQpk+L/7CYPPVm3bp06deqkvHnzyt3dXc8//3yqwxrnz5+vSpUqycXFRXnz5tWLL76oI0eOpBrTwYMH9eyzz8rT01NPP/206tWrp6+//lq//vqrzbCNZCNGjFD16tWVN29eeXl5qWrVqpo3b56MMTbt+/v7q0mTJlqzZo2qVq0qV1dXlS1bVvPnz7c5r6y4vqlZvny5atasKXd3d3l4eCgsLCzFUJbdu3fr5Zdflr+/v1xdXeXv7682bdro119/zXCM/v7+qfbQuXsIT/JQmMWLF+vtt99W0aJF5ezsrOPHj0uS1q9fr6efflpeXl5yc3NT7dq1tWHDBps2L168qNdee01+fn5ydnZWgQIFVLt2ba1fvz7N69CxY0c9+eSTkm4ndy0Wi01cX331lWrWrCk3Nzd5enqqQYMGKXplJg9p2rt3r1q2bKk8efKoZMmSaR4zs06fPi2LxaKJEydq8uTJKlGihDw8PFSzZs0Uw3zvHr7n7++vQ4cOafPmzdbX5s7ebDExMerfv79KlCih3Llzq2jRourbt69iY2Nt2o2JiVG3bt2UL18+eXh4qGHDhjp27FiG4r906ZIcHBxUsGDBVLcnf1527NhRM2bMkGQ7HDt5SNmMGTNUp04dFSxYUO7u7goODtb48eNteqLe6/68deuWRo0apbJly1rfI506ddLFixdtYtq4caPq1aunfPnyydXVVcWKFVOLFi10/fr1NM/z3Llzmj9/vho3bpwiIZXMzc1N3bp1sylL/r6ZPXu2ypUrJ2dnZ+tnXFZ+niTbsWOHateuLRcXFxUpUkTh4eH37M17L8lJmeTPhnr16qlChQrasmWLatWqJTc3N+t30d33/vvvvy8HBweb3kzS7feDm5ubDh48mO6xIyIilJCQYO0ldacuXbroueeeU79+/XT27Fn17t3b2pvpzmT3xx9/rD///FPjx49PkZBKVrFixRQ9mlPj4OAgDw+PFD2U4+LiFB4ebnOvvf766ymGPSYlJWn8+PHW92jBggXVvn17/fbbbzb19u3bpyZNmli/w4sUKaLGjRtb61ksFsXGxmrhwoXW++DO6/7888/Lw8NDH3/88T3PCXjkGAAAskCHDh2Mu7u7df3GjRumYsWKxt3d3UycONF89913ZsiQIcbJyck0atTIZl9Jxs/PzwQFBZlPP/3UfPXVV6Zhw4ZGklmxYkWm4mjcuLEpXrx4qts2bdpkJJmCBQsaR0dH4+npaZ599lnz/fffZ6jtYcOGGUnm4sWL5qmnnjIvvfSSddvAgQONv7+/SUpKMu7u7qZDhw7WbRcuXDBFixY1BQoUMLNnzzZr1qwxvXv3NpJMz549rfU+/fRTI8n06dPHfPfdd2b9+vVm9uzZ5o033rC2M2bMGCPJzJgxw2zfvt1s377dXLhwIc2YFyxYYCSZXbt2Wcs6dOhgcufObcqVK2c++OADs27dOtOpUycjyYSHh5syZcqYefPmmbVr15omTZoYSWb37t0p2vTz8zOdO3c23377rfnoo49MwYIFjZ+fn/n777+tdZPjbdOmjfn666/NokWLTEBAgPH29jbHjh2ziSlXrlzG39/fjB071mzYsMGsXbvWHDp0yNSuXdv4+vpaz3f79u3W/Tp27GjmzZtn1q1bZ9atW2dGjhxpXF1dzYgRI2yuQ/Hixc1jjz1mgoKCzKJFi8zatWtNq1atjCSzefPmB76+O3bsMPHx8TZLstGjRxuLxWI6d+5sVq9ebb744gtTs2ZN4+7ubg4dOmStt2LFCjN06FDz5Zdfms2bN5tly5aZunXrmgIFCpiLFy9mKMbixYvbvPeS1a1b19StW9e6nnwvFC1a1LRs2dJ89dVXZvXq1ebSpUtm8eLFxmKxmGbNmpkvvvjCrFq1yjRp0sQ4Ojqa9evXW9sICwszBQoUMB999JGJjIw0K1euNEOHDjXLli1L83odP37czJgxw0gyY8aMMdu3b7deg6VLlxpJ5tlnnzUrV640y5cvN48//rjJnTu3zT2afB8WL17cDBw40Kxbt86sXLnynq/RnffAne7+zDh16pSRZPz9/U3Dhg3NypUrzcqVK01wcLDJkyePuXLlSopYku3du9cEBASYKlWqWF+bvXv3GmOMiY2NNZUrVzb58+c3kydPNuvXrzcffPCB8fb2NvXr1zdJSUnGGGOSkpJMaGiocXZ2NqNHjzbfffedGTZsmAkICDCSzLBhw9I8V2OMWbJkifU6rlmzxkRHR6f5WrRs2dJIsrm34uLijDHG9OvXz8yaNcusWbPGbNy40UyZMsXkz5/fdOrUydpGevdnYmKiadiwoXF3dzcjRoww69atM3PnzjVFixY1QUFB5vr169br7eLiYho0aGBWrlxpIiMjzdKlS82rr75q81lyt+T3y5w5c9K9HndLft9XrFjRfPLJJ2bjxo3mp59+MsZk7edJ8vVxc3Ozfrf973//M2FhYaZYsWJGkjl16lS6sd75nXOnfv36GUnmu+++M8bcvr/z5s1r/Pz8zPTp082mTZuscdx97yclJZlGjRqZPHnymNOnTxtjjJk/f76RZObOnXvP61e/fn1TrVq1NLf//vvvJk+ePKZkyZJGknn//fdT1GnQoIFxdHQ0sbGx9zxesuTPrOXLl1s/Y8+fP2/Gjh1rJJmPPvrI5hzDwsKMk5OTGTJkiPnuu+/MxIkTjbu7u6lSpYr1PW6MMa+99pqRZHr37m3WrFljZs+ebQoUKGD8/Pys1/3atWsmX758JiQkxHz22Wdm8+bNZvny5aZHjx7m8OHDxhhjtm/fblxdXU2jRo2s98Gdn+/GGPPcc8+ZqlWrZvicgUcFSSkAQJa4Oyk1e/ZsI8l89tlnNvXGjRtn849pY27/SHB1dTXnz5+3liUkJJiyZcuaUqVKZSqO9JJSe/fuNW+++ab58ssvzZYtW8z8+fNNuXLljKOjo1mzZs09277zB8KCBQuMs7OzuXTpkklISDCFCxc2w4cPN8aYFEmp//znP0aS+fHHH23a69mzp7FYLObo0aPGGGN69+5tfHx80o1hxYoVRpLZtGnTPeM1Ju2klCTz+eefW8vi4+NNgQIFjCTrj2hjjLl06ZJxdHQ0b731Voo2X3zxRZtjbdu2zUgyo0aNMsYY8/fff1v/kX6nM2fOGGdnZ9O2bdsUMc2fPz/FOaT3mt4pMTHRxMfHm/fee8/ky5fP+iPfmNs/Il1cXMyvv/5qLbtx44bJmzev6d69u7Xsfq9vakt8fLw5c+aMcXJyMn369LHZ7+rVq8bX19cmsXm3hIQEc+3aNePu7m4++OCDDMWY2aRUnTp1bOrFxsaavHnzmueff96mPDEx0VSqVMnmx6iHh4fp27dvmvGnJfnYdyacExMTTZEiRUxwcLBJTEy0ll+9etUULFjQ1KpVy1qWfB8OHTo0Q8e736RUcHCwSUhIsJbv3LnTSDKffvppiljuVL58eZtrnWzs2LHGwcEhRRz//e9/jSTzzTffGGOM+fbbb40km9fcmNvJzYwkpZKSkkz37t2Ng4ODkWQsFospV66c6devX4okyOuvv54i/tQk31uLFi0yjo6O5vLly9Ztad2fyUn2Oz9njDFm165dRpKZOXOmzflHRUXdM447vf/++0ZSqp/daSWIjbn9fePt7W1zDqnJis+T1q1bp/ndlpmk1Pnz5018fLz5+++/zZIlS4yrq6vx8/MzN27cMMbcvr8lmQ0bNqRo4+573xhj/vrrL/PYY4+ZatWqmb179xo3NzfTrl27dGNJ5ubmZnr06JFuneTEeaVKlWzuoWRly5Y1vr6+KcqTr3nycudnQfLnxt2Lg4ODeffdd23aWbNmjZFkxo8fb1O+fPlymwTWkSNHjCTTq1cvm3o//vijkWQGDRpkjDFm9+7dRlK6yW9jUn733+3dd981Dg4O5tq1a+m2AzxqGL4HAMgWGzdulLu7u1q2bGlTnjy06O6hQE8//bQKFSpkXXd0dFTr1q11/PjxFN3o71eVKlU0depUNWvWTE899ZQ6deqkH374QYULF9aAAQMy1VarVq2UO3duLV26VN98843Onz+f5sTGGzduVFBQkKpVq2ZT3rFjRxljrJPDV6tWTVeuXFGbNm30v//9L1ufGmWxWNSoUSPrupOTk0qVKqXChQvbTEabN29eFSxY0GYIWbJXXnnFZr1WrVoqXry4Nm3aJOn2ZPg3btxIcV38/PxUv379FO8BSWrRokWmzmPjxo165pln5O3tLUdHR+XKlUtDhw7VpUuXdOHCBZu6lStXVrFixazrLi4uKlOmTKrnllmLFi3Srl27bBYnJyetXbtWCQkJat++vRISEqyLi4uL6tata/N0ymvXrmngwIEqVaqUnJyc5OTkJA8PD8XGxqYY7phV7r7eP/zwgy5fvqwOHTrYxJuUlKSGDRtq165d1qFm1apVU0REhEaNGqUdO3Y80JCko0eP6o8//tCrr75qMxzXw8NDLVq00I4dO1IM5crseyWzGjduLEdHR+t6xYoVJem+3y+rV69WhQoVVLlyZZtrGxYWZvOk0uT75+77q23bthk6jsVi0ezZs3Xy5EnNnDlTnTp1Unx8vKZMmaLy5ctr8+bNGWpn3759euGFF5QvXz7rvdW+fXslJiZmaCjh6tWr5ePjo+eff97mfCtXrixfX1/r+VauXFm5c+fWa6+9poULF6Y6BDgzoqKilCtXLpvl7s/S+vXrK0+ePCn2zerPk02bNqX53ZYZvr6+ypUrl/LkyaN27dqpatWqWrNmjVxcXKx18uTJo/r162eovXz58mn58uXau3evatWqpWLFimn27Nn33O/KlSu6fv16mkNDpdtPoZ07d64cHBz0yy+/ZOopoW+99ZbN6/bCCy+kqDNu3DjrZ+y6des0YMAAvf/++3rnnXesdZK/U+/+7mnVqpXc3d2t3z3J99rd9apVq6Zy5cpZ65UqVUp58uTRwIEDNXv2bB0+fDjD53SnggULKikpKdUnFAKPMpJSAIBscenSJfn6+qZ4MlDBggXl5OSUYgJTX1/fFG0kl6U22WlW8fHxUZMmTXTgwAHduHEjw/u5u7urdevWmj9/vubNm6dnnnlGxYsXT7XupUuXUp03I/npbMnn9+qrr2r+/Pn69ddf1aJFCxUsWFDVq1e3mbsqq7i5udn8oJGk3LlzK2/evCnq5s6dW3FxcSnK03rNks8n+b9pnfvdr6ubm5u8vLwyfA47d+7Us88+K+n2HCXbtm3Trl27rBPq3v165suXL0Ubzs7OmXrd01KuXDmFhITYLNLtR55L0hNPPJHih/Ly5cttfiy3bdtWH374obp27aq1a9dq586d2rVrlwoUKJAlMabm7tcmOd6WLVumiHfcuHEyxujy5cuSbs+T1aFDB82dO1c1a9ZU3rx51b59+/v6wXWv90pSUpL+/vvvdGNPS/JcNnc+Xv5OCQkJqT4x8+73i7Ozs6SU76uM+vPPP3XgwIEU19XT01PGGOt74dKlS3Jyckpx/NTut/QUL15cPXv21Lx58/TLL79o+fLliouLs/nxnpYzZ87oqaee0u+//64PPvhA33//vXbt2mWdgyoj1+DPP//UlStXlDt37hTnfP78eev5lixZUuvXr1fBggX1+uuvq2TJkipZsqQ++OCDdNtPTgjdnSQMDAy0Ji3unk8qWWrvnez4PEn+HrxbZl/L9evXa9euXYqKitJff/2lrVu3ppjAPKP3Q7Lq1aurfPnyiouLU8+ePeXu7n7PfZLP7e7vjju98847OnPmjL7++mu5u7urc+fOKebkKlasmC5evJgi0fz2229bX7u0zicgIMD6GfvMM89o7Nix6tq1qyZNmqSff/5Z0v/dQwUKFLDZ12Kx3Nd3lLe3tzZv3qzKlStr0KBBKl++vIoUKaJhw4ZlKhmffN2y6/Mc+Lfi6XsAgGyRL18+/fjjjzLG2CSmLly4oISEBOuThJKl9kM2uSy1f/xnpeR/MN/r0dp369y5s+bOnasDBw6k+4SnfPny6dy5cynK//jjD0myuRadOnVSp06dFBsbqy1btmjYsGFq0qSJjh07lmbSK6ek9ZqVKlVK0v+9bmmd+93vgcxe/2XLlilXrlxavXq1zY+klStXZqqd7JR8jv/973/Tff2io6O1evVqDRs2TP/5z3+s5Tdv3rQmgTLCxcUlxYMEpNuPTr/7ekspr3lynenTp6f5hMrkXh/58+fX1KlTNXXqVJ05c0ZfffWV/vOf/+jChQtas2ZNhmOW7v1ecXBwSNGzJaPvl+R4f//991S3//777zY9WbJL/vz55erqmupk2MnbpdvXIiEhQZcuXbL57HvQ3hUvvfSSxo4de8+nk0q376HY2Fh98cUXNu/bqKioDB8vf/78ypcvX5rvBU9PT+vfTz31lJ566iklJiZq9+7dmj59uvr27atChQrp5ZdfTnX/evXqycnJSV999ZVee+01a7mrq6s1Kbx69epU903tvZMdnyf58uVL97stoypVqpTq/XunzH5+Dhs2TAcPHtTjjz+uoUOHqkmTJgoICEh3n+T3Y1qfSRs2bNDs2bM1ZMgQNWzYUDNmzNBLL72k6dOn64033rDWa9Cggb777jt98803Nr2p/fz8rE+my507d4bPpWLFijLG6MCBAypbtqz1Hrp48aJNYsoYo/Pnz+uJJ56wOZ9z586leIrm3d9RwcHBWrZsmfU4EREReu+99+Tq6mrzmZ2e5Ot2r9cSeNTQUwoAkC2efvppXbt2LcU/6BctWmTdfqcNGzZYe2lIt3s1LF++XCVLlszWR67//fffWr16tSpXrpzu//1NTc2aNdW5c2e9+OKLevHFF9Os9/TTT+vw4cPau3evTfmiRYtksVhSfcKQu7u7nnvuOb377ru6deuWDh06JOnBe2tkpbsTcT/88IN+/fVX6xOHatasKVdXVy1ZssSm3m+//aaNGzemeA+kJa3eTBaLRU5OTjZDrG7cuKHFixdn8kxsj5XcTlYICwuTk5OTTpw4kaIn1Z09qiwWi4wx1uMnmzt3booePunF6O/vrwMHDtiUHTt2TEePHs1QvLVr15aPj48OHz6cZryp/VgsVqyYevfurQYNGqR4n2dEYGCgihYtqk8++cSmV0VsbKw+//xz6xP57keNGjXk4eGh5cuXp9h2+PBhHTp0SM8888x9tZ2atN6vTZo00YkTJ5QvX75Ur2vyU/qSPw/uvr8++eSTDB0/tcSedHt46NmzZ609NJNjlVK+l5ITHHe+H40xqT45LL3zvXTpkhITE1M938DAwBT7ODo6qnr16tYeWem9lwoXLqzOnTvr66+/zvCTWtOTHZ8noaGhaX635aR169Zp7NixGjx4sNatWydvb2+1bt1at27dSne/5KfonjhxIsW2mJgYde7cWZUqVdLgwYMl3R4u17JlS4WHh9vs07VrVxUqVEgDBgxI8/2aGcnJ0uRhhcnfLXd/93z++eeKjY21bk8e7nh3vV27dunIkSOpfkdZLBZVqlRJU6ZMkY+Pj8179F49b0+ePKl8+fLZJQkO/JvQUwoAkC3at2+vGTNmqEOHDjp9+rSCg4O1detWjRkzRo0aNUrxIzB//vyqX7++hgwZInd3d82cOVM///xzhn5sHD582DrHw/nz53X9+nX997//lSQFBQVZhzm0bdtWxYoVU0hIiPLnz69ffvlFkyZN0p9//qmIiIj7Os958+bds06/fv20aNEiNW7cWO+9956KFy+ur7/+WjNnzlTPnj1VpkwZSVK3bt3k6uqq2rVrq3Dhwjp//rzGjh0rb29v6//ZrVChgiTpo48+kqenp1xcXFSiRIls702Wmt27d6tr165q1aqVzp49q3fffVdFixZVr169JN0eGjlkyBANGjRI7du3V5s2bXTp0iWNGDFCLi4uGjZsWIaOExwcrC+++EKzZs3S448/LgcHB4WEhKhx48aaPHmy2rZtq9dee02XLl3SxIkTUyR2MiOrr6+/v7/ee+89vfvuuzp58qQaNmyoPHny6M8//9TOnTvl7u6uESNGyMvLS3Xq1NGECROUP39++fv7a/PmzZo3b558fHwyHOOrr76qdu3aqVevXmrRooV+/fVXjR8/PsUwlrR4eHho+vTp6tChgy5fvqyWLVuqYMGCunjxovbv36+LFy9q1qxZio6OVmhoqNq2bauyZcvK09NTu3bt0po1a9S8efNMXycHBweNHz9er7zyipo0aaLu3bvr5s2bmjBhgq5cuaL3338/020m8/T01IgRI/T2228rKSlJrVu3Vp48eXTw4EGNGTNGxYsXt+nF8aCSe1QsX75cAQEBcnFxUXBwsPr27avPP/9cderUUb9+/VSxYkUlJSXpzJkz+u677/T222+revXqevbZZ1WnTh0NGDBAsbGxCgkJ0bZt2zKcHBk9erS2bdum1q1bq3LlynJ1ddWpU6f04Ycf6tKlS5owYYJNrNLteXqee+45OTo6qmLFimrQoIFy586tNm3aaMCAAYqLi9OsWbNSDKFMbiO1+/Pll1/W0qVL1ahRI7355puqVq2acuXKpd9++02bNm1S06ZN9eKLL2r27NnauHGjGjdurGLFiikuLs7am+xeycKpU6fq1KlTeuWVV/TVV1+padOmKlKkiK5fv279/nBxcUl1eObdsuPzZPDgwfrqq69Uv359DR06VG5ubpoxY4Z1XraccO7cObVr105169bVsGHD5ODgoOXLl1vfc1OnTk13/3r16unbb79NUd6vXz+dP39eq1atsrneM2fOVPny5dW5c2dFRkbKYrHIx8dHK1eu1PPPP69KlSqpZ8+e1uTxpUuXtGXLFp0/f161atVKcZxffvlFO3bskHS7h+n69es1b948hYSE6KmnnpJ0uydWWFiYBg4cqJiYGNWuXVsHDhzQsGHDVKVKFb366quSbifDX3vtNU2fPl0ODg567rnndPr0aQ0ZMkR+fn7q16+fpNs97mbOnKlmzZopICBAxhh98cUXunLliho0aGCNLTg4WJGRkVq1apUKFy4sT09Pm+Trjh07VLdu3Uz3agMeejkyvToA4KFz99P3jLn95LYePXqYwoULGycnJ1O8eHETHh5u8zhmY24/Den11183M2fONCVLljS5cuUyZcuWNUuXLs3QsZOfUJTacueTqsaOHWsqV65svL29jaOjoylQoIB58cUXzc6dOzN1nLsfz3231J7A8+uvv5q2bduafPnymVy5cpnAwEAzYcIEm6cLLVy40ISGhppChQqZ3LlzmyJFipiXXnrJHDhwwKatqVOnmhIlShhHR0cjySxYsCDNWNJ6+t7dr5Uxt5/SVL58+RTlxYsXN40bN07R5nfffWdeffVV4+PjY33K3i+//JJi/7lz55qKFSua3LlzG29vb9O0adMUj8pOKyZjjLl8+bJp2bKl8fHxMRaLxeZpYfPnzzeBgYHG2dnZBAQEmLFjx5p58+aleLLV3edw5znf/WSqB72+qVm5cqUJDQ01Xl5extnZ2RQvXty0bNnSrF+/3lrnt99+My1atDB58uQxnp6epmHDhuann35K9Yl6acWYlJRkxo8fbwICAoyLi4sJCQkxGzduTPPpe3c+Ae9OmzdvNo0bNzZ58+Y1uXLlMkWLFjWNGze21o+LizM9evQwFStWNF5eXsbV1dUEBgaaYcOG3fMx7+kde+XKlaZ69erGxcXFuLu7m6efftps27bNpk5G78O7ffbZZ+bJJ580np6exsnJyRQrVsz07NnT5sloxvzf0/cmTJiQoo27P1NSe/re6dOnzbPPPms8PT2NJJsn0127ds0MHjzYBAYGWu+H4OBg069fP5s4rly5Yjp37mx8fHyMm5ubadCggfn5558z9PS9HTt2mNdff91UqlTJ5M2b1/pZ17BhQ+sT/pLdvHnTdO3a1RQoUMB6byXfN6tWrTKVKlUyLi4upmjRouadd96xPhnwzic/pnd/xsfHm4kTJ1rb8fDwMGXLljXdu3e3flZs377dvPjii6Z48eLG2dnZ5MuXz9StW9d89dVX6Z5nssTERLNo0SLToEEDkz9/fuPk5GS8vb1NtWrVzJAhQ8xvv/1mUz/5+yY12fF5sm3bNlOjRg3j7OxsfH19zTvvvGM++uijTD19717v9bQ+u++OKSEhwdStW9cUKlTInDt3zqbehAkTjCTz5ZdfpnusDRs2GEk235vffPONkWRGjx6d6j6fffZZqk+UPH/+vAkPDzcVK1Y07u7uJleuXKZIkSLm+eefN4sWLbJ5cmJqT99zd3c3QUFBZtiwYSY6Otqm7Rs3bpiBAwea4sWLm1y5cpnChQubnj17mr///tumXmJiohk3bpwpU6aMyZUrl8mfP79p166dOXv2rLXOzz//bNq0aWNKlixpXF1dre+viIgIm7aioqJM7dq1jZubm5Fk8144fvx4qk+jBGCMxZi7Zp4DAMDOLBaLXn/9dX344Yc5HQoyICIiQp06ddKuXbusw88AAI+GihUrqnbt2po1a1ZOh/KvMWTIEC1atEgnTpywPnwBwG3MKQUAAAAAyJDx48crIiJCv/32W06H8q9w5coVzZgxQ2PGjCEhBaSCpBQAAAAAIEMaNmyoCRMm6NSpUzkdyr/CqVOnFB4errZt2+Z0KMA/EsP3AAAAAAAAYHf0lAIAAAAAAIDdkZQCAAAAAACA3ZGUAgAAAAAAgN0x/T+QxZKSkvTHH3/I09NTFoslp8MBAAAAAMCujDG6evWqihQpIgeHtPtDkZQCstgff/whPz+/nA4DAAAAAIAcdfbsWT322GNpbicpBWQxT09PSbdvPi8vrxyOBgAAAAAA+4qJiZGfn5/193FaSEoBWSx5yJ6XlxdJKQAAAADAI+teU9ow0TkAAAAAAADsjp5SQDapM/hTOTq75nQYAAAAAIB/sT0T2ud0CNmGnlIAAAAAAACwO5JSAAAAAAAAsDuSUgAAAAAAALA7klIAAAAAAACwO5JSAAAAAAAAsDuSUgAAAAAAALA7klIAAAAAAACwO5JSeKScPn1aFotFUVFROR0KAAAAAACPNJJSyBYXLlxQ9+7dVaxYMTk7O8vX11dhYWHavn17Todm4+4k1f79+9WmTRv5+fnJ1dVV5cqV0wcffJCzQQIAAAAA8BByyukA8HBq0aKF4uPjtXDhQgUEBOjPP//Uhg0bdPny5ZwOLV179uxRgQIFtGTJEvn5+emHH37Qa6+9JkdHR/Xu3TunwwMAAAAA4KFBTylkuStXrmjr1q0aN26cQkNDVbx4cVWrVk3h4eFq3LixJMlisWjWrFl67rnn5OrqqhIlSmjFihU27fz+++9q3bq18uTJo3z58qlp06Y6ffq0TZ0FCxaoXLlycnFxUdmyZTVz5kyb7Tt37lSVKlXk4uKikJAQ7du3L93YO3furGnTpqlu3boKCAhQu3bt1KlTJ33xxRcPfmEAAAAAAIAVSSlkOQ8PD3l4eGjlypW6efNmmvWGDBmiFi1aaP/+/WrXrp3atGmjI0eOSJKuX7+u0NBQeXh4aMuWLdq6das8PDzUsGFD3bp1S5L08ccf691339Xo0aN15MgRjRkzRkOGDNHChQslSbGxsWrSpIkCAwO1Z88eDR8+XP3798/0+URHRytv3rxpbr9586ZiYmJsFgAAAAAAkD6SUshyTk5OioiI0MKFC+Xj46PatWtr0KBBOnDggE29Vq1aqWvXripTpoxGjhypkJAQTZ8+XZK0bNkyOTg4aO7cuQoODla5cuW0YMECnTlzRpGRkZKkkSNHatKkSWrevLlKlCih5s2bq1+/fpozZ44kaenSpUpMTNT8+fNVvnx5NWnSRO+8806mzmX79u367LPP1L179zTrjB07Vt7e3tbFz88vU8cAAAAAAOBRRFIK2aJFixb6448/9NVXXyksLEyRkZGqWrWqIiIirHVq1qxps0/NmjWtPaX27Nmj48ePy9PT09rzKm/evIqLi9OJEyd08eJFnT17Vl26dLFu9/Dw0KhRo3TixAlJ0pEjR1SpUiW5ubmlecz0HDp0SE2bNtXQoUPVoEGDNOuFh4crOjraupw9ezbDxwAAAAAA4FHFROfINi4uLmrQoIEaNGigoUOHqmvXrho2bJg6duyY5j4Wi0WSlJSUpMcff1xLly5NUadAgQKKi4uTdHsIX/Xq1W22Ozo6SpKMMfcd++HDh1W/fn1169ZNgwcPTreus7OznJ2d7/tYAAAAAAA8iugpBbsJCgpSbGysdX3Hjh0223fs2KGyZctKkqpWrapffvlFBQsWVKlSpWwWb29vFSpUSEWLFtXJkydTbC9RooT1ePv379eNGzfSPGZqDh06pNDQUHXo0EGjR4/OilMHAAAAAAB3ISmFLHfp0iXVr19fS5Ys0YEDB3Tq1CmtWLFC48ePV9OmTa31VqxYofnz5+vYsWMaNmyYdu7cqd69e0uSXnnlFeXPn19NmzbV999/r1OnTmnz5s1688039dtvv0mShg8frrFjx+qDDz7QsWPHdPDgQS1YsECTJ0+WJLVt21YODg7q0qWLDh8+rG+++UYTJ05MN/bkhFSDBg301ltv6fz58zp//rwuXryYTVcLAAAAAIBHE8P3kOU8PDxUvXp1TZkyRSdOnFB8fLz8/PzUrVs3DRo0yFpvxIgRWrZsmXr16iVfX18tXbpUQUFBkiQ3Nzdt2bJFAwcOVPPmzXX16lUVLVpUTz/9tLy8vCRJXbt2lZubmyZMmKABAwbI3d1dwcHB6tu3rzWOVatWqUePHqpSpYqCgoI0btw4tWjRIs3YV6xYoYsXL2rp0qU2QweLFy+u06dPZ/3FAgAAAADgEWUxDzLxDnCfLBaLvvzySzVr1iynQ8lyMTEx8vb2VqU+s+Xo7JrT4QAAAAAA/sX2TGif0yFkWvLv4ujoaGvHktQwfA8AAAAAAAB2R1IKAAAAAAAAdsecUsgRjBoFAAAAAODRRk8pAAAAAAAA2B1JKQAAAAAAANgdSSkAAAAAAADYHUkpAAAAAAAA2B0TnQPZZMuoNvLy8srpMAAAAAAA+EeipxQAAAAAAADsjqQUAAAAAAAA7I6kFAAAAAAAAOyOpBQAAAAAAADsjqQUAAAAAAAA7I6n7wHZpM7gT+Xo7JrTYQAAAACSpD0T2ud0CABgg55SAAAAAAAAsDuSUgAAAAAAALA7klIAAAAAAACwO5JSAAAAAAAAsDuSUgAAAAAAALA7klIAAAAAAACwO5JSAAAAAAAAsDuSUnikREZGymKx6MqVK9aylStXqlSpUnJ0dFTfvn1zLDYAAAAAAB4lJKWQbSwWS7pLx44ds+W4/v7+mjp1aqrbatWqpXPnzsnb29ta1r17d7Vs2VJnz57VyJEjsyUmAAAAAABgyymnA8DD69y5c9a/ly9frqFDh+ro0aPWMldX10y1Fx8fr1y5cj1QTLlz55avr691/dq1a7pw4YLCwsJUpEiRB2obAAAAAABkHD2lkG18fX2ti7e3tywWi3x9fVWoUCE9+eST+vjjj23q//TTT3JwcNCJEyck3e5pNXv2bDVt2lTu7u4aNWqUJGnVqlV6/PHH5eLiooCAAI0YMUIJCQkZiunO4XuRkZHy9PSUJNWvX18Wi0WRkZGSpB9++EF16tSRq6ur/Pz89MYbbyg2NjaLrgwAAAAAACApBbuzWCzq3LmzFixYYFM+f/58PfXUUypZsqS1bNiwYWratKkOHjyozp07a+3atWrXrp3eeOMNHT58WHPmzFFERIRGjx6d6Thq1apl7bn1+eef69y5c6pVq5YOHjyosLAwNW/eXAcOHNDy5cu1detW9e7d+8FOHAAAAAAAWJGUQo7o1KmTjh49qp07d0q6PTRvyZIl6ty5s029tm3bqnPnzgoICFDx4sU1evRo/ec//1GHDh0UEBCgBg0aaOTIkZozZ06mY8idO7cKFiwoScqbN698fX2VO3duTZgwQW3btlXfvn1VunRp1apVS9OmTdOiRYsUFxeXop2bN28qJibGZgEAAAAAAOljTinkiMKFC6tx48aaP3++qlWrptWrVysuLk6tWrWyqRcSEmKzvmfPHu3atcumZ1RiYqLi4uJ0/fp1ubm5PXBse/bs0fHjx7V06VJrmTFGSUlJOnXqlMqVK2dTf+zYsRoxYsQDHxcAAAAAgEcJSSnkmK5du+rVV1/VlClTtGDBArVu3TpFUsnd3d1mPSkpSSNGjFDz5s1TtOfi4pIlcSUlJal79+564403UmwrVqxYirLw8HC99dZb1vWYmBj5+fllSSwAAAAAADysSEohxzRq1Eju7u6aNWuWvv32W23ZsuWe+1StWlVHjx5VqVKlsi2uqlWr6tChQxk+hrOzs5ydnbMtHgAAAAAAHkYkpZBjHB0d1bFjR4WHh6tUqVKqWbPmPfcZOnSomjRpIj8/P7Vq1UoODg46cOCADh48aH06nyT9/vvvioqKstk3tV5OqRk4cKBq1Kih119/Xd26dZO7u7uOHDmidevWafr06Zk6RwAAAAAAkDomOkeO6tKli27dupVigvO0hIWFafXq1Vq3bp2eeOIJ1ahRQ5MnT1bx4sVt6k2cOFFVqlSxWb766qsMHaNixYravHmzfvnlFz311FOqUqWKhgwZosKFC2f6/AAAAAAAQOosxhiT00Hg0bVt2zbVq1dPv/32mwoVKpTT4WSJmJgYeXt7q1Kf2XJ0ds3pcAAAAABJ0p4J7XM6BACPiOTfxdHR0fLy8kqzHsP3kCNu3ryps2fPasiQIXrppZcemoQUAAAAAADIGIbvIUd8+umnCgwMVHR0tMaPH5/T4QAAAAAAADsjKYUc0bFjRyUmJmrPnj0qWrRoTocDAAAAAADsjKQUAAAAAAAA7I6kFAAAAAAAAOyOpBQAAAAAAADsjqQUAAAAAAAA7M4ppwMAHlZbRrWRl5dXTocBAAAAAMA/Ej2lAAAAAAAAYHckpQAAAAAAAGB3JKUAAAAAAABgdySlAAAAAAAAYHckpQAAAAAAAGB3JKUAAAAAAABgd045HQDwsKoz+FM5OrvmdBgA8I+yZ0L7nA4BAAAA/xD0lAIAAAAAAIDdkZQCAAAAAACA3ZGUAgAAAAAAgN2RlAIAAAAAAIDdkZQCAAAAAACA3ZGUAgAAAAAAgN2RlAIAAAAAAIDdkZTCI+X06dOyWCyKiorK6VAAAAAAAHikkZRCtrhw4YK6d++uYsWKydnZWb6+vgoLC9P27dtzOjQbqSWp3nzzTT3++ONydnZW5cqVcyw2AAAAAAAeZk45HQAeTi1atFB8fLwWLlyogIAA/fnnn9qwYYMuX76c06HdkzFGnTt31o8//qgDBw7kdDgAAAAAADyU6CmFLHflyhVt3bpV48aNU2hoqIoXL65q1aopPDxcjRs3liRZLBbNmjVLzz33nFxdXVWiRAmtWLHCpp3ff/9drVu3Vp48eZQvXz41bdpUp0+ftqmzYMEClStXTi4uLipbtqxmzpxps33nzp2qUqWKXFxcFBISon379t0z/mnTpun1119XQEDAg10IAAAAAACQJpJSyHIeHh7y8PDQypUrdfPmzTTrDRkyRC1atND+/fvVrl07tWnTRkeOHJEkXb9+XaGhofLw8NCWLVu0detWeXh4qGHDhrp165Yk6eOPP9a7776r0aNH68iRIxozZoyGDBmihQsXSpJiY2PVpEkTBQYGas+ePRo+fLj69++f/RcAAAAAAADcE0kpZDknJydFRERo4cKF8vHxUe3atTVo0KAUQ+FatWqlrl27qkyZMho5cqRCQkI0ffp0SdKyZcvk4OCguXPnKjg4WOXKldOCBQt05swZRUZGSpJGjhypSZMmqXnz5ipRooSaN2+ufv36ac6cOZKkpUuXKjExUfPnz1f58uXVpEkTvfPOO1l+vjdv3lRMTIzNAgAAAAAA0kdSCtmiRYsW+uOPP/TVV18pLCxMkZGRqlq1qiIiIqx1atasabNPzZo1rT2l9uzZo+PHj8vT09Pa8ypv3ryKi4vTiRMndPHiRZ09e1ZdunSxbvfw8NCoUaN04sQJSdKRI0dUqVIlubm5pXnMrDB27Fh5e3tbFz8/vyw/BgAAAAAADxsmOke2cXFxUYMGDdSgQQMNHTpUXbt21bBhw9SxY8c097FYLJKkpKQkPf7441q6dGmKOgUKFFBcXJyk20P4qlevbrPd0dFR0u0Jy+0hPDxcb731lnU9JiaGxBQAAAAAAPdAUgp2ExQUpJUrV1rXd+zYofbt29usV6lSRZJUtWpVLV++XAULFpSXl1eKtry9vVW0aFGdPHlSr7zySprHW7x4sW7cuCFXV1frMbKas7OznJ2ds7xdAAAAAAAeZgzfQ5a7dOmS6tevryVLlujAgQM6deqUVqxYofHjx6tp06bWeitWrND8+fN17NgxDRs2TDt37lTv3r0lSa+88ory58+vpk2b6vvvv9epU6e0efNmvfnmm/rtt98kScOHD9fYsWP1wQcf6NixYzp48KAWLFigyZMnS5Latm0rBwcHdenSRYcPH9Y333yjiRMn3jP+48ePKyoqSufPn9eNGzcUFRWlqKgo6wTrAAAAAADgwdFTClnOw8ND1atX15QpU3TixAnFx8fLz89P3bp106BBg6z1RowYoWXLlqlXr17y9fXV0qVLFRQUJElyc3PTli1bNHDgQDVv3lxXr15V0aJF9fTTT1t7TnXt2lVubm6aMGGCBgwYIHd3dwUHB6tv377WOFatWqUePXqoSpUqCgoK0rhx49SiRYt04+/atas2b95sXU/uvXXq1Cn5+/tn4ZUCAAAAAODRZTH2mngHuIPFYtGXX36pZs2a5XQoWS4mJkbe3t6q1Ge2HJ1dczocAPhH2TOh/b0rAQAA4F8t+XdxdHR0qlPyJGP4HgAAAAAAAOyOpBQAAAAAAADsjjmlkCMYNQoAAAAAwKONnlIAAAAAAACwO5JSAAAAAAAAsDuSUgAAAAAAALA7klIAAAAAAACwOyY6B7LJllFt5OXlldNhAAAAAADwj0RPKQAAAAAAANgdSSkAAAAAAADYHUkpAAAAAAAA2B1JKQAAAAAAANgdSSkAAAAAAADYHUkpAAAAAAAA2J1TTgcAPKzqDP5Ujs6uOR0GctieCe1zOgQAAAAA+EeipxQAAAAAAADsjqQUAAAAAAAA7I6kFAAAAAAAAOyOpBQAAAAAAADsjqQUAAAAAAAA7I6kFAAAAAAAAOyOpBQAAAAAAADsjqQU7C4yMlIWi0VXrlzJ6VAAAAAAAEAOISmFbPPDDz/I0dFRDRs2tCmvVauWzp07J29v7zT39ff3l8ViSXOpV69eNkcPAAAAAACyk1NOB4CH1/z589WnTx/NnTtXZ86cUbFixSRJuXPnlq+vb5r7JSYm6scff5QxRtLt5FaLFi109OhReXl5WdsAAAAAAAD/XvSUQraIjY3VZ599pp49e6pJkyaKiIiwbrt7+F5ERIR8fHy0evVqBQUFydnZWdevX5evr698fX2VN29eSVLBggWtZT///LPq1KkjV1dX+fn56Y033lBsbKz1GP7+/ho1apTat28vDw8PFS9eXP/73/908eJFNW3aVB4eHgoODtbu3but+yTHsXLlSpUpU0YuLi5q0KCBzp49a5drBgAAAADAo4SkFLLF8uXLFRgYqMDAQLVr104LFiyw9nxKzfXr1zV27FjNnTtXhw4dUsGCBdOse/DgQYWFhal58+Y6cOCAli9frq1bt6p379429aZMmaLatWtr3759aty4sV599VW1b99e7dq10969e1WqVCm1b9/eJq7r169r9OjRWrhwobZt26aYmBi9/PLL6Z7rzZs3FRMTY7MAAAAAAID0kZRCtpg3b57atWsnSWrYsKGuXbumDRs2pFk/Pj5eM2fOVK1atRQYGCh3d/c0606YMEFt27ZV3759Vbp0adWqVUvTpk3TokWLFBcXZ63XqFEjde/eXaVLl9bQoUN19epVPfHEE2rVqpXKlCmjgQMH6siRI/rzzz9t4vjwww9Vs2ZNPf7441q4cKF++OEH7dy5M814xo4dK29vb+vi5+eXmUsFAAAAAMAjiaQUstzRo0e1c+dOaw8jJycntW7dWvPnz09zn9y5c6tixYoZan/Pnj2KiIiQh4eHdQkLC1NSUpJOnTplrXdne4UKFZIkBQcHpyi7cOGCtczJyUkhISHW9bJly8rHx0dHjhxJM57w8HBFR0dbF4b7AQAAAABwb0x0jiw3b948JSQkqGjRotYyY4xy5cqlv//+O9V9XF1dZbFYMtR+UlKSunfvrjfeeCPFtuTJ1CUpV65c1r+T206tLCkpyaaN1OJILzZnZ2c5OztnKHYAAAAAAHAbSSlkqYSEBC1atEiTJk3Ss88+a7OtRYsWWrp0qSpUqPBAx6hataoOHTqkUqVKPVA7qUlISNDu3btVrVo1Sbd7fV25ckVly5bN8mMBAAAAAPAoY/gestTq1av1999/q0uXLqpQoYLN0rJlS82bN++BjzFw4EBt375dr7/+uqKiovTLL7/oq6++Up8+fR647Vy5cqlPnz768ccftXfvXnXq1Ek1atSwJqkAAAAAAEDWICmFLDVv3jw988wz8vb2TrGtRYsWioqK0t69ex/oGBUrVtTmzZv1yy+/6KmnnlKVKlU0ZMgQFS5c+IHalSQ3NzcNHDhQbdu2Vc2aNeXq6qply5Y9cLsAAAAAAMCWxRhjcjoI4J8gIiJCffv21ZUrVx6onZiYGHl7e6tSn9lydHbNmuDwr7VnQvucDgEAAAAA7Cr5d3F0dLS8vLzSrEdPKQAAAAAAANgdSSkAAAAAAADYHUkp4P/r2LHjAw/dAwAAAAAAGUNSCgAAAAAAAHZHUgoAAAAAAAB2R1IKAAAAAAAAdkdSCgAAAAAAAHbnlNMBAA+rLaPayMvLK6fDAAAAAADgH4meUgAAAAAAALA7klIAAAAAAACwO5JSAAAAAAAAsDuSUgAAAAAAALA7klIAAAAAAACwO5JSAAAAAAAAsDunnA4AeFjVGfypHJ1dczoMZKE9E9rndAgAAAAA8NCgpxQAAAAAAADsjqQUAAAAAAAA7I6kFAAAAAAAAOyOpBQAAAAAAADsjqQUAAAAAAAA7I6kFAAAAAAAAOyOpBQAAAAAAADsjqQUcsTp06dlsVgUFRWV06EAAAAAAIAcQFLKDs6fP68+ffooICBAzs7O8vPz0/PPP68NGzbkdGj/Gp9//rmqV68ub29veXp6qnz58nr77bdt6ty4cUPDhg1TYGCgnJ2dlT9/frVs2VKHDh2yqTd8+HBZLJYUy9y5c1Mtv3MZPny4Hc8aAAAAAICHl1NOB/CwO336tGrXri0fHx+NHz9eFStWVHx8vNauXavXX39dP//8c06H+I+3fv16vfzyyxozZoxeeOEFWSwWHT582Capd/PmTT3zzDM6c+aMJk2apOrVq+vPP//U2LFjVb16da1fv141atSw1i9fvrzWr19vc5w8efKoSZMm1vWJEydqzZo1NvU8PDyy8UwBAAAAAHh00FMqm/Xq1UsWi0U7d+5Uy5YtVaZMGZUvX15vvfWWduzYIUk6c+aMmjZtKg8PD3l5eemll17Sn3/+aW1j+PDhqly5subPn69ixYrJw8NDPXv2VGJiosaPHy9fX18VLFhQo0ePtjm2xWLRrFmz9Nxzz8nV1VUlSpTQihUrbOocPHhQ9evXl6urq/Lly6fXXntN165ds26vV6+e+vbta7NPs2bN1LFjR+u6v7+/xowZo86dO8vT01PFihXTRx99ZLPPzp07VaVKFbm4uCgkJET79u3L8DVcvXq1nnzySb3zzjsKDAxUmTJl1KxZM02fPt1aZ+rUqdq+fbtWr16tl156ScWLF1e1atX0+eefq1y5curSpYuMMdb6Tk5O8vX1tVmcnZ1t1j08PFLUIykFAAAAAEDWICmVjS5fvqw1a9bo9ddfl7u7e4rtPj4+MsaoWbNmunz5sjZv3qx169bpxIkTat26tU3dEydO6Ntvv9WaNWv06aefav78+WrcuLF+++03bd68WePGjdPgwYOtia5kQ4YMUYsWLbR//361a9dObdq00ZEjRyRJ169fV8OGDZUnTx7t2rVLK1as0Pr169W7d+9Mn+ukSZOsyaZevXqpZ8+e1l5gsbGxatKkiQIDA7Vnzx4NHz5c/fv3z3Dbvr6+OnTokH766ac063zyySdq0KCBKlWqZFPu4OCgfv366fDhw9q/f3+mzysjbt68qZiYGJsFAAAAAACkj6RUNjp+/LiMMSpbtmyaddavX68DBw7ok08+0eOPP67q1atr8eLF2rx5s3bt2mWtl5SUpPnz5ysoKEjPP/+8QkNDdfToUU2dOlWBgYHq1KmTAgMDFRkZadN+q1at1LVrV5UpU0YjR45USEiItYfR0qVLdePGDS1atEgVKlRQ/fr19eGHH2rx4sU2PbUyolGjRurVq5dKlSqlgQMHKn/+/NZYli5dqsTERM2fP1/ly5dXkyZN9M4772S47T59+uiJJ55QcHCw/P399fLLL2v+/Pm6efOmtc6xY8dUrly5VPdPLj927Ji17ODBg/Lw8LAu1apVy9T53mns2LHy9va2Ln5+fvfdFgAAAAAAjwqSUtkoebiYxWJJs86RI0fk5+dnk8gICgqSj4+PtUeTdHuInKenp3W9UKFCCgoKkoODg03ZhQsXbNqvWbNmivXkdo8cOaJKlSrZ9OKqXbu2kpKSdPTo0cycqipWrGj922KxyNfX1xpL8nHc3NzSjCs97u7u+vrrr3X8+HENHjxYHh4eevvtt1WtWjVdv379nvun9joEBgYqKirKunz++ecZjudu4eHhio6Oti5nz56977YAAAAAAHhUkJTKRqVLl5bFYrFJLt3NGJNq0uru8ly5ctlst1gsqZYlJSXdM67kdtM69p11HBwcbOZikqT4+PgU9dOL5e7971fJkiXVtWtXzZ07V3v37tXhw4e1fPlySVKZMmV0+PDhVPdLHkZYunRpa1nu3LlVqlQp6/IgvZucnZ3l5eVlswAAAAAAgPSRlMpGefPmVVhYmGbMmKHY2NgU269cuaKgoCCdOXPGpnfN4cOHFR0dneZwtMy4e46pHTt2WIcTBgUFKSoqyia2bdu2ycHBQWXKlJEkFShQQOfOnbNuT0xMTHdup9QEBQVp//79unHjRppxZZa/v7/c3Nyssb/88stav359inmjkpKSNGXKFAUFBaWYbwoAAAAAAOQcklLZbObMmUpMTLQ+Ce6XX37RkSNHNG3aNNWsWVPPPPOMKlasqFdeeUV79+7Vzp071b59e9WtW1chISEPfPwVK1Zo/vz5OnbsmIYNG6adO3daJzJ/5ZVX5OLiog4dOuinn37Spk2b1KdPH7366qsqVKiQJKl+/fr6+uuv9fXXX+vnn39Wr169dOXKlUzF0LZtWzk4OKhLly46fPiwvvnmG02cODHD+w8fPlwDBgxQZGSkTp06pX379qlz586Kj49XgwYNJEn9+vVTtWrV9Pzzz2vFihU6c+aMdu3apRYtWujIkSOaN29eusMoAQAAAACAfZGUymYlSpTQ3r17FRoaqrffflsVKlRQgwYNtGHDBs2aNUsWi0UrV65Unjx5VKdOHT3zzDMKCAiwDkt7UCNGjNCyZctUsWJFLVy4UEuXLlVQUJAkyc3NTWvXrtXly5f1xBNPqGXLlnr66af14YcfWvfv3LmzOnToYE2UlShRQqGhoZmKwcPDQ6tWrdLhw4dVpUoVvfvuuxo3blyG969bt65Onjyp9u3bq2zZsnruued0/vx5fffddwoMDJQkubi4aOPGjerQoYMGDRqkUqVKqWHDhnJ0dNSOHTtUo0aNTMUMAAAAAACyl8Vk1YQ/+MexWCz68ssv1axZs5wO5ZESExMjb29vVeozW47OrjkdDrLQngntczoEAAAAAPjHS/5dHB0dne68y/SUAgAAAAAAgN2RlEKO69Gjhzw8PFJdevTokdPhAQAAAACAbOCU0wEg+/xbRma+99576t+/f6rb0uvmBwAAAAAA/r1ISiHHFSxYUAULFszpMAAAAAAAgB0xfA8AAAAAAAB2R1IKAAAAAAAAdkdSCgAAAAAAAHbHnFJANtkyqg0TtQMAAAAAkAZ6SgEAAAAAAMDuSEoBAAAAAADA7khKAQAAAAAAwO5ISgEAAAAAAMDuSEoBAAAAAADA7khKAQAAAAAAwO6ccjoA4GFVZ/CncnR2zekwkIY9E9rndAgAAAAA8EijpxQAAAAAAADsjqQUAAAAAAAA7I6kFAAAAAAAAOyOpBQAAAAAAADsjqQUAAAAAAAA7I6kFAAAAAAAAOyOpBQAAAAAAADsjqQUctTp06dlsVgUFRWV06EAAAAAAAA7IikFK4vFku7SsWNHu8YTGRl5z5giIiLsGhMAAAAAAMgaTjkdAP45zp07Z/17+fLlGjp0qI4ePWotc3V1takfHx+vXLlyZVs8tWrVsonpzTffVExMjBYsWGAt8/b2zrbjAwAAAACA7ENPKVj5+vpaF29vb1ksFut6XFycfHx89Nlnn6levXpycXHRkiVLdOnSJbVp00aPPfaY3NzcFBwcrE8//dSm3aSkJI0bN06lSpWSs7OzihUrptGjR6caQ1JSkrp166YyZcro3LlzNjG5urrK2dnZul6oUCFNnz5dAQEBcnV1VaVKlfTf//7X2lZyT6u1a9eqSpUqcnV1Vf369XXhwgV9++23KleunLy8vNSmTRtdv37dul+9evXUu3dv9e7dWz4+PsqXL58GDx4sY0z2XHgAAAAAAB5B9JRCpgwcOFCTJk3SggUL5OzsrLi4OD3++OMaOHCgvLy89PXXX+vVV19VQECAqlevLkkKDw/Xxx9/rClTpujJJ5/UuXPn9PPPP6do+9atW2rbtq1OnDihrVu3qmDBgunGMnjwYH3xxReaNWuWSpcurS1btqhdu3YqUKCA6tata603fPhwffjhh3Jzc9NLL72kl156Sc7Ozvrkk0907do1vfjii5o+fboGDhxo3WfhwoXq0qWLfvzxR+3evVuvvfaaihcvrm7duqWI4+bNm7p586Z1PSYmJtPXFQAAAACARw1JKWRK37591bx5c5uy/v37W//u06eP1qxZoxUrVqh69eq6evWqPvjgA3344Yfq0KGDJKlkyZJ68sknbdq4du2aGjdurBs3bigyMvKew/JiY2M1efJkbdy4UTVr1pQkBQQEaOvWrZozZ45NUmrUqFGqXbu2JKlLly4KDw/XiRMnFBAQIElq2bKlNm3aZJOU8vPz05QpU2SxWBQYGKiDBw9qypQpqSalxo4dqxEjRtzz2gEAAAAAgP/D8D1kSkhIiM16YmKiRo8erYoVKypfvnzy8PDQd999pzNnzkiSjhw5ops3b+rpp59Ot902bdro2rVr+u677zI0T9Thw4cVFxenBg0ayMPDw7osWrRIJ06csKlbsWJF69+FChWSm5ubNSGVXHbhwgWbfWrUqCGLxWJdr1mzpn755RclJiamiCU8PFzR0dHW5ezZs/eMHwAAAACARx09pZAp7u7uNuuTJk3SlClTNHXqVAUHB8vd3V19+/bVrVu3JKWcHD0tjRo10pIlS7Rjxw7Vr1//nvWTkpIkSV9//bWKFi1qs83Z2dlm/c7J2C0WS4rJ2S0Wi7W9++Hs7JzimAAAAAAAIH0kpfBAvv/+ezVt2lTt2rWTdDtZ9Msvv6hcuXKSpNKlS8vV1VUbNmxQ165d02ynZ8+eqlChgl544QV9/fXXNsPvUhMUFCRnZ2edOXPmnnXvx44dO1Ksly5dWo6Ojll+LAAAAAAAHkUkpfBASpUqpc8//1w//PCD8uTJo8mTJ+v8+fPWpJSLi4sGDhyoAQMGKHfu3Kpdu7YuXryoQ4cOqUuXLjZt9enTR4mJiWrSpIm+/fbbFPNO3cnT01P9+/dXv379lJSUpCeffFIxMTH64Ycf5OHhYZ2/6n6dPXtWb731lrp37669e/dq+vTpmjRp0gO1CQAAAAAA/g9JKTyQIUOG6NSpUwoLC5Obm5tee+01NWvWTNHR0TZ1nJycNHToUP3xxx8qXLiwevTokWp7ffv2VVJSkho1aqQ1a9aoVq1aaR575MiRKliwoMaOHauTJ0/Kx8dHVatW1aBBgx74vNq3b68bN26oWrVqcnR0VJ8+ffTaa689cLsAAAAAAOA2izHG5HQQwD9JvXr1VLlyZU2dOvW+9o+JiZG3t7cq9ZktR+eMzakF+9szoX1OhwAAAAAAD6Xk38XR0dHy8vJKsx5P3wMAAAAAAIDdkZQCAAAAAACA3TGnFHCXyMjInA4BAAAAAICHHj2lAAAAAAAAYHckpQAAAAAAAGB3JKUAAAAAAABgdySlAAAAAAAAYHdMdA5kky2j2sjLyyunwwAAAAAA4B+JnlIAAAAAAACwO5JSAAAAAAAAsDuSUgAAAAAAALA7klIAAAAAAACwO5JSAAAAAAAAsDuevgdkkzqDP5Wjs2tOh/HI2jOhfU6HAAAAAABIBz2lAAAAAAAAYHckpQAAAAAAAGB3JKUAAAAAAABgdySlAAAAAAAAYHckpQAAAAAAAGB3JKUAAAAAAABgdySlAAAAAAAAYHckpfCvdPr0aVksFkVFRaVZJzIyUhaLRVeuXJEkRUREyMfHxy7xAQAAAACA9JGUwn3r2LGjmjVrlqL87mRQdvDz89O5c+dUoUKFDO/TunVrHTt2zLo+fPhwVa5cORuiAwAAAAAA9+KU0wEA98PR0VG+vr6Z2sfV1VWurq7ZFBEAAAAAAMgMekohW6XWG2nq1Kny9/e3rif3uBozZowKFSokHx8fjRgxQgkJCXrnnXeUN29ePfbYY5o/f751n9SG733zzTcqU6aMXF1dFRoaqtOnT9sc987hexERERoxYoT2798vi8Uii8WiiIgIde7cWU2aNLHZLyEhQb6+vjbHBwAAAAAAD4aeUvhH2Lhxox577DFt2bJF27ZtU5cuXbR9+3bVqVNHP/74o5YvX64ePXqoQYMG8vPzS7H/2bNn1bx5c/Xo0UM9e/bU7t279fbbb6d5vNatW+unn37SmjVrtH79ekmSt7e3ypQpozp16ujcuXMqXLiwpNvJrmvXrumll17KnpMHAAAAAOARRE8pPJDVq1fLw8PDZnnuuecy3U7evHk1bdo0BQYGqnPnzgoMDNT169c1aNAglS5dWuHh4cqdO7e2bduW6v6zZs1SQECApkyZosDAQL3yyivq2LFjmsdzdXWVh4eHnJyc5OvrK19fX7m6uqpWrVoKDAzU4sWLrXUXLFigVq1aycPDI9W2bt68qZiYGJsFAAAAAACkj6QUHkhoaKiioqJslrlz52a6nfLly8vB4f/ejoUKFVJwcLB13dHRUfny5dOFCxdS3f/IkSOqUaOGLBaLtaxmzZqZjkOSunbtqgULFkiSLly4oK+//lqdO3dOs/7YsWPl7e1tXVLryQUAAAAAAGyRlMIDcXd3V6lSpWyWokWLWrc7ODjIGGOzT3x8fIp2cuXKZbNusVhSLUtKSko1jruP8SDat2+vkydPavv27VqyZIn8/f311FNPpVk/PDxc0dHR1uXs2bNZFgsAAAAAAA8r5pRCtipQoIDOnz8vY4y1F9Odk5NnlaCgIK1cudKmbMeOHenukzt3biUmJqYoz5cvn5o1a6YFCxZo+/bt6tSpU7rtODs7y9nZOdMxAwAAAADwKKOnFLJVvXr1dPHiRY0fP14nTpzQjBkz9O2332b5cXr06KETJ07orbfe0tGjR/XJJ58oIiIi3X38/f116tQpRUVF6a+//tLNmzet27p27aqFCxfqyJEj6tChQ5bHCwAAAADAo46kFLJVuXLlNHPmTM2YMUOVKlXSzp071b9//yw/TrFixfT5559r1apVqlSpkmbPnq0xY8aku0+LFi3UsGFDhYaGqkCBAvr000+t25555hkVLlxYYWFhKlKkSJbHCwAAAADAo85isnIyHuAhcf36dRUpUkTz589X8+bNM7VvTEyMvL29VanPbDk6u2ZThLiXPRPa53QIAAAAAPBISv5dHB0dLS8vrzTrMacUcIekpCSdP39ekyZNkre3t1544YWcDgkAAAAAgIcSSSngDmfOnFGJEiX02GOPKSIiQk5O3CIAAAAAAGQHfnEDd/D39xcjWgEAAAAAyH5MdA4AAAAAAAC7IykFAAAAAAAAu7uvpNSJEyc0ePBgtWnTRhcuXJAkrVmzRocOHcrS4AAAAAAAAPBwynRSavPmzQoODtaPP/6oL774QteuXZMkHThwQMOGDcvyAAEAAAAAAPDwsZhMzupcs2ZNtWrVSm+99ZY8PT21f/9+BQQEaNeuXWrWrJl+//337IoV+FeIiYmRt7e3oqOj5eXlldPhAAAAAABgVxn9XZzpnlIHDx7Uiy++mKK8QIECunTpUmabAwAAAAAAwCMo00kpHx8fnTt3LkX5vn37VLRo0SwJCgAAAAAAAA+3TCel2rZtq4EDB+r8+fOyWCxKSkrStm3b1L9/f7Vv3z47YgQAAAAAAMBDJtNJqdGjR6tYsWIqWrSorl27pqCgINWpU0e1atXS4MGDsyNGAAAAAAAAPGQyNdG5MUZnzpxRgQIFdP78ee3du1dJSUmqUqWKSpcunZ1xAv8aTHQOAAAAAHiUZfR3sVNmGjXGqHTp0jp06JBKly6tgICABw4UAAAAAAAAj55MJaUcHBxUunRpXbp0iZ5RwD3UGfypHJ1dczqMR9KeCcxvBwAAAAD/dJmeU2r8+PF655139NNPP2VHPAAAAAAAAHgEZKqnlCS1a9dO169fV6VKlZQ7d265utr2BLl8+XKWBQcAAAAAAICHU6aTUlOnTs2GMAAAAAAAAPAoyXRSqkOHDtkRBwAAAAAAAB4hmU5KnTlzJt3txYoVu+9gAAAAAAAA8GjIdFLK399fFoslze2JiYkPFBAAAAAAAAAefplOSu3bt89mPT4+Xvv27dPkyZM1evToLAsMAAAAAAAAD69MJ6UqVaqUoiwkJERFihTRhAkT1Lx58ywJDA8uMjJSoaGh+vvvv+Xj45Otx+rYsaOuXLmilStXSpLq1aunypUr5/jE+P+UOAAAAAAAgC2HrGqoTJky2rVrV1Y1d98sFku6S8eOHXM6xBTq1atnjS937twqWbKkwsPDdfPmzWw/dvJwTIvFIkdHRxUpUkRdunTR33//na3HjYiIsHldChUqpOeff16HDh3K0uN88cUXGjlyZJa2CQAAAAAAHlymk1IxMTE2S3R0tH7++WcNGTJEpUuXzo4YM+XcuXPWZerUqfLy8rIp++CDD3I6xFR169ZN586d0/HjxzV+/HjNmDFDw4cPt8ux33vvPZ07d05nzpzR0qVLtWXLFr3xxhvZftzk1+aPP/7Q119/rdjYWDVu3Fi3bt3KsmPkzZtXnp6eWdYeAAAAAADIGplOSvn4+ChPnjzWJW/evAoKCtL27ds1a9as7IgxU3x9fa2Lt7e3LBaLTdmWLVv0+OOPy8XFRQEBARoxYoQSEhKs+0+ePFnBwcFyd3eXn5+fevXqpWvXrlm3R0REyMfHR6tXr1ZgYKDc3NzUsmVLxcbGauHChfL391eePHnUp0+fTE367ubmJl9fXxUrVkwtWrRQgwYN9N1331m3G2M0fvx4BQQEyNXVVZUqVdJ///tfmza++eYblSlTRq6urgoNDdXp06czdGxPT0/5+vqqaNGiCg0NVfv27bV3717r9uHDh6ty5co2+0ydOlX+/v4ZPr/UJL82hQsXVkhIiPr166dff/1VR48etda51+shSdu2bVPdunXl5uamPHnyKCwszNrTq169eurbt6+1rr+/v8aMGaPOnTvL09NTxYoV00cffWTT3g8//KDKlSvLxcVFISEhWrlypSwWi6Kioh7ofAEAAAAAwP/J9JxSmzZtsll3cHBQgQIFVKpUKTk5Zbo5u1q7dq3atWunadOm6amnntKJEyf02muvSZKGDRsm6fb5TJs2Tf7+/jp16pR69eqlAQMGaObMmdZ2rl+/rmnTpmnZsmW6evWqmjdvrubNm8vHx0fffPONTp48qRYtWujJJ59U69atMx3n/v37tW3bNpukz+DBg/XFF19o1qxZKl26tLZs2aJ27dqpQIECqlu3rs6ePavmzZurR48e6tmzp3bv3q23334708f+/ffftXr1alWvXj3T+z6IK1eu6JNPPpEk5cqVy1p+r9cjKipKTz/9tDp37qxp06bJyclJmzZtSjchOGnSJI0cOVKDBg3Sf//7X/Xs2VN16tRR2bJldfXqVT3//PNq1KiRPvnkE/366682SS0AAAAAAJA1Mp1FslgsqlWrVooEVEJCgrZs2aI6depkWXBZbfTo0frPf/6jDh06SJICAgI0cuRIDRgwwJqUujMBUaJECY0cOVI9e/a0SUrFx8dr1qxZKlmypCSpZcuWWrx4sf788095eHgoKChIoaGh2rRpU4aTUjNnztTcuXMVHx+vW7duycHBQTNmzJAkxcbGavLkydq4caNq1qxpjX3r1q2aM2eO6tatq1mzZikgIEBTpkyRxWJRYGCgDh48qHHjxt3z2AMHDtTgwYOVmJiouLg4Va9eXZMnT85Q3A8iOjpaHh4eMsbo+vXrkqQXXnhBZcuWtda51+sxfvx4hYSE2Lw+5cuXT/e4jRo1Uq9evSTdPvcpU6YoMjJSZcuW1dKlS2WxWPTxxx/LxcVFQUFB+v3339WtW7c027t586bN/F8xMTEZvwgAAAAAADyiMp2UCg0N1blz51SwYEGb8ujoaIWGhmZqyJq97dmzR7t27dLo0aOtZcmJmOvXr8vNzU2bNm3SmDFjdPjwYcXExCghIUFxcXGKjY2Vu7u7pNtD7ZITUpJUqFAh+fv7y8PDw6bswoULGY7tlVde0bvvvquYmBiNGzdOXl5eatGihSTp8OHDiouLU4MGDWz2uXXrlqpUqSJJOnLkiGrUqCGLxWLdnpzAupd33nlHHTt2lDFGZ8+e1aBBg9S4cWNt2bJFjo6OGT6HzPL09NTevXuVkJCgzZs3a8KECZo9e7ZNnXu9HlFRUWrVqlWmjluxYkXr38lDCJNfq6NHj6pixYpycXGx1qlWrVq67Y0dO1YjRozIVAwAAAAAADzqMp2UMsbYJD6SXbp0yZq0+adKSkrSiBEj1Lx58xTbXFxc9Ouvv6pRo0bq0aOHRo4cqbx582rr1q3q0qWL4uPjrXXvHF4m3U5spFaWlJSU4di8vb1VqlQpSdKSJUtUvnx5zZs3T126dLG28/XXX6to0aI2+zk7O0u6/brcr/z581uPXbp0aU2dOlU1a9bUpk2b9Mwzz8jBwSFF+3dej/vl4OBgPW7ZsmV1/vx5tW7dWlu2bJGkDL0erq6umT5ueq9Vau/ve13b8PBwvfXWW9b1mJgY+fn5ZTouAAAAAAAeJRlOSiUnciwWizp27GhNhki3exsdOHBAtWrVyvoIs1DVqlV19OhRayLkbrt371ZCQoImTZokB4fbc8B/9tln9gxR0u2kyaBBgxQeHq42bdooKChIzs7OOnPmjOrWrZvqPkFBQVq5cqVN2Y4dO+7r+Mm9o27cuCFJKlCggM6fP2+TsMmOSb/79eunyZMn68svv9SLL76YodejYsWK2rBhQ5b1VEoewnfz5k3re3z37t3p7uPs7GxzPwAAAAAAgHvL8NP3vL295e3tLWOMPD09reve3t7y9fXVa6+9piVLlmRnrA9s6NChWrRokYYPH65Dhw7pyJEjWr58uQYPHixJKlmypBISEjR9+nSdPHlSixcvTjGczF7atm0ri8WimTNnytPTU/3791e/fv20cOFCnThxQvv27dOMGTO0cOFCSVKPHj104sQJvfXWWzp69Kg++eQTRUREZOhYV69e1fnz53Xu3Dnt3LlT77zzjvLnz29NMtarV08XL17U+PHjdeLECc2YMUPffvttlp+zl5eXunbtqmHDhskYk6HXIzw8XLt27VKvXr104MAB/fzzz5o1a5b++uuv+4qhbdu2SkpK0muvvaYjR45o7dq1mjhxoiSl2kMQAAAAAADcnwwnpRYsWKAFCxZo2LBhmjdvnnV9wYIFmjNnjsLDw5U/f/7sjPWBhYWFafXq1Vq3bp2eeOIJ1ahRQ5MnT1bx4sUlSZUrV9bkyZM1btw4VahQQUuXLtXYsWNzJNbcuXOrd+/eGj9+vK5du6aRI0dq6NChGjt2rMqVK6ewsDCtWrVKJUqUkCQVK1ZMn3/+uVatWqVKlSpp9uzZGjNmTIaONXToUBUuXFhFihRRkyZN5O7urnXr1ilfvnySpHLlymnmzJmaMWOGKlWqpJ07d6p///7Zct5vvvmmjhw5ohUrVmTo9ShTpoy+++477d+/X9WqVVPNmjX1v//9776fBOnl5aVVq1YpKipKlStX1rvvvquhQ4dKks08UwAAAAAA4MFYzINMRgQ8ApYuXapOnTopOjo6Q3NYxcTEyNvbW5X6zJajc+bnvMKD2zOhfU6HAAAAAACPrOTfxdHR0fLy8kqz3n11J/nvf/+rzz77TGfOnNGtW7dstu3du/d+mgT+MRYtWqSAgAAVLVpU+/fv18CBA/XSSy/d16TqAAAAAAAgdRkevpds2rRp6tSpkwoWLKh9+/apWrVqypcvn06ePKnnnnsuO2L8V/v+++/l4eGR5oJ/nvPnz6tdu3YqV66c+vXrp1atWumjjz7K6bAAAAAAAHioZHr4XtmyZTVs2DC1adNGnp6e2r9/vwICAjR06FBdvnxZH374YXbF+q9048YN/f7772luT+tJgPj3YvhezmP4HgAAAADknGwbvnfmzBnrU9lcXV119epVSdKrr76qGjVqkJS6i6urK4knAAAAAACAu2R6+J6vr68uXbokSSpevLh27NghSTp16pSYMx0AAAAAAAAZkemkVP369bVq1SpJUpcuXdSvXz81aNBArVu31osvvpjlAQIAAAAAAODhk+nhex999JGSkpIkST169FDevHm1detWPf/88+rRo0eWBwgAAAAAAICHT6YnOgeQvoxO6AYAAAAAwMMoo7+LMz18T5K+//57tWvXTjVr1rQ+WW7x4sXaunXr/UULAAAAAACAR0qmk1Kff/65wsLC5Orqqn379unmzZuSpKtXr2rMmDFZHiAAAAAAAAAePplOSo0aNUqzZ8/Wxx9/rFy5clnLa9Wqpb1792ZpcAAAAAAAAHg4ZTopdfToUdWpUydFuZeXl65cuZIVMQEAAAAAAOAhl+mkVOHChXX8+PEU5Vu3blVAQECWBAUAAAAAAICHW6aTUt27d9ebb76pH3/8URaLRX/88YeWLl2q/v37q1evXtkRIwAAAAAAAB4yThmpdODAAVWoUEEODg4aMGCAoqOjFRoaqri4ONWpU0fOzs7q37+/evfund3xAv8adQZ/Kkdn15wO45GzZ0L7nA4BAAAAAJABGUpKValSRefOnVPBggUVEBCgXbt2adCgQTpy5IiSkpIUFBQkDw+P7I4VAAAAAAAAD4kMJaV8fHx06tQpFSxYUKdPn1ZSUpLc3d0VEhKS3fEBAAAAAADgIZShpFSLFi1Ut25dFS5cWBaLRSEhIXJ0dEy17smTJ7M0QAAAAAAAADx8MpSU+uijj9S8eXMdP35cb7zxhrp16yZPT8/sjg0AAAAAAAAPqQwlpSSpYcOGkqQ9e/bozTffJCkFAAAAAACA+5bhpFSyBQsWZEccAAAAAAAAeIQ45HQAAAAAAAAAePSQlMIjIyIiQj4+PjkdBgAAAAAAEEkp/H8WiyXdpWPHjjkS1/Dhw60xODk5KX/+/KpTp46mTp2qmzdvPnDblStXzppAAQAAAABApmR6Tik8nM6dO2f9e/ny5Ro6dKiOHj1qLXN1dc2JsCRJ5cuX1/r165WUlKRLly4pMjJSo0aN0uLFixUZGcmk+wAAAAAA/AvRUwqSJF9fX+vi7e0ti8ViU7ZlyxY9/vjjcnFxUUBAgEaMGKGEhATr/haLRXPmzFGTJk3k5uamcuXKafv27Tp+/Ljq1asnd3d31axZUydOnLDuk9xTac6cOfLz85Obm5tatWqlK1eu2MTm5OQkX19fFSlSRMHBwerTp482b96sn376SePGjbPWu3XrlgYMGKCiRYvK3d1d1atXV2RkZKrnGxERoREjRmj//v3WnlgRERGSpMmTJys4OFju7u7y8/NTr169dO3atSy71gAAAAAAgKQUMmDt2rVq166d3njjDR0+fFhz5sxRRESERo8ebVNv5MiRat++vaKiolS2bFm1bdtW3bt3V3h4uHbv3i1J6t27t80+x48f12effaZVq1ZpzZo1ioqK0uuvv37PmMqWLavnnntOX3zxhbWsU6dO2rZtm5YtW6YDBw6oVatWatiwoX755ZcU+7du3Vpvv/22ypcvr3PnzuncuXNq3bq1JMnBwUHTpk3TTz/9pIULF2rjxo0aMGBAmrHcvHlTMTExNgsAAAAAAEgfSSnc0+jRo/Wf//xHHTp0UEBAgBo0aKCRI0dqzpw5NvU6deqkl156SWXKlNHAgQN1+vRpvfLKKwoLC1O5cuX05ptvpui5FBcXp4ULF6py5cqqU6eOpk+frmXLlun8+fP3jKts2bI6ffq0JOnEiRP69NNPtWLFCj311FMqWbKk+vfvryeffFILFixIsa+rq6s8PDysvbB8fX2tQxT79u2r0NBQlShRQvXr19fIkSP12WefpRnH2LFj5e3tbV38/PzuGTsAAAAAAI865pTCPe3Zs0e7du2y6RmVmJiouLg4Xb9+XW5ubpKkihUrWrcXKlRIkhQcHGxTFhcXp5iYGHl5eUmSihUrpscee8xap2bNmkpKStLRo0fl6+ubblzGGFksFknS3r17ZYxRmTJlbOrcvHlT+fLly9T5btq0SWPGjNHhw4cVExOjhIQExcXFKTY2Vu7u7inqh4eH66233rKux8TEkJgCAAAAAOAeSErhnpKSkjRixAg1b948xTYXFxfr37ly5bL+nZwsSq0sKSkpzWMl10n+b3qOHDmiEiVKWNt0dHTUnj175OjoaFPPw8Pjnm0l+/XXX9WoUSP16NFDI0eOVN68ebV161Z16dJF8fHxqe7j7OwsZ2fnDB8DAAAAAACQlEIGVK1aVUePHlWpUqWyvO0zZ87ojz/+UJEiRSRJ27dvl4ODQ4oeT3f7+eeftWbNGoWHh0uSqlSposTERF24cEFPPfVUho6dO3duJSYm2pTt3r1bCQkJmjRpkhwcbo9uTW/oHgAAAAAAuD8kpXBPQ4cOVZMmTeTn56dWrVrJwcFBBw4c0MGDBzVq1KgHatvFxUUdOnTQxIkTFRMTozfeeEMvvfSSzdC9hIQEnT9/XklJSbp06ZIiIyM1atQoVa5cWe+8844kqUyZMnrllVfUvn17TZo0SVWqVNFff/2ljRs3Kjg4WI0aNUpxbH9/f506dUpRUVF67LHH5OnpqZIlSyohIUHTp0/X888/r23btmn27NkPdI4AAAAAACAlJjrHPYWFhWn16tVat26dnnjiCdWoUUOTJ09W8eLFH7jtUqVKqXnz5mrUqJGeffZZVahQQTNnzrSpc+jQIRUuXFjFihVTvXr19Nlnnyk8PFzff/+9zdC8BQsWqH379nr77bcVGBioF154QT/++GOa8zu1aNFCDRs2VGhoqAoUKKBPP/1UlStX1uTJkzVu3DhVqFBBS5cu1dixYx/4PAEAAAAAgC2LMcbkdBB4NA0fPlwrV65UVFRUToeSpWJiYuTt7a1KfWbL0dk1p8N55OyZ0D6nQwAAAACAR1ry7+Lo6Gjrg85SQ08pAAAAAAAA2B1JKQAAAAAAANgdSSnkmOHDhz90Q/cAAAAAAEDGkJQCAAAAAACA3ZGUAgAAAAAAgN2RlAIAAAAAAIDdkZQCAAAAAACA3TnldADAw2rLqDby8vLK6TAAAAAAAPhHoqcUAAAAAAAA7I6kFAAAAAAAAOyOpBQAAAAAAADsjqQUAAAAAAAA7I6kFAAAAAAAAOyOpBQAAAAAAADszimnAwAeVnUGfypHZ9ecDuNfac+E9jkdAgAAAAAgm9FTCgAAAAAAAHZHUgoAAAAAAAB2R1IKAAAAAAAAdkdSCgAAAAAAAHZHUgoAAAAAAAB2R1IKAAAAAAAAdkdSCgAAAAAAAHZHUgq4h+HDh6ty5co5HQYAAAAAAA8VklIPEYvFku7SsWPHnA4xhXr16qUaa0JCQk6HZtW/f39t2LAhp8MAAAAAAOCh4pTTASDrnDt3zvr38uXLNXToUB09etRa5urqmhNh3VO3bt303nvv2ZQ5Od3fWzM+Pl65cuWyKbt165Zy586d6baMMUpMTJSHh4c8PDzuKx4AAAAAAJA6eko9RHx9fa2Lt7e3LBaLTdmWLVv0+OOPy8XFRQEBARoxYoRNj6TJkycrODhY7u7u8vPzU69evXTt2jXr9oiICPn4+Gj16tUKDAyUm5ubWrZsqdjYWC1cuFD+/v7KkyeP+vTpo8TExAzH7ebmZhOnr6+vdduCBQtUrlw5ubi4qGzZspo5c6Z12+nTp2WxWPTZZ5+pXr16cnFx0ZIlS9SxY0c1a9ZMY8eOVZEiRVSmTBlJ0pIlSxQSEiJPT0/5+vqqbdu2unDhgrW9yMhIWSwWrV27ViEhIXJ2dtb333/P8D0AAAAAALIBPaUeEWvXrlW7du00bdo0PfXUUzpx4oRee+01SdKwYcMkSQ4ODpo2bZr8/f116tQp9erVSwMGDLBJBF2/fl3Tpk3TsmXLdPXqVTVv3lzNmzeXj4+PvvnmG508eVItWrTQk08+qdatWz9QzB9//LGGDRumDz/8UFWqVNG+ffvUrVs3ubu7q0OHDtZ6AwcO1KRJk7RgwQI5Oztr8+bN2rBhg7y8vLRu3ToZYyTd7jE1cuRIBQYG6sKFC+rXr586duyob775xua4AwYM0MSJExUQECAfHx9t3rw53Thv3rypmzdvWtdjYmIe6LwBAAAAAHgUkJR6RIwePVr/+c9/rMmcgIAAjRw5UgMGDLAmpfr27WutX6JECY0cOVI9e/a0SUrFx8dr1qxZKlmypCSpZcuWWrx4sf788095eHgoKChIoaGh2rRpU4aTUjNnztTcuXOt6927d9ekSZM0cuRITZo0Sc2bN7fGdPjwYc2ZM8cmKdW3b19rnWTu7u6aO3euzbC9zp07W/8OCAjQtGnTVK1aNV27ds1meN57772nBg0aZCh2SRo7dqxGjBiR4foAAAAAAICk1CNjz5492rVrl0aPHm0tS0xMVFxcnK5fvy43Nzdt2rRJY8aM0eHDhxUTE6OEhATFxcUpNjZW7u7ukm4PtUtOSElSoUKF5O/vb5PUKVSokM2wuHt55ZVX9O6771rXfXx8dPHiRZ09e1ZdunRRt27drNsSEhLk7e1ts39ISEiKNoODg1PMI7Vv3z4NHz5cUVFRunz5spKSkiRJZ86cUVBQULrtpSc8PFxvvfWWdT0mJkZ+fn6ZagMAAAAAgEcNSalHRFJSkkaMGJGiR5Ekubi46Ndff1WjRo3Uo0cPjRw5Unnz5tXWrVvVpUsXxcfHW+vePYm4xWJJtSw54ZMR3t7eKlWqlE3Zn3/+Ken2EL7q1avbbHN0dLRZT06YpVcWGxurZ599Vs8++6yWLFmiAgUK6MyZMwoLC9OtW7fu2V56nJ2d5ezsnKl9AAAAAAB41JGUekRUrVpVR48eTZH8SbZ7924lJCRo0qRJcnC4Pf/9Z599Zs8QbRQqVEhFixbVyZMn9corrzxwez///LP++usvvf/++9ZeTLt3737gdgEAAAAAwP0hKfWIGDp0qJo0aSI/Pz+1atVKDg4OOnDggA4ePKhRo0apZMmSSkhI0PTp0/X8889r27Ztmj17do7GPHz4cL3xxhvy8vLSc889p5s3b2r37t36+++/bYbLZUSxYsWUO3duTZ8+XT169NBPP/2kkSNHZlPkAAAAAADgXhxyOgDYR1hYmFavXq1169bpiSeeUI0aNTR58mQVL15cklS5cmVNnjxZ48aNU4UKFbR06VKNHTs2R2Pu2rWr5s6dq4iICAUHB6tu3bqKiIhQiRIlMt1WgQIFFBERoRUrVigoKEjvv/++Jk6cmA1RAwAAAACAjLAYY0xOBwE8TGJiYuTt7a1KfWbL0dk1p8P5V9ozoX1OhwAAAAAAuE/Jv4ujo6Pl5eWVZj16SgEAAAAAAMDuSEoh23z//ffy8PBIcwEAAAAAAI8uJjpHtgkJCVFUVFROhwEAAAAAAP6BSEoh27i6uqpUqVI5HQYAAAAAAPgHYvgeAAAAAAAA7I6kFAAAAAAAAOyOpBQAAAAAAADsjjmlgGyyZVQbeXl55XQYAAAAAAD8I9FTCgAAAAAAAHZHUgoAAAAAAAB2R1IKAAAAAAAAdkdSCgAAAAAAAHZHUgoAAAAAAAB2x9P3gGxSZ/CncnR2zekwssSeCe1zOgQAAAAAwEOGnlIAAAAAAACwO5JSAAAAAAAAsDuSUgAAAAAAALA7klIAAAAAAACwO5JSAAAAAAAAsDuSUgAAAAAAALA7klIAAAAAAACwO5JSyJTIyEhZLBZduXLlgdrp2LGjmjVrliUxZbfTp0/LYrEoKioqp0MBAAAAAOChQVLqETZ79mx5enoqISHBWnbt2jXlypVLTz31lE3d77//XhaLRUWKFNG5c+fk7e2dpbFcuHBB3bt3V7FixeTs7CxfX1+FhYVp+/btWXocAAAAAADwz+CU0wEg54SGhuratWvavXu3atSoIel28snX11e7du3S9evX5ebmJul2D6kiRYqoTJky2RJLixYtFB8fr4ULFyogIEB//vmnNmzYoMuXL2fL8QAAAAAAQM6ip9QjLDAwUEWKFFFkZKS1LDIyUk2bNlXJkiX1ww8/2JSHhoamGL4XEREhHx8frV27VuXKlZOHh4caNmyoc+fOWfdNTEzUW2+9JR8fH+XLl08DBgyQMca6/cqVK9q6davGjRun0NBQFS9eXNWqVVN4eLgaN25srWexWDRr1iw999xzcnV1VYkSJbRixQqbc/r999/VunVr5cmTR/ny5VPTpk11+vRpmzoLFixQuXLl5OLiorJly2rmzJk223fu3KkqVarIxcVFISEh2rdv3/1eYgAAAAAAkAaSUo+4evXqadOmTdb1TZs2qV69eqpbt661/NatW9q+fbtCQ0NTbeP69euaOHGiFi9erC1btujMmTPq37+/dfukSZM0f/58zZs3T1u3btXly5f15ZdfWrd7eHjIw8NDK1eu1M2bN9ONd8iQIWrRooX279+vdu3aqU2bNjpy5Ig1jtDQUHl4eGjLli3aunWrNUl269YtSdLHH3+sd999V6NHj9aRI0c0ZswYDRkyRAsXLpQkxcbGqkmTJgoMDNSePXs0fPhwm3MBAAAAAABZg6TUI65evXratm2bEhISdPXqVe3bt0916tRR3bp1rT2oduzYoRs3bqSZlIqPj9fs2bMVEhKiqlWrqnfv3tqwYYN1+9SpUxUeHq4WLVqoXLlymj17ts2cVE5OToqIiNDChQvl4+Oj2rVra9CgQTpw4ECKY7Vq1Updu3ZVmTJlNHLkSIWEhGj69OmSpGXLlsnBwUFz585VcHCwypUrpwULFujMmTPWcxk5cqQmTZqk5s2bq0SJEmrevLn69eunOXPmSJKWLl2qxMREzZ8/X+XLl1eTJk30zjvvpHsNb968qZiYGJsFAAAAAACkj6TUIy40NFSxsbHatWuXvv/+e5UpU0YFCxZU3bp1tWvXLsXGxioyMlLFihVTQEBAqm24ubmpZMmS1vXChQvrwoULkqTo6GidO3dONWvWtG53cnJSSEiITRstWrTQH3/8oa+++kphYWGKjIxU1apVFRERYVPvznaS15N7Su3Zs0fHjx+Xp6entfdV3rx5FRcXpxMnTujixYs6e/asunTpYt3u4eGhUaNG6cSJE5KkI0eOqFKlSta5tFI75t3Gjh0rb29v6+Ln55dufQAAAAAAwETnj7xSpUrpscce06ZNm/T333+rbt26kiRfX1+VKFFC27Zt06ZNm1S/fv0028iVK5fNusVisZkzKqNcXFzUoEEDNWjQQEOHDlXXrl01bNgwdezYMd39LBaLJCkpKUmPP/64li5dmqJOgQIFFBcXJ+n2EL7q1avbbHd0dJSk+4o7PDxcb731lnU9JiaGxBQAAAAAAPdATylYJzCPjIxUvXr1rOV169bV2rVrtWPHjjSH7t2Lt7e3ChcurB07dljLEhIStGfPnnvuGxQUpNjYWJuyO9tJXi9btqwkqWrVqvrll19UsGBBlSpVymbx9vZWoUKFVLRoUZ08eTLF9hIlSliPuX//ft24cSPNY97N2dlZXl5eNgsAAAAAAEgfSSkoNDRUW7duVVRUlLWnlHQ7KfXxxx8rLi7uvpNSkvTmm2/q/fff15dffqmff/5ZvXr1sj69T5IuXbqk+vXra8mSJTpw4IBOnTqlFStWaPz48WratKlNWytWrND8+fN17NgxDRs2TDt37lTv3r0lSa+88ory58+vpk2b6vvvv9epU6e0efNmvfnmm/rtt98kScOHD9fYsWP1wQcf6NixYzp48KAWLFigyZMnS5Latm0rBwcHdenSRYcPH9Y333yjiRMn3ve5AwAAAACA1DF8DwoNDdWNGzdUtmxZFSpUyFpet25dXb16VSVLlnyg4Whvv/22zp07p44dO8rBwUGdO3fWiy++qOjoaEm3n75XvXp1TZkyRSdOnFB8fLz8/PzUrVs3DRo0yKatESNGaNmyZerVq5d8fX21dOlSBQUFSbo9t9WWLVs0cOBANW/eXFevXlXRokX19NNPW3svde3aVW5ubpowYYIGDBggd3d3BQcHq2/fvtZYVq1apR49eqhKlSoKCgrSuHHj1KJFi/s+fwAAAAAAkJLF3M8kOkAOsFgs+vLLL9WsWbOcDiVdMTEx8vb2VqU+s+Xo7JrT4WSJPRPa53QIAAAAAIB/ieTfxdHR0elOccPwPQAAAAAAANgdSSkAAAAAAADYHXNK4V+DkaYAAAAAADw86CkFAAAAAAAAuyMpBQAAAAAAALsjKQUAAAAAAAC7IykFAAAAAAAAu2OicyCbbBnVRl5eXjkdBgAAAAAA/0j0lAIAAAAAAIDdkZQCAAAAAACA3ZGUAgAAAAAAgN2RlAIAAAAAAIDdkZQCAAAAAACA3ZGUAgAAAAAAgN055XQAwMOqzuBP5ejsmtNhPLA9E9rndAgAAAAAgIcQPaUAAAAAAABgdySlAAAAAAAAYHckpQAAAAAAAGB3JKUAAAAAAABgdySlAAAAAAAAYHckpQAAAAAAAGB3JKUAAAAAAABgdySlYOP06dOyWCyKiorK0TiGDx+uypUrP3A7ERER8vHxeeB2AAAAAABA1iIp9Q9msVjSXTp27Jgjcfn7+6caz/vvv58j8dwZ19SpU23KWrdurWPHjuVMQAAAAAAAIE1OOR0A0nbu3Dnr38uXL9fQoUN19OhRa5mrq6tN/fj4eOXKlcsusb333nvq1q2bTZmnp6ddjp0Zrq6uKa4TAAAAAADIef+vvTuPr/HM/z/+PkF2WSxN0jYcBCGxxVJLEdNWCBnLaFpbBDVF0VCCKSpo8bUVnbF0SkxUo5ZWR421tlAtaVJLUtsgna9YW1IxluSc3x++OT9HFqHJieX1fDzuxyPnuq/7uj/3natXH/m4ruswU+oR5u3tbTnc3d1lMBgsn2/cuCEPDw99/vnnCg4OlqOjo5YvX67Lly+re/fuev755+Xs7Kw6deros88+s2rXZDJp+vTp8vPzk4ODgypVqqT3338/zxhMJpMGDBigGjVq6MyZM5bysmXLWsXn7e0tFxcXmUwmPf/881q4cKFVOz/88IMMBoP+/e9/S5LS0tLUqVMnubq6ys3NTeHh4Tp//ny+7yI4OFhRUVFWZZ07d7bMFgsODtaZM2c0fPhwy8wtKe/lewsWLFC1atVkb2+vmjVrKi4uzuq8wWDQ3//+d3Xp0kXOzs6qXr26vvrqq3xjAwAAAAAAD46k1GNu9OjRGjZsmFJTUxUSEqIbN26oYcOGWr9+vQ4fPqw///nP6t27t7777jvLNWPHjtX06dM1fvx4paSkaMWKFfLy8srV9q1btxQeHq4DBw4oISFBlStXvm88dnZ2ev311/Xpp59ala9YsULNmjVT1apVZTab1blzZ/3yyy/auXOntmzZopMnT+q111576Pewdu1aPf/885o0aZLS09OtZpnd7YsvvtDbb7+td955R4cPH9abb76pvn37avv27Vb1YmJiFB4eroMHDyo0NFQ9e/bUL7/88tDxAQAAAAAAayzfe8xFRUWpa9euVmUjR460/Dx06FBt3LhRq1at0gsvvKDffvtNc+fO1UcffaQ+ffpIkqpVq6YXX3zRqo1r166pQ4cO+u9//6sdO3bI3d3d6vzo0aM1btw4q7L169crODhYPXv21OzZs3XmzBlVrlxZJpNJ8fHx+stf/iJJ2rp1qw4ePKhTp07J19dXkhQXF6eAgADt379fjRs3fuD3UK5cOZUqVcoygys/M2fOVGRkpAYPHixJGjFihPbt26eZM2eqTZs2lnqRkZHq3r27JOmDDz7Q/Pnz9f3336tdu3a52rx586Zu3rxp+ZyRkfHA8QMAAAAA8LRhptRjrlGjRlafs7Oz9f7776tu3boqX768XF1dtXnzZqWlpUmSUlNTdfPmTb300ksFttu9e3ddu3ZNmzdvzpWQkqRRo0YpOTnZ6njhhRckSQ0aNJC/v79l2eDOnTt14cIFhYeHW2Lw9fW1JKQkqXbt2vLw8FBqaurDv4xCSE1NVYsWLazKWrRokeu+devWtfzs4uKismXL6sKFC3m2OXXqVLm7u1uOu58LAAAAAADkjaTUY87FxcXq86xZszRnzhxFR0frm2++UXJyskJCQnTr1i1JuTdHz09oaKgOHjyoffv25Xm+QoUK8vPzszrubrtnz55asWKFpDtL90JCQlShQgVJktlstuz5dLf8yqU7ywLNZrNV2e3btwv1LPe69x553ffeDeMNBoNMJlOe7Y0dO1ZXr161HD///PNDxQUAAAAAwNOEpNQTZvfu3erUqZN69eqlevXqqWrVqjp+/LjlfPXq1eXk5KRt27YV2M6gQYM0bdo0/fGPf9TOnTsfOI4ePXro0KFDSkxM1OrVq9WzZ0/Ludq1aystLc0qeZOSkqKrV6+qVq1aebZXsWJFq32isrOzdfjwYas69vb2ys7OLjCuWrVqKSEhwaps7969+d63MBwcHOTm5mZ1AAAAAACAgrGn1BPGz89Pa9as0d69e+Xp6anZs2fr3LlzlqSLo6OjRo8erejoaNnb26tFixa6ePGijhw5ov79+1u1NXToUGVnZ6tjx47617/+ZbXv1G+//aZz585Z1Xd2drYkZKpUqaLmzZurf//+ysrKUqdOnSz1Xn75ZdWtW1c9e/bUhx9+qKysLA0ePFitW7fOtRwxxx/+8AeNGDFCX3/9tapVq6Y5c+boypUrVnWMRqN27dql119/XQ4ODpaZWXcbNWqUwsPDFRQUpJdeekn//Oc/tXbtWm3durXwLxkAAAAAAPxuzJR6wowfP15BQUEKCQlRcHCwvL291blz51x13nnnHU2YMEG1atXSa6+9lu9+SVFRUYqJiVFoaKj27t1rKZ8wYYJ8fHysjujoaKtre/bsqR9//FFdu3a1WtpnMBj05ZdfytPTU61atdLLL7+sqlWrauXKlfk+V79+/dSnTx9FRESodevWqlKlitXG5JI0adIknT59WtWqVVPFihXzbKdz586aO3euZsyYoYCAAC1atEhLly5VcHBwvvcGAAAAAABFz2C+d6MeAL9LRkaG3N3dVW/oQpVyKNweXo+yxBkRJR0CAAAAAOAxkvN38dWrVwvc4oaZUgAAAAAAALA5klIAAAAAAACwOZJSAAAAAAAAsDmSUgAAAAAAALA5klIAAAAAAACwOZJSAAAAAAAAsDmSUgAAAAAAALC50iUdAPCk2jWlu9zc3Eo6DAAAAAAAHknMlAIAAAAAAIDNkZQCAAAAAACAzZGUAgAAAAAAgM2RlAIAAAAAAIDNkZQCAAAAAACAzZGUAgAAAAAAgM2VLukAgCdVq3GfqZSDU0mHka/EGRElHQIAAAAA4CnGTCkAAAAAAADYHEkpAAAAAAAA2BxJKQAAAAAAANgcSSkAAAAAAADYHEkpAAAAAAAA2BxJKQAAAAAAANgcSSkAAAAAAADYHEmpIhYbGysPDw+rssWLF8vX11d2dnb68MMPSySup9WOHTtkMBh05cqVkg4FAAAAAADcpcSSUgaDocAjMjKypEK7rxUrVqhUqVIaOHDgfetmZGRoyJAhGj16tP73f/9Xf/7znx/qnrGxsVbvx8vLS2FhYTpy5MhDtfcoMBqNludxcnKSv7+/ZsyYIbPZXGT3aN68udLT0+Xu7l5kbQIAAAAAgN+vxJJS6enpluPDDz+Um5ubVdncuXNLKrT7WrJkiaKjoxUfH6/r168XWDctLU23b99Whw4d5OPjI2dn54e+b847Onv2rL7++mtlZmaqQ4cOunXr1kO3WdImTZqk9PR0paamauTIkfrLX/6ixYsXF1n79vb28vb2lsFgKLI2AQAAAADA71diSSlvb2/L4e7uLoPBYFW2a9cuNWzYUI6OjqpatapiYmKUlZVluX727NmqU6eOXFxc5Ovrq8GDB+vatWuW8znL6NavX6+aNWvK2dlZ3bp1U2ZmppYtWyaj0ShPT08NHTpU2dnZhY779OnT2rt3r8aMGSN/f3+tXr0637qxsbGqU6eOJKlq1aoyGAw6ffq0Tp48qU6dOsnLy0uurq5q3Lixtm7det9757wjHx8fNWrUSMOHD9eZM2d09OhRS501a9YoICBADg4OMhqNmjVrllUbRqNRU6ZMUUREhFxdXVW5cmWtW7dOFy9eVKdOneTq6qo6derowIEDVtft3btXrVq1kpOTk3x9fTVs2DBlZmZazv/666+KiIiQp6ennJ2d1b59ex0/fvy+z1S2bFl5e3vLaDTqjTfeUN26dbV582bL+cK8q5s3byo6Olq+vr5ycHBQ9erV9cknn0jKvXwvp19s2rRJtWrVkqurq9q1a6f09HRLe1lZWRo2bJg8PDxUvnx5jR49Wn369FHnzp3v+zwAAAAAAKBwHsk9pTZt2qRevXpp2LBhSklJ0aJFixQbG6v333/fUsfOzk7z5s3T4cOHtWzZMn3zzTeKjo62auf69euaN2+e4uPjtXHjRu3YsUNdu3bVhg0btGHDBsXFxWnx4sUFJpbutWTJEnXo0EHu7u7q1auXJfmRl9dee82SQPn++++Vnp4uX19fXbt2TaGhodq6dauSkpIUEhKisLAwpaWlFTqOK1euaMWKFZKkMmXKSJISExMVHh6u119/XYcOHdLEiRM1fvx4xcbGWl07Z84ctWjRQklJSerQoYN69+6tiIgI9erVSz/88IP8/PwUERFhWUZ36NAhhYSEqGvXrjp48KBWrlyphIQEDRkyxNJmZGSkDhw4oK+++krffvutzGazQkNDdfv27UI9j9ls1o4dO5Sammp5HkmFelcRERGKj4/XvHnzlJqaqoULF8rV1TXfe12/fl0zZ85UXFycdu3apbS0NI0cOdJyfvr06fr000+1dOlS7dmzRxkZGfryyy/zbe/mzZvKyMiwOgAAAAAAQMEM5qLcwOchxcbGKioqyjKbpVWrVmrfvr3Gjh1rqbN8+XJFR0fr7NmzebaxatUqDRo0SJcuXbK02bdvX504cULVqlWTJA0cOFBxcXE6f/68JWnRrl07GY1GLVy48L5xmkwmGY1GzZ8/X506ddKlS5f07LPPKiUlRX5+fnk+S3Jysho0aKBTp07JaDTm23ZAQIAGDRpklei59x317dtXLi4uMpvNlmWDf/zjH7Vu3TpJUs+ePXXx4kWrmUbR0dH6+uuvLXtPGY1GtWzZUnFxcZKkc+fOycfHR+PHj9ekSZMkSfv27VOzZs2Unp4ub29vRUREyMnJSYsWLbK0m5CQoNatWyszM1M///yzatSooT179qh58+aSpMuXL8vX11fLli3Tq6++muczGY1Gpaenq0yZMrp165Zu374tR0dHbdu2zdLO/d7VsWPHVLNmTW3ZskUvv/xyrro7duxQmzZt9Ouvv8rDwyPPfvG3v/1NkyZN0rlz5yTdmcU3cuRIS6IqOztbVatWVYMGDfJMTk2cOFExMTG5yusNXahSDk75PkdJS5wRUdIhAAAAAACeQBkZGXJ3d9fVq1fl5uaWb71HcqZUYmKiJk2aJFdXV8sxYMAApaenW5Ix27dv1yuvvKLnnntOZcuWVUREhC5fvmy1pMzZ2dmSeJAkLy8vGY1Gq1k0Xl5eunDhQqHi2rx5szIzM9W+fXtJUoUKFdS2bVstWbLkgZ4vMzNT0dHRql27tjw8POTq6qqffvrpvjOlypYtq+TkZCUmJmrhwoWqVq2aVTItNTVVLVq0sLqmRYsWOn78uNUSxbp161p+9vLykiTLMsO7y3LeS2JiomJjY61+HyEhITKZTDp16pRSU1NVunRpvfDCC5Y2ypcvr5o1ayo1NbXAZxo1apSSk5O1c+dOtWnTRu+++65VQup+7yo5OVmlSpVS69atC7zP3e7tFz4+PpZnvXr1qs6fP68mTZpYzpcqVUoNGzbMt72xY8fq6tWrluPnn38udCwAAAAAADytSpd0AHkxmUyKiYlR165dc51zdHTUmTNnFBoaqoEDB2ry5MkqV66cEhIS1L9/f6vlYncvA5Pu7MmUV5nJZCpUXEuWLNEvv/xitVm5yWRSUlKSJk+erFKlShWqnVGjRmnTpk2aOXOm/Pz85OTkpG7dut13w3I7OzvLjCx/f3+dO3dOr732mnbt2iXpzhK4ezf0zmsi3N3vIKd+XmU578VkMunNN9/UsGHDcrVVqVIlHTt2LM9484rnXhUqVJCfn5/8/Py0Zs0a+fn5qWnTppZZT/d7V05ODz4TKa8+cO97Ksx7zOHg4CAHB4cHjgMAAAAAgKfZI5mUCgoK0tGjRy0JmHsdOHBAWVlZmjVrluzs7kz2+vzzz4s1psuXL2vdunWKj49XQECApdxkMqlly5b617/+pY4dOxaqrd27dysyMlJdunSRdGffpNOnTz9wTMOHD9fs2bP1xRdfqEuXLqpdu7YSEhKs6uzdu1c1atQodMIsL0FBQTpy5Ei+v4/atWsrKytL3333ndXyvWPHjqlWrVqFvk/OxvMjR45UUlKSDAbDfd9VnTp1ZDKZtHPnzjyX7z0od3d3eXl56fvvv1fLli0l3Vm+l5SUpPr16//u9gEAAAAAwB2P5PK9CRMm6B//+IcmTpyoI0eOKDU1VStXrtS4ceMkSdWqVVNWVpbmz5+vf//734qLiyvUnlC/R1xcnMqXL69XX31VgYGBlqNu3brq2LFjgRue38vPz09r165VcnKyfvzxR/Xo0aPQs7Xu5ubmpjfeeEPvvfeezGaz3nnnHW3btk2TJ0/WsWPHtGzZMn300UdWm3g/jNGjR+vbb7/VW2+9peTkZB0/flxfffWVhg4dKkmqXr26OnXqpAEDBighIUE//vijevXqpeeee06dOnV6oHu99dZbOnr0qNasWSPp/u/KaDSqT58+6tevn7788kudOnVKO3bs+F1JyqFDh2rq1Klat26djh49qrffflu//vrrfWd9AQAAAACAwnskk1IhISFav369tmzZosaNG6tp06aaPXu2KleuLEmqX7++Zs+erenTpyswMFCffvqppk6dWqwxLVmyRF26dLHMzLrbn/70J61fv17nz58vVFtz5syRp6enmjdvrrCwMIWEhCgoKOih4nr77beVmpqqVatWKSgoSJ9//rni4+MVGBioCRMmaNKkSYqMjHyotnPUrVtXO3fu1PHjx9WyZUs1aNBA48ePl4+Pj6XO0qVL1bBhQ3Xs2FHNmjWT2WzWhg0bci2Vu5+KFSuqd+/emjhxokwmU6He1YIFC9StWzcNHjxY/v7+GjBggNXeYg9q9OjR6t69uyIiItSsWTPLHlqOjo4P3SYAAAAAALD2SHz7HvAoM5lMqlWrlsLDwzV58uT71s/5lgG+fQ8AAAAA8DQq7LfvPZJ7SgEl6cyZM9q8ebNat26tmzdv6qOPPtKpU6fUo0ePkg4NAAAAAIAnxiO5fK8k7N69W66urvkeeHrY2dkpNjZWjRs3VosWLXTo0CFt3br1gTZtBwAAAAAABWOm1P9p1KiRkpOTSzoMPAJ8fX21Z8+ekg4DAAAAAIAnGkmp/+Pk5CQ/P7+SDgMAAAAAAOCpwPI9AAAAAAAA2BxJKQAAAAAAANgcSSkAAAAAAADYHHtKAcVk15TucnNzK+kwAAAAAAB4JDFTCgAAAAAAADZHUgoAAAAAAAA2R1IKAAAAAAAANkdSCgAAAAAAADZHUgoAAAAAAAA2R1IKAAAAAAAANle6pAMAnlStxn2mUg5OJR2GlcQZESUdAgAAAAAAkpgpBQAAAAAAgBJAUgoAAAAAAAA2R1IKAAAAAAAANkdSCgAAAAAAADZHUgoAAAAAAAA2R1IKAAAAAAAANkdSCgAAAAAAADZHUgoAAAAAAAA291QnpQwGQ4FHZGRkSYeYS3BwsKKionKVx8bGysPDw+bx3C0yMjLP93jixAlJ0q5duxQWFqZnn31WBoNBX375ZYHtBQcHF/j7MRqNxf9QAAAAAACgWJQu6QBKUnp6uuXnlStXasKECTp69KilzMnJqSTCeqy1a9dOS5cutSqrWLGiJCkzM1P16tVT37599ac//em+ba1du1a3bt2SJP38889q0qSJtm7dqoCAAElSqVKlijh6AAAAAABgK0/1TClvb2/L4e7uLoPBYFW2a9cuNWzYUI6OjqpatapiYmKUlZVluX727NmqU6eOXFxc5Ovrq8GDB+vatWuW8zmzl9avX6+aNWvK2dlZ3bp1U2ZmppYtWyaj0ShPT08NHTpU2dnZRfpsJ0+eVKdOneTl5SVXV1c1btxYW7dutaqzfPlyNWrUSGXLlpW3t7d69OihCxcuWM7/+uuv6tmzpypWrCgnJydVr149V8LpXg4ODlbv0Nvb25I8at++vaZMmaKuXbsW6hnKlStnaSMnsVW+fHlL2cWLFxUaGipXV1d5eXmpd+/eunTpkuX6jRs36sUXX5SHh4fKly+vjh076uTJk5bzp0+flsFg0Oeff66WLVvKyclJjRs31rFjx7R//341atRIrq6uateunS5evFiomAEAAAAAQOE81UmpgmzatEm9evXSsGHDlJKSokWLFik2Nlbvv/++pY6dnZ3mzZunw4cPa9myZfrmm28UHR1t1c7169c1b948xcfHa+PGjdqxY4e6du2qDRs2aMOGDYqLi9PixYu1evXqIo3/2rVrCg0N1datW5WUlKSQkBCFhYUpLS3NUufWrVuaPHmyfvzxR3355Zc6deqU1ZLF8ePHKyUlRf/617+UmpqqBQsWqEKFCkUa58NKT09X69atVb9+fR04cEAbN27U+fPnFR4ebqmTmZmpESNGaP/+/dq2bZvs7OzUpUsXmUwmq7bee+89jRs3Tj/88INKly6t7t27Kzo6WnPnztXu3bt18uRJTZgwId9Ybt68qYyMDKsDAAAAAAAUzGA2m80lHcSjIDY2VlFRUbpy5YokqVWrVmrfvr3Gjh1rqbN8+XJFR0fr7NmzebaxatUqDRo0yDJbJzY2Vn379tWJEydUrVo1SdLAgQMVFxen8+fPy9XVVdKdJW9Go1ELFy68b5zBwcHau3ev7O3trcqzsrLk6OhoiT8vAQEBGjRokIYMGZLn+f3796tJkyb67bff5Orqqj/+8Y+qUKGClixZct+4pDt7Si1fvlyOjo6Wsvbt22vVqlW56hoMBn3xxRfq3Llzodo+ffq0qlSpoqSkJNWvX18TJkzQd999p02bNlnq/Oc//5Gvr6+OHj2qGjVq5Grj4sWLeuaZZ3To0CEFBgZa2vz73/+u/v37S5Li4+PVvXt3bdu2TX/4wx8kSdOmTVNsbKx++umnPGObOHGiYmJicpXXG7pQpRwerSWgiTMiSjoEAAAAAMATLiMjQ+7u7rp69arc3NzyrfdU7ylVkMTERO3fv99qZlR2drZu3Lih69evy9nZWdu3b9cHH3yglJQUZWRkKCsrSzdu3FBmZqZcXFwkSc7OzpaElCR5eXnJaDRaElI5ZXcvm7ufnj176t1337UqW7t2rT744APL58zMTMXExGj9+vU6e/assrKy9N///tdqplRSUpImTpyo5ORk/fLLL5YZRGlpaapdu7YGDRqkP/3pT/rhhx/Utm1bde7cWc2bNy8wtjZt2mjBggWWzznvoaglJiZq+/btVu8xx8mTJ1WjRg2dPHlS48eP1759+3Tp0iWr5wsMDLTUr1u3ruVnLy8vSVKdOnWsygr6/YwdO1YjRoywfM7IyJCvr+/DPxwAAAAAAE8BklL5MJlMiomJyXP/I0dHR505c0ahoaEaOHCgJk+erHLlyikhIUH9+/fX7du3LXXLlCljda3BYMiz7N4lZQVxd3eXn5+fVdkzzzxj9XnUqFHatGmTZs6cKT8/Pzk5Oalbt26WjcMzMzPVtm1btW3bVsuXL1fFihWVlpamkJAQS5327dvrzJkz+vrrr7V161a99NJLeuuttzRz5sx8Y3NxcckVW3EwmUwKCwvT9OnTc53z8fGRJIWFhcnX11cff/yxnn32WZlMJgUGBlqeL8fdvw+DwZBnWUG/HwcHBzk4OPyu5wEAAAAA4GlDUiofQUFBOnr0aL4JlgMHDigrK0uzZs2Snd2drbk+//xzW4ZYoN27dysyMlJdunSRdGePqdOnT1vO//TTT7p06ZKmTZtmmdVz4MCBXO1UrFhRkZGRioyMVMuWLTVq1KgCk1K2EhQUpDVr1shoNKp06dzd+PLly0pNTdWiRYvUsmVLSVJCQoKtwwQAAAAAAPkgKZWPCRMmqGPHjvL19dWrr74qOzs7HTx4UIcOHdKUKVNUrVo1ZWVlaf78+QoLC9OePXsKtSeUrfj5+Wnt2rUKCwuTwWDQ+PHjrWb7VKpUSfb29po/f74GDhyow4cPa/LkyVZtTJgwQQ0bNlRAQIBu3ryp9evXq1atWg8d07Vr13TixAnL51OnTik5OVnlypVTpUqVHqitt956Sx9//LG6d++uUaNGqUKFCjpx4oTi4+P18ccfy9PTU+XLl9fixYvl4+OjtLQ0jRkz5qFjBwAAAAAARYtv38tHSEiI1q9fry1btqhx48Zq2rSpZs+ercqVK0uS6tevr9mzZ2v69OkKDAzUp59+qqlTp5Zw1P/fnDlz5OnpqebNmyssLEwhISEKCgqynK9YsaJiY2O1atUq1a5dW9OmTcs1A8re3l5jx45V3bp11apVK5UqVUrx8fEPHdOBAwfUoEEDNWjQQJI0YsQINWjQoMBvtsvPs88+qz179ig7O1shISEKDAzU22+/LXd3d9nZ2cnOzk7x8fFKTExUYGCghg8frhkzZjx07AAAAAAAoGjx7XtAEcv5lgG+fQ8AAAAA8DQq7LfvMVMKAAAAAAAANkdS6hGye/duubq65nsAAAAAAAA8Kdjo/BHSqFEjJScnl3QYAAAAAAAAxY6k1CPEyclJfn5+JR0GAAAAAABAsWP5HgAAAAAAAGyOpBQAAAAAAABsjqQUAAAAAAAAbI49pYBismtKd7m5uZV0GAAAAAAAPJKYKQUAAAAAAACbIykFAAAAAAAAmyMpBQAAAAAAAJsjKQUAAAAAAACbIykFAAAAAAAAm+Pb94Bi0mrcZyrl4FTSYUiSEmdElHQIAAAAAABYYaYUAAAAAAAAbI6kFAAAAAAAAGyOpBQAAAAAAABsjqQUAAAAAAAAbI6kFAAAAAAAAGyOpBQAAAAAAABsjqQUAAAAAAAAbI6kFAAAAAAAAGyOpNQjymAwFHhERkaWdIi5BAcHy2AwaNq0abnOhYaGymAwaOLEiYVq6/Tp0zIYDEpOTi7aIAEAAAAAwCOBpNQjKj093XJ8+OGHcnNzsyqbO3duSYeYJ19fXy1dutSq7OzZs/rmm2/k4+NTQlHdcevWrRK9PwAAAAAA+P9ISj2ivL29LYe7u7sMBoNV2a5du9SwYUM5OjqqatWqiomJUVZWluX62bNnq06dOnJxcZGvr68GDx6sa9euWc7HxsbKw8ND69evV82aNeXs7Kxu3bopMzNTy5Ytk9FolKenp4YOHars7OxCx92xY0ddvnxZe/bssbpX27Zt9cwzz1jVvXnzpqKjo+Xr6ysHBwdVr15dn3zySaHuc/LkSXXq1EleXl5ydXVV48aNtXXrVqs6RqNRU6ZMUWRkpNzd3TVgwABJ0t69e9WqVSs5OTnJ19dXw4YNU2ZmptV1H3zwgfr166eyZcuqUqVKWrx4caHfAQAAAAAAuD+SUo+hTZs2qVevXho2bJhSUlK0aNEixcbG6v3337fUsbOz07x583T48GEtW7ZM33zzjaKjo63auX79uubNm6f4+Hht3LhRO3bsUNeuXbVhwwZt2LBBcXFxWrx4sVavXl3o2Ozt7dWzZ0+r2VKxsbHq169frroRERGKj4/XvHnzlJqaqoULF8rV1bVQ97l27ZpCQ0O1detWJSUlKSQkRGFhYUpLS7OqN2PGDAUGBioxMVHjx4/XoUOHFBISoq5du+rgwYNauXKlEhISNGTIEKvrZs2apUaNGikpKUmDBw/WoEGD9NNPPxX6PQAAAAAAgIIZzGazuaSDQMFiY2MVFRWlK1euSJJatWql9u3ba+zYsZY6y5cvV3R0tM6ePZtnG6tWrdKgQYN06dIlS5t9+/bViRMnVK1aNUnSwIEDFRcXp/Pnz1uSQ+3atZPRaNTChQvvG2dwcLDq16+vfv366cUXX1R6eroSExP16quv6j//+Y8aN26szp07a+LEiTp27Jhq1qypLVu26OWXX87V1unTp1WlShUlJSWpfv36hXpPAQEBGjRokCXBZDQa1aBBA33xxReWOhEREXJyctKiRYssZQkJCWrdurUyMzPl6Ogoo9Goli1bKi4uTpJkNpvl7e2tmJgYDRw4MNd9b968qZs3b1o+Z2RkyNfXV/WGLlQpB6dCxV7cEmdElHQIAAAAAICnREZGhtzd3XX16lW5ubnlW6+0DWNCEUlMTNT+/futZkZlZ2frxo0bun79upydnbV9+3Z98MEHSklJUUZGhrKysnTjxg1lZmbKxcVFkuTs7GxJSEmSl5eXjEaj1WwlLy8vXbhw4YHiq1u3rqpXr67Vq1dr+/bt6t27t8qUKWNVJzk5WaVKlVLr1q0f5hUoMzNTMTExWr9+vc6ePausrCz997//zTVTqlGjRlafExMTdeLECX366aeWMrPZLJPJpFOnTqlWrVqWZ8iRs3Qyv/cwdepUxcTEPNRzAAAAAADwtCIp9RgymUyKiYlR165dc51zdHTUmTNnFBoaqoEDB2ry5MkqV66cEhIS1L9/f92+fdtS995EkcFgyLPMZDI9cIz9+vXTX//6V6WkpOj777/Pdd7J6ffNIBo1apQ2bdqkmTNnys/PT05OTurWrVuuzcxzEnA5TCaT3nzzTQ0bNixXm5UqVbL8/CDvYezYsRoxYoTlc85MKQAAAAAAkD+SUo+hoKAgHT16VH5+fnmeP3DggLKysjRr1izZ2d3ZNuzzzz+3ZYjq0aOHRo4cqXr16ql27dq5ztepU0cmk0k7d+7Mc/ne/ezevVuRkZHq0qWLpDt7TJ0+ffq+1wUFBenIkSP5vruH4eDgIAcHhyJrDwAAAACApwFJqcfQhAkT1LFjR/n6+urVV1+VnZ2dDh48qEOHDmnKlCmqVq2asrKyNH/+fIWFhWnPnj2F2hOqKHl6eio9PT3XjKMcRqNRffr0Ub9+/TRv3jzVq1dPZ86c0YULFxQeHm6pd/To0VzX1q5dW35+flq7dq3CwsJkMBg0fvz4Qs3oGj16tJo2baq33npLAwYMkIuLi1JTU7VlyxbNnz//4R8YAAAAAAA8EL597zEUEhKi9evXa8uWLWrcuLGaNm2q2bNnq3LlypKk+vXra/bs2Zo+fboCAwP16aefaurUqTaP08PDI9fyubstWLBA3bp10+DBg+Xv768BAwYoMzPTqs7rr7+uBg0aWB1nz57VnDlz5OnpqebNmyssLEwhISEKCgq6b0x169bVzp07dfz4cbVs2VINGjTQ+PHj5ePj87ufFwAAAAAAFB7fvgcUsZxvGeDb9wAAAAAAT6PCfvseM6UAAAAAAABgcySlUCi7d++Wq6trvgcAAAAAAMCDYKNzFEqjRo2UnJxc0mEAAAAAAIAnBEkpFIqTk5P8/PxKOgwAAAAAAPCEYPkeAAAAAAAAbI6kFAAAAAAAAGyOpBQAAAAAAABsjj2lgGKya0p3ubm5lXQYAAAAAAA8kpgpBQAAAAAAAJsjKQUAAAAAAACbY/keUMTMZrMkKSMjo4QjAQAAAADA9nL+Hs75+zg/JKWAInb58mVJkq+vbwlHAgAAAABAyfntt9/k7u6e73mSUkARK1eunCQpLS2twP/4gIeVkZEhX19f/fzzz2ymjyJH/0Jxo4+hONG/UJzoXyhuT1IfM5vN+u233/Tss88WWI+kFFDE7OzubNXm7u7+2A8keLS5ubnRx1Bs6F8obvQxFCf6F4oT/QvF7UnpY4WZpMFG5wAAAAAAALA5klIAAAAAAACwOZJSQBFzcHDQe++9JwcHh5IOBU8o+hiKE/0LxY0+huJE/0Jxon+huD2Nfcxgvt/38wEAAAAAAABFjJlSAAAAAAAAsDmSUgAAAAAAALA5klIAAAAAAACwOZJSQCH87W9/U5UqVeTo6KiGDRtq9+7dBdbfuXOnGjZsKEdHR1WtWlULFy7MVWfNmjWqXbu2HBwcVLt2bX3xxRfFFT4ecUXdv2JjY2UwGHIdN27cKM7HwCPsQfpYenq6evTooZo1a8rOzk5RUVF51mMMQ46i7l+MYbjbg/SvtWvX6pVXXlHFihXl5uamZs2aadOmTbnqMX7hbkXdxxjDcLcH6V8JCQlq0aKFypcvLycnJ/n7+2vOnDm56j1pYxhJKeA+Vq5cqaioKL377rtKSkpSy5Yt1b59e6WlpeVZ/9SpUwoNDVXLli2VlJSkv/zlLxo2bJjWrFljqfPtt9/qtddeU+/evfXjjz+qd+/eCg8P13fffWerx8Ijojj6lyS5ubkpPT3d6nB0dLTFI+ER86B97ObNm6pYsaLeffdd1atXL886jGHIURz9S2IMwx0P2r927dqlV155RRs2bFBiYqLatGmjsLAwJSUlWeowfuFuxdHHJMYw3PGg/cvFxUVDhgzRrl27lJqaqnHjxmncuHFavHixpc4TOYaZARSoSZMm5oEDB1qV+fv7m8eMGZNn/ejoaLO/v79V2Ztvvmlu2rSp5XN4eLi5Xbt2VnVCQkLMr7/+ehFFjcdFcfSvpUuXmt3d3Ys8VjyeHrSP3a1169bmt99+O1c5YxhyFEf/YgxDjt/Tv3LUrl3bHBMTY/nM+IW7FUcfYwxDjqLoX126dDH36tXL8vlJHMOYKQUU4NatW0pMTFTbtm2tytu2bau9e/fmec23336bq35ISIgOHDig27dvF1gnvzbxZCqu/iVJ165dU+XKlfX888+rY8eOuf4FD0+Hh+ljhcEYBqn4+pfEGIai6V8mk0m//fabypUrZylj/EKO4upjEmMYiqZ/JSUlae/evWrdurWl7Ekcw0hKAQW4dOmSsrOz5eXlZVXu5eWlc+fO5XnNuXPn8qyflZWlS5cuFVgnvzbxZCqu/uXv76/Y2Fh99dVX+uyzz+To6KgWLVro+PHjxfMgeGQ9TB8rDMYwSMXXvxjDIBVN/5o1a5YyMzMVHh5uKWP8Qo7i6mOMYZB+X/96/vnn5eDgoEaNGumtt97SG2+8YTn3JI5hpUs6AOBxYDAYrD6bzeZcZferf2/5g7aJJ1dR96+mTZuqadOmlvMtWrRQUFCQ5s+fr3nz5hVV2HiMFMd4wxiGHEXdFxjDcLeH7V+fffaZJk6cqHXr1umZZ54pkjbxZCrqPsYYhrs9TP/avXu3rl27pn379mnMmDHy8/NT9+7df1ebjzKSUkABKlSooFKlSuXKPF+4cCFXhjqHt7d3nvVLly6t8uXLF1gnvzbxZCqu/nUvOzs7NW7cmH+hewo9TB8rDMYwSMXXv+7FGPZ0+j39a+XKlerfv79WrVqll19+2eoc4xdyFFcfuxdj2NPp9/SvKlWqSJLq1Kmj8+fPa+LEiZak1JM4hrF8DyiAvb29GjZsqC1btliVb9myRc2bN8/zmmbNmuWqv3nzZjVq1EhlypQpsE5+beLJVFz9615ms1nJycny8fEpmsDx2HiYPlYYjGGQiq9/3Ysx7On0sP3rs88+U2RkpFasWKEOHTrkOs/4hRzF1cfuxRj2dCqq/0eazWbdvHnT8vmJHMNsvrU68JiJj483lylTxvzJJ5+YU1JSzFFRUWYXFxfz6dOnzWaz2TxmzBhz7969LfX//e9/m52dnc3Dhw83p6SkmD/55BNzmTJlzKtXr7bU2bNnj7lUqVLmadOmmVNTU83Tpk0zly5d2rxv3z6bPx9KVnH0r4kTJ5o3btxoPnnypDkpKcnct29fc+nSpc3fffedzZ8PJe9B+5jZbDYnJSWZk5KSzA0bNjT36NHDnJSUZD5y5IjlPGMYchRH/2IMQ44H7V8rVqwwly5d2vzXv/7VnJ6ebjmuXLliqcP4hbsVRx9jDEOOB+1fH330kfmrr74yHzt2zHzs2DHzkiVLzG5ubuZ3333XUudJHMNISgGF8Ne//tVcuXJls729vTkoKMi8c+dOy7k+ffqYW7dubVV/x44d5gYNGpjt7e3NRqPRvGDBglxtrlq1ylyzZk1zmTJlzP7+/uY1a9YU92PgEVXU/SsqKspcqVIls729vblixYrmtm3bmvfu3WuLR8Ej6kH7mKRcR+XKla3qMIYhR1H3L8Yw3O1B+lfr1q3z7F99+vSxapPxC3cr6j7GGIa7PUj/mjdvnjkgIMDs7OxsdnNzMzdo0MD8t7/9zZydnW3V5pM2hhnM5v/bIRcAAAAAAACwEfaUAgAAAAAAgM2RlAIAAAAAAIDNkZQCAAAAAACAzZGUAgAAAAAAgM2RlAIAAAAAAIDNkZQCAAAAAACAzZGUAgAAAAAAgM2RlAIAAAAAAIDNkZQCAADAQwsODlZUVFRJhwEAAB5DBrPZbC7pIAAAAPB4+uWXX1SmTBmVLVu2pEPJZceOHWrTpo1+/fVXeXh4lHQ4AADgHqVLOgAAAAA8vsqVK1fSIeTp9u3bJR0CAAC4D5bvAQAA4KHdvXzPaDRqypQpioiIkKurqypXrqx169bp4sWL6tSpk1xdXVWnTh0dOHDAcn1sbKw8PDz05ZdfqkaNGnJ0dNQrr7yin3/+2eo+CxYsULVq1WRvb6+aNWsqLi7O6rzBYNDChQvVqVMnubi46I033lCbNm0kSZ6enjIYDIqMjJQkbdy4US+++KI8PDxUvnx5dezYUSdPnrS0dfr0aRkMBq1du1Zt2rSRs7Oz6tWrp2+//dbqnnv27FHr1q3l7OwsT09PhYSE6Ndff5Ukmc1m/c///I+qVq0qJycn1atXT6tXry6Sdw4AwJOCpBQAAACKzJw5c9SiRQslJSWpQ4cO6t27tyIiItSrVy/98MMP8vPzU0REhO7eQeL69et6//33tWzZMu3Zs0cZGRl6/fXXLee/+OILvf3223rnnXd0+PBhvfnmm+rbt6+2b99ude/33ntPnTp10qFDhzRp0iStWbNGknT06FGlp6dr7ty5kqTMzEyNGDFC+/fv17Zt22RnZ6cuXbrIZDJZtffuu+9q5MiRSk5OVo0aNdS9e3dlZWVJkpKTk/XSSy8pICBA3377rRISEhQWFqbs7GxJ0rhx47R06VItWLBAR44c0fDhw9WrVy/t3Lmz6F86AACPKfaUAgAAwEMLDg5W/fr19eGHH8poNKply5aWWUznzp2Tj4+Pxo8fr0mTJkmS9u3bp2bNmik9PV3e3t6KjY1V3759tW/fPr3wwguSpJ9++km1atXSd999pyZNmqhFixYKCAjQ4sWLLfcNDw9XZmamvv76a0l3ZkpFRUVpzpw5ljqF3VPq4sWLeuaZZ3To0CEFBgbq9OnTqlKliv7+97+rf//+kqSUlBQFBAQoNTVV/v7+6tGjh9LS0pSQkJCrvczMTFWoUEHffPONmjVrZil/4403dP36da1YseIh3zYAAE8WZkoBAACgyNStW9fys5eXlySpTp06ucouXLhgKStdurQaNWpk+ezv7y8PDw+lpqZKklJTU9WiRQur+7Ro0cJyPsfdbRTk5MmT6tGjh6pWrSo3NzdVqVJFkpSWlpbvs/j4+FjFnTNTKi8pKSm6ceOGXnnlFbm6ulqOf/zjH1bLBAEAeNqx0TkAAACKTJkyZSw/GwyGfMvuXSqXU55f2b3nzWZzrjIXF5dCxRgWFiZfX199/PHHevbZZ2UymRQYGKhbt27d91ly4nZycsq3/Zw6X3/9tZ577jmrcw4ODoWKEQCApwEzpQAAAFCisrKyrDY/P3r0qK5cuSJ/f39JUq1atXItk9u7d69q1apVYLv29vaSZNnnSZIuX76s1NRUjRs3Ti+99JJq1apl2Zz8QdStW1fbtm3L81zt2rXl4OCgtLQ0+fn5WR2+vr4PfC8AAJ5UzJQCAABAiSpTpoyGDh2qefPmqUyZMhoyZIiaNm2qJk2aSJJGjRql8PBwBQUF6aWXXtI///lPrV27Vlu3bi2w3cqVK8tgMGj9+vUKDQ2Vk5OTPD09Vb58eS1evFg+Pj5KS0vTmDFjHjjmsWPHqk6dOho8eLAGDhwoe3t7bd++Xa+++qoqVKigkSNHavjw4TKZTHrxxReVkZGhvXv3ytXVVX369Hmo9wQAwJOGmVIAAAAoUc7Ozho9erR69OihZs2aycnJSfHx8ZbznTt31ty5czVjxgwFBARo0aJFWrp0qYKDgwts97nnnlNMTIzGjBkjLy8vDRkyRHZ2doqPj1diYqICAwM1fPhwzZgx44FjrlGjhjZv3qwff/xRTZo0UbNmzbRu3TqVLn3n33wnT56sCRMmaOrUqapVq5ZCQkL0z3/+07J/FQAA4Nv3AAAAUIJiY2MVFRWlK1eulHQoAADAxpgpBQAAAAAAAJsjKQUAAAAAAACbY/keAAAAAAAAbI6ZUgAAAAAAALA5klIAAAAAAACwOZJSAAAAAAAAsDmSUgAAAAAAALA5klIAAAAAAACwOZJSAAAAAAAAsDmSUgAAAAAAALA5klIAAAAAAACwOZJSAAAAAAAAsLn/B3dteaUzdE2TAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 1200x600 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Training models for British Grand Prix\n",
"\n",
"Model Performance for British Grand Prix:\n",
"\n",
"Linear Regression:\n",
"RMSE: 6.47 seconds\n",
"R2 Score: 0.680\n",
"Cross-validation R2: 0.717 (±0.030)\n",
"\n",
"Random Forest:\n",
"RMSE: 3.66 seconds\n",
"R2 Score: 0.898\n",
"Cross-validation R2: 0.939 (±0.020)\n",
"\n",
"XGBoost:\n",
"RMSE: 3.64 seconds\n",
"R2 Score: 0.899\n",
"Cross-validation R2: 0.933 (±0.022)\n",
"\n",
"Gradient Boosting:\n",
"RMSE: 3.66 seconds\n",
"R2 Score: 0.898\n",
"Cross-validation R2: 0.925 (±0.020)\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAJOCAYAAABm7rQwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACjBklEQVR4nOzdeXxN1/7/8fdJIieTJIYQQ4iIKWZSiiKhGuOlUdRQYipVWlWlaWtITVVDlVtDqURRU6tuq61OxExNoUoVpdE2SqmEaCLD/v3hl/N1ZCDECfF6Ph77cbPXXnutz95nuM6na61tMgzDEAAAAAAAAGBDdvkdAAAAAAAAAB4+JKUAAAAAAABgcySlAAAAAAAAYHMkpQAAAAAAAGBzJKUAAAAAAABgcySlAAAAAAAAYHMkpQAAAAAAAGBzJKUAAAAAAABgcySlAAAAAAAAYHMkpQAANmMymW5ri46OvuexfPjhh3r66adVpUoV2dnZydfXN8t60dHR2ca5a9euW/Yzfvx4mUwm2dnZ6ddff810PDExUe7u7jKZTAoLC7vLq8rakSNHNH78eJ0+ffq26kdFRclkMmnv3r33JB5b+OijjzRr1iyb9HWn9zerbeTIkfdFjPejVatWqXr16nJ2dpbJZFJMTMw96yurz32RIkXUsGFDLVmyJFdtmUwmjR8/3rKf02sRFhaW7XfRrWL9+OOPc3XezQ4dOqT+/furYsWKcnZ2lrOzsypVqqRBgwbdt98FN9/brJw+fdrqdbSzs1OxYsXUtm1b7dy587b6yfjM5vXnp1+/fmrdurVl/8MPP5TJZNL777+fqe6OHTtkb2+f6TsiPT1dy5YtU0hIiEqUKKFChQrJ09NTjz76qKZPn66///7bqr6vr6/V/XBycpK/v79GjBiRqW5++PLLL7N8TVNSUlSxYkWbfa8DsB2H/A4AAPDwuPkHwIQJE7Rp0yZt3LjRqjwgIOCex7J06VKdPXtWDRo0UHp6ulJSUnKsP3nyZAUHB1uV1ahR47b7c3NzU2RkpCZMmGBVvmbNGqWkpKhQoUK3H3wuHTlyRBEREQoKCsr1D94H1UcffaTDhw9r+PDh97yvO72/kZGRqlq1qlVZ6dKl8zi66x7098D58+f1zDPPqHXr1po7d67MZrMqV658z/u98XP/999/68MPP1RYWJgSEhI0bNiw22pj586dKlu2rGU/p9dizJgxevHFF/Ms/tu1YMECDR06VFWqVNGLL76o6tWry2Qy6ejRo1qxYoUeeeQRnThxQhUrVrR5bHll2LBh6tGjh9LS0vTTTz8pIiJCwcHB2rlzp+rWrZvjue3atdPOnTtVqlSpPIvnwIEDWrJkiXbv3m0p6927t9auXauXX35ZTzzxhOX9kZiYqD59+qhy5cqaOHGipf6///6rjh076rvvvlO3bt00e/ZslS5dWgkJCdqxY4emTZum//3vf9q6datV302aNNH06dMtbezdu1fjx4/Xli1b8j0B+eWXX+q9997LlJgqVKiQxo4dq5deeknPPPOMihUrlj8BAshzJKUAADbz6KOPWu17eXnJzs4uU7ktfP3117Kzuz5guH379jp8+HCO9StVqnRXcXbr1k1LlixRRESEpV9J+uCDD/Tkk0/qs88+u+O28X+uXr0qFxeX/A7jttSoUUOBgYH5HcZdSUlJkclkkoPDvf0n5S+//KKUlBT16tVLzZs3z5M2b+e9cvPnvm3bttqzZ49WrFiRY1LKMAwlJSXJ2dk5V98b+ZH02b59u4YMGaJ27drp448/lqOjo+VYixYt9Pzzz2vNmjVydnbOsZ37/bNXrlw5y2vRpEkT+fv7q2XLlpo7d64WLlyY5Tn//vuvnJyc5OXlJS8vrzyN56233lKDBg0yfQcsWLBA1atXV9++fbVx40aZTCa98sorOnXqlHbs2CEnJydL3eHDh+vbb7/VRx99pO7du1u10759e73xxhtavnx5pr4zRlJlCA4O1uXLlzVhwgT98ssvNkn43onu3btrxIgRWrBggV577bX8DgdAHmH6HgDgvnLx4kUNGTJEZcqUkaOjo/z8/PT6668rOTnZqp7JZNLQoUO1YMECVa5cWWazWQEBAVq5cuVt9XNjYsgW+vXrpzNnzujbb7+1lP3yyy/atm2b+vXrl+U5sbGx6tWrl0qUKCGz2axq1appxowZSk9Pt6o3b9481a5dW25ubipcuLCqVq1q+Qd7VFSUunTpIun6D4+MKRtRUVG5ij8sLExubm76+eefFRISIldXV5UqVUpvvfWWJGnXrl167LHH5OrqqsqVK2ea4pQx/eXbb79V3759VbRoUbm6uqpDhw5ZTmtcvHixateuLScnJxUtWlRPPvmkjh49mmVMP/74o5544gkVLlxYLVu2VFBQkL744gv99ttvVtNUMkRERKhhw4YqWrSo3N3dVa9ePX3wwQcyDMOqfV9fX7Vv314bNmxQvXr15OzsrKpVq2rx4sVW15UX9zcrq1atUqNGjeTq6io3NzeFhITowIEDVnX27t2rp59+Wr6+vnJ2dpavr6+6d++u33777bZj9PX1zXLqaFBQkIKCgiz7GdPEli5dqpdfflllypSR2WzWiRMnJEnfffedWrZsKXd3d7m4uKhJkyb6/vvvrdo8f/68nn32Wfn4+MhsNsvLy0tNmjTRd999l+19CAsL02OPPSbpenLXZDJZxfXZZ5+pUaNGcnFxUeHChdWqVatMozIzptHu379fTz31lIoUKXJHCSA7Ozu5ubllGtmY8X00f/58VatWTWaz2fIZuHGK2a1ei6ym761Zs0YNGzaUh4eHXFxc5Ofnl+V3RkpKil5//XWVLl1a7u7uevzxx3Xs2LFbXtPkyZNlb2+vBQsWWCWkbtSlSxerUXzZffYk6dtvv1XHjh1VtmxZy9SwQYMGZZoalvGa/PTTT+revbs8PDxUsmRJ9evXT/Hx8VZ1ExISNHDgQBUrVkxubm5q3bq1fvnll1teW04ykjIZn5WM76hvvvlG/fr1k5eXl1xcXJScnJxp+t7x48fl7u5ueS0zbNy4Ufb29hozZkyOff/111/69NNP9cwzz2Q6VrJkSc2dO1fR0dGaM2eOvv32W82bN0+vvvqqGjRoYKkXFxenxYsXq127dpkSUhlcXFw0cODA27ofHh4ekpTpvX07ny9J2rZtm1q2bKnChQvLxcVFjRs31hdffGFV5+rVqxo5cqQqVKhg+W4PDAzUihUrJF1/X7333nuSrKf7Z9x3R0dHdevWTe+//36m72sADy6SUgCA+0ZSUpKCg4P14YcfasSIEfriiy/Uq1cvvf322woNDc1U/7PPPtPs2bP15ptv6uOPP1b58uXVvXv3u15bJSvPP/+8HBwc5O7urpCQEG3bti1X51eqVElNmza1SmgsXrxYvr6+lh9zNzp//rwaN26sb775RhMmTNBnn32mxx9/XCNHjtTQoUMt9VauXKkhQ4aoefPm+vTTT7Vu3Tq99NJLSkxMlHR92snkyZMlSe+995527typnTt3ql27drm+BykpKQoNDVW7du30v//9T23atFF4eLhee+019enTR/369dOnn36qKlWqKCwsTPv27cvURv/+/WVnZ2dZ8+mHH35QUFCQLl26ZKkzZcoU9e/fX9WrV9fatWv17rvv6tChQ2rUqJGOHz9u1d61a9f0n//8Ry1atND//vc/RUREaO7cuWrSpIm8vb0t13vjj6jTp09r0KBBWr16tdauXavQ0FANGzYs09RKSTp48KBefvllvfTSS/rf//6nWrVqqX///tqyZctd39+0tDSlpqZabRkmT56s7t27KyAgQKtXr9bSpUt1+fJlNW3aVEeOHLG6lipVqmjWrFn6+uuvNXXqVMXFxemRRx6xJAHy8j0gSeHh4YqNjdX8+fP1+eefq0SJElq2bJmeeOIJubu7a8mSJVq9erWKFi2qkJAQq8TUM888o3Xr1mns2LH65ptvtGjRIj3++OO6cOFCtv2NGTPG8kN18uTJ2rlzp+bOnSvp+jTNjh07yt3dXStWrNAHH3ygf/75R0FBQVl+RkNDQ+Xv7681a9Zo/vz5t7zW9PR0y2vz119/6a233tLhw4fVq1evTHXXrVunefPmaezYsfr666/VtGnTTHVy+1rs3LlT3bp1k5+fn1auXKkvvvhCY8eOtXqvZHjttdf022+/adGiRXr//fd1/PhxdejQQWlpadleX1pamjZt2qTAwMBcT03L6rMnSSdPnlSjRo00b948ffPNNxo7dqx2796txx57LMtp0p07d1blypX1ySef6NVXX9VHH32kl156yXLcMAx16tTJkgz99NNP9eijj6pNmza5ivdmGcnUm0dA9evXT4UKFdLSpUv18ccfZzm1ulKlSlq4cKE+/vhjzZ49W5J09uxZ9ejRQ02bNr3lOlfffPONUlJSMk0Jz9C1a1d17dpV4eHh6tOnj2rVqqWxY8da1dm0aZNSU1P1n//853Yv2cIwDMv7+sqVK9q0aZNmzZqlJk2aqEKFCpZ6t/v52rx5s1q0aKH4+Hh98MEHWrFihQoXLqwOHTpo1apVlnojRozQvHnz9MILL2jDhg1aunSpunTpYvn8jxkzRk899ZQkWX133/jeDAoK0m+//XbL0c0AHiAGAAD5pE+fPoarq6tlf/78+YYkY/Xq1Vb1pk6dakgyvvnmG0uZJMPZ2dk4e/aspSw1NdWoWrWq4e/vn6s42rVrZ5QvXz7LY/v37zdefPFF49NPPzW2bNliLF682KhWrZphb29vbNiw4ZZtjxs3zpBknD9/3oiMjDTMZrNx4cIFIzU11ShVqpQxfvx4wzAMw9XV1ejTp4/lvFdffdWQZOzevduqveeee84wmUzGsWPHDMMwjKFDhxqenp45xrBmzRpDkrFp06ZbxmsYhhEZGWlIMvbs2WMp69OnjyHJ+OSTTyxlKSkphpeXlyHJ2L9/v6X8woULhr29vTFixIhMbT755JNWfW3fvt2QZEycONEwDMP4559/DGdnZ6Nt27ZW9WJjYw2z2Wz06NEjU0yLFy/OdA05vaY3SktLM1JSUow333zTKFasmJGenm45Vr58ecPJycn47bffLGX//vuvUbRoUWPQoEGWsju9v1ltKSkpRmxsrOHg4GAMGzbM6rzLly8b3t7eRteuXbNtOzU11bhy5Yrh6upqvPvuu7cVY/ny5a3eexmaN29uNG/e3LK/adMmQ5LRrFkzq3qJiYlG0aJFjQ4dOliVp6WlGbVr1zYaNGhgKXNzczOGDx+ebfzZyeh7zZo1Vu2XLl3aqFmzppGWlmYpv3z5slGiRAmjcePGlrKMz+HYsWNz1d/Nm52dnfH6669nqi/J8PDwMC5evJjlsXHjxln2c3ot+vTpY/W+nT59uiHJuHTp0i1jvfkzs3r1akOSsXPnzmzPPXv2rCHJePrppzMdS01NNVJSUizbjZ+NnD57N0pPTzdSUlKM3377zZBk/O9//7Mcy3hN3n77batzhgwZYjg5OVn6++qrrwxJVu9nwzCMSZMmZbq3WTl16pQhyZg6daqRkpJiJCUlGfv27TMeeeQRQ5LxxRdfGIbxf5/L3r17Z2oj49ipU6esyp977jnD0dHR2Llzp9GiRQujRIkSxp9//pljPBnnOTs7W93Tm/3++++GnZ2dIcnYu3dvpuNvvfWWISnL/x+68XVLSUmxOla+fPks39sNGjQw4uLiLPVy8/l69NFHjRIlShiXL1+2lKWmpho1atQwypYta7nOGjVqGJ06dcrx3jz//PNGTj9Rjx8/bkgy5s2bl2M7AB4cjJQCANw3Nm7cKFdXV8t/Kc2QMbXo5qlALVu2VMmSJS379vb26tatm06cOKHff/89T2KqW7euZs2apU6dOqlp06bq27evduzYoVKlSmnUqFG5aqtLly5ydHTU8uXL9eWXX+rs2bPZPnFv48aNCggIsJquIV2/F4ZhWBaHb9CggS5duqTu3bvrf//73z19epLJZFLbtm0t+w4ODvL391epUqWsFgouWrSoSpQoYTWFLEPPnj2t9hs3bqzy5ctr06ZNkq7/1/F///03033x8fFRixYtMr0HpOsjLXJj48aNevzxx+Xh4SF7e3vLAroXLlzQuXPnrOrWqVNH5cqVs+w7OTmpcuXKWV5bbn344Yfas2eP1ebg4KCvv/5aqamp6t27t9UoKicnJzVv3tzq6ZRXrlzR6NGj5e/vLwcHBzk4OMjNzU2JiYmZpjvmlZvv944dO3Tx4kX16dPHKt709HS1bt1ae/bssYzca9CggaKiojRx4kTt2rXrlg8YyMmxY8f0559/6plnnrGajuvm5qbOnTtr165dunr1ao6x38rUqVMtr823336rUaNG6a233tIrr7ySqW6LFi1UpEiRO7uYbDzyyCOSro+cWb16tf74449s6948YqZWrVqSdMfv1fr166tQoUKWbcaMGZnqZHU/z507p8GDB8vHx0cODg4qVKiQypcvL0lZviezijspKcnyWcz4brj5u6NHjx65up7Ro0erUKFCcnJyUv369RUbG6sFCxZYfadld03Zeeedd1S9enUFBwcrOjpay5Ytu60RZ3/++ae8vLysphXfbPbs2ZYpajdO+76VmJgYq9etUKFCmf5/4bHHHrO8r7dv364PPvhA58+fV4sWLSx1b/fzlZiYqN27d+upp56Sm5ubpZ69vb2eeeYZ/f7775ZppA0aNNBXX32lV199VdHR0fr3339v+7oylChRQpJy/CwAeLCw0DkA4L5x4cIFeXt7Z/qHeokSJeTg4JBpio+3t3emNjLKLly4YPXEq7zk6emp9u3ba/78+fr3339vuQBwBldXV3Xr1k2LFy9W+fLl9fjjj1t+rN3swoULWT4lLWNdl4x78cwzzyg1NVULFy5U586dlZ6erkceeUQTJ05Uq1at7uwCs+Hi4mK1yK50fY2PokWLZqrr6OiopKSkTOXZvWYZ15Pxv1n9sCtdunSmH2cuLi5yd3e/7Wv44Ycf9MQTTygoKEgLFy5U2bJl5ejoqHXr1mnSpEmZfiRl9YQns9l8Rz+mblatWrUsFzr/66+/JP1fQuJmN/5A7NGjh77//nuNGTNGjzzyiNzd3S3Jw7yIMSs3vzYZ8d6cTL7RxYsX5erqqlWrVmnixIlatGiRxowZIzc3Nz355JN6++23s3xv5ORW75X09HT9888/Votv53aKmp+fn9Vr9Pjjj+uff/7RjBkz1L9/f6unJ+blk9kyNGvWTOvWrdPs2bPVu3dvJScnq3r16nr99dczrSN083vVbDZLUo7vg+LFi8vZ2TnLxNVHH32kq1evKi4uLsspYll99tLT0/XEE0/ozz//1JgxY1SzZk25uroqPT1djz76aJax3CruCxcuyMHBIVO93L5fXnzxRfXq1Ut2dnby9PRUhQoVskwK5eZ1NJvN6tGjh1555RXVq1fvtr9zMxZQz87OnTs1Y8YMDR8+XBcvXtT48eP1n//8x+rJtBnJ8ptfuypVqmjPnj2SpPfffz/LRdw9PDys3teNGzdWQECAGjVqpBkzZmjKlCm3/fkyDEOGYWRbT/q/z+rs2bNVtmxZrVq1SlOnTpWTk5NCQkI0bdo0VapUKdv7caOM+3avvt8A2B5JKQDAfaNYsWLavXu3DMOw+rFw7tw5paamqnjx4lb1z549m6mNjLJ7/bjojP+CndN/6c5Kv379tGjRIh06dCjLpyJlKFasmOLi4jKV//nnn5JkdS/69u2rvn37KjExUVu2bNG4cePUvn17/fLLL9kmvfJLdq+Zv7+/pP973bK79pvfA7m9/ytXrlShQoW0fv16qx+F69aty1U791LGNWask5ad+Ph4rV+/XuPGjdOrr75qKU9OTtbFixdvuz8nJ6dMDxKQpL///jvT/ZYy3/OMOnPmzMn2SXMZIxqLFy+uWbNmadasWYqNjdVnn32mV199VefOndOGDRtuO2bp1u8VOzu7TCOXcvt+yUqtWrVkGIYOHTpklZTKi7az0rFjR3Xs2FHJycnatWuXpkyZoh49esjX11eNGjW6q7bt7e3VokULffPNN4qLi7NKLGQkQDIWmb5ZVtd7+PBhHTx4UFFRUerTp4+lPGP9pjtRrFgxpaam6sKFC1bf61l9l+SkbNmyt/W0y9y8jocPH9bYsWP1yCOPaM+ePZo5c6ZGjBhxy/OKFy+u/fv3Z3ksY6Sov7+/Jk2apOTkZH377bcKCwvTzp07ZW9vL+n62koODg767LPP9Oyzz1rOd3Z2tlzn+vXrb/taMkbWHTx4UNLtf74Mw5Cdnd1t/f+Vq6urIiIiFBERob/++ssyaqpDhw76+eefbyvOjO+2rL6bADyYmL4HALhvtGzZUleuXMmUIPjwww8tx2/0/fffW0ZpSNcX7V21apUqVqx4z0ZJSdI///yj9evXq06dOjn+1+6sNGrUSP369dOTTz6pJ598Mtt6LVu21JEjRzL9cPnwww9lMpmyXCDX1dVVbdq00euvv65r167pp59+knR7IyZs5eZE3I4dO/Tbb79ZnqbWqFEjOTs7a9myZVb1fv/9d23cuDHLReGzkt1oJpPJJAcHB8sPO+n6fVm6dGkur8S6r4x28kJISIgcHBx08uRJBQYGZrlJ16/FMAxL/xkWLVqUaXHrnGL09fXVoUOHrMp++eWX23pymyQ1adJEnp6eOnLkSLbxZvVUt3Llymno0KFq1apVtj/Qc1KlShWVKVNGH330kdWTuBITE/XJJ59YnhiW12JiYiT93zSi3LrT94vZbFbz5s01depUScr0JMY7FR4errS0NA0ePPiuplNK/5fQufk9uWDBgjtuM+O77ubvjo8++uiO28wLiYmJ6tKli3x9fbVp0yYNHTpUr776qnbv3n3Lc6tWraoLFy5kesqgdP31OHnypJYsWSJnZ2d5enrq/fff1549ezRt2jRLvVKlSqlfv3764osvbvupszm5+X19u58vV1dXNWzYUGvXrrV6T6enp2vZsmUqW7asKleunKm/kiVLKiwsTN27d9exY8csU21v9fnIeFrrjaPGADzYGCkFALhv9O7dW++995769Omj06dPq2bNmtq2bZsmT56stm3b6vHHH7eqX7x4cbVo0UJjxoyRq6ur5s6dq59//vm2/oF+5MgRy1PMzp49q6tXr1qe2hcQEGD5B2+PHj1Urlw5BQYGqnjx4jp+/LhmzJihv/76y/IY99z64IMPblnnpZde0ocffqh27drpzTffVPny5fXFF19o7ty5eu655yz/yB84cKCcnZ3VpEkTlSpVSmfPntWUKVPk4eFhmf5Vo0YNSdenchQuXFhOTk6qUKHCPR9NlpW9e/dqwIAB6tKli86cOaPXX39dZcqU0ZAhQyRdnxo5ZswYvfbaa+rdu7e6d++uCxcuKCIiQk5OTho3btxt9VOzZk2tXbtW8+bNU/369WVnZ6fAwEC1a9dOM2fOVI8ePfTss8/qwoULmj59eqYf0bmR1/fX19dXb775pl5//XX9+uuvat26tYoUKaK//vpLP/zwg2W0gbu7u5o1a6Zp06apePHi8vX11ebNm/XBBx/I09PztmN85pln1KtXLw0ZMkSdO3fWb7/9prfffjvTU8my4+bmpjlz5qhPnz66ePGinnrqKZUoUULnz5/XwYMHdf78ec2bN0/x8fEKDg5Wjx49VLVqVRUuXFh79uzRhg0bsny65q3Y2dnp7bffVs+ePdW+fXsNGjRIycnJmjZtmi5duqS33nor123e7Pjx49q1a5ek6yPTvvvuO33wwQcKDAzM8ul6tyM375exY8fq999/V8uWLVW2bFldunRJ7777rgoVKqTmzZvf+YXdoEmTJnrvvfc0bNgw1atXT88++6yqV69uGf3yySefSNJtTZOtWrWqKlasqFdffVWGYaho0aL6/PPPc7Um0s2eeOIJNWvWTKNGjVJiYqICAwO1ffv2u0ok54XBgwcrNjbW8pmcMWOGdu7cqaeffloHDhzI9Bm8UVBQkAzD0O7du/XEE09Yyrds2aLZs2dr9OjRatiwoaW8Xbt26tOnT6ZpfLNmzdKpU6fUs2dPffbZZ+rYsaNKly6tq1evWv6/0MnJKdMTBC9dumR5X6ekpOjo0aOaPHmyzGaznn/+eUm5+3xNmTJFrVq1UnBwsEaOHClHR0fNnTtXhw8f1ooVKyzJyoYNG6p9+/aqVauWihQpoqNHj2rp0qVWCeSaNWtKur6eW5s2bWRvb69atWpZEtu7du2Svb29mjVrdkevG4D7UL4srw4AgJH56XuGcf3JbYMHDzZKlSplODg4GOXLlzfCw8ONpKQkq3qSjOeff96YO3euUbFiRaNQoUJG1apVjeXLl99W3xlPfspqu/FpTlOmTDHq1KljeHh4GPb29oaXl5fx5JNPGj/88EOu+jl//nyO9W5++p5hGMZvv/1m9OjRwyhWrJhRqFAho0qVKsa0adOsnoS0ZMkSIzg42ChZsqTh6OholC5d2ujatatx6NAhq7ZmzZplVKhQwbC3tzckGZGRkdnGkt3T925+rQzj+hPaqlevnqm8fPnyRrt27TK1+c033xjPPPOM4enpaXnK3vHjxzOdv2jRIqNWrVqGo6Oj4eHhYXTs2NH46aefrOpkF5NhGMbFixeNp556yvD09DRMJpPV05wWL15sVKlSxTCbzYafn58xZcoU44MPPsj0dK2br+HGa77xqXSGcff3Nyvr1q0zgoODDXd3d8NsNhvly5c3nnrqKeO7776z1Pn999+Nzp07G0WKFDEKFy5stG7d2jh8+HCWT9TLLsb09HTj7bffNvz8/AwnJycjMDDQ2LhxY7ZP37vxCXg32rx5s9GuXTujaNGiRqFChYwyZcoY7dq1s9RPSkoyBg8ebNSqVctwd3c3nJ2djSpVqhjjxo0zEhMTc7wXOfW9bt06o2HDhoaTk5Ph6upqtGzZ0ti+fbtVndv9HN7c342bq6urERAQYIwbN86Ij4+3qp/xfZSVm79TDCP71+Lmp++tX7/eaNOmjVGmTBnD0dHRKFGihNG2bVtj69att7w3GU+dy+m9eKOYmBijb9++RoUKFQyz2Ww4OTkZ/v7+Ru/evY3vv//eqm5On70jR44YrVq1MgoXLmwUKVLE6NKlixEbG5vpPmT3mmT1pLtLly4Z/fr1Mzw9PQ0XFxejVatWxs8//5yrp+9NmzYtx3o5fS5vjmnhwoVZ3tsTJ04Y7u7ut3zCXFpamuHr62sMGTLEUnblyhXDz8/PqFGjhpGcnJzpnH/++ccoXbq08cgjjxipqalWbX344YdGq1atjOLFixsODg6Gh4eH0aBBA2PMmDHG77//btXOzU/fs7e3N8qVK2c89dRTxoEDBzL1ezufL8MwjK1btxotWrQwXF1dDWdnZ+PRRx81Pv/8c6s6r776qhEYGGgUKVLE8v370ksvGX///belTnJysjFgwADDy8vL8t1943uhadOmmZ70CeDBZjKMG8ZjAgDwgDCZTHr++ef13//+N79DwW2IiopS3759tWfPntta1wUACrIZM2Zo0qRJ+uOPP277YRkPu5MnT6pSpUr6+uuv8/xBHgDyD2tKAQAAAIANPf/88/Lw8NB7772X36E8MCZOnKiWLVuSkAIKGJJSAAAAAGBDTk5OWrp06V2tZ/cwSU1NVcWKFUniAQUQ0/cAAAAAAABgc4yUAgAAAAAAgM2RlAIAAAAAAIDNkZQCAAAAAACAzTnkdwBAXklPT9eff/6pwoULy2Qy5Xc4AAAAAAA8lAzD0OXLl1W6dGnZ2WU/HoqkFAqMP//8Uz4+PvkdBgAAAAAAkHTmzBmVLVs22+MkpVBgFC5cWNL1N727u3s+RwMAAAAAwMMpISFBPj4+lt/p2SEphQIjY8qeu7s7SSkAAAAAAPLZrZbWYaFzAAAAAAAA2BwjpVDgNHtjhezNzvkdBgAAAAAAd2zftN75HcI9x0gpAAAAAAAA2BxJKQAAAAAAANgcSSkAAAAAAADYHEkpAAAAAAAA2BxJKQAAAAAAANgcSSkAAAAAAADYHEkpAAAAAAAA2BxJKdjE6dOnZTKZFBMTk9+hAAAAAACA+wBJqQLm3LlzGjRokMqVKyez2Sxvb2+FhIRo586d+R2alZuTVAcPHlT37t3l4+MjZ2dnVatWTe+++27+BgkAAAAAAO4Zh/wOAHmrc+fOSklJ0ZIlS+Tn56e//vpL33//vS5evJjfoeVo37598vLy0rJly+Tj46MdO3bo2Weflb29vYYOHZrf4QEAAAAAgDzGSKkC5NKlS9q2bZumTp2q4OBglS9fXg0aNFB4eLjatWsnSTKZTJo3b57atGkjZ2dnVahQQWvWrLFq548//lC3bt1UpEgRFStWTB07dtTp06et6kRGRqpatWpycnJS1apVNXfuXKvjP/zwg+rWrSsnJycFBgbqwIEDOcber18/zZ49W82bN5efn5969eqlvn37au3atXd/YwAAAAAAwH2HpFQB4ubmJjc3N61bt07JycnZ1hszZow6d+6sgwcPqlevXurevbuOHj0qSbp69aqCg4Pl5uamLVu2aNu2bXJzc1Pr1q117do1SdLChQv1+uuva9KkSTp69KgmT56sMWPGaMmSJZKkxMREtW/fXlWqVNG+ffs0fvx4jRw5MtfXEx8fr6JFi2Z7PDk5WQkJCVYbAAAAAAB4MJCUKkAcHBwUFRWlJUuWyNPTU02aNNFrr72mQ4cOWdXr0qWLBgwYoMqVK2vChAkKDAzUnDlzJEkrV66UnZ2dFi1apJo1a6patWqKjIxUbGysoqOjJUkTJkzQjBkzFBoaqgoVKig0NFQvvfSSFixYIElavny50tLStHjxYlWvXl3t27fXK6+8kqtr2blzp1avXq1BgwZlW2fKlCny8PCwbD4+PrnqAwAAAAAA5B+SUgVM586d9eeff+qzzz5TSEiIoqOjVa9ePUVFRVnqNGrUyOqcRo0aWUZK7du3TydOnFDhwoUtI6+KFi2qpKQknTx5UufPn9eZM2fUv39/y3E3NzdNnDhRJ0+elCQdPXpUtWvXlouLS7Z95uSnn35Sx44dNXbsWLVq1SrbeuHh4YqPj7dsZ86cue0+AAAAAABA/mKh8wLIyclJrVq1UqtWrTR27FgNGDBA48aNU1hYWLbnmEwmSVJ6errq16+v5cuXZ6rj5eWlpKQkSden8DVs2NDquL29vSTJMIw7jv3IkSNq0aKFBg4cqDfeeCPHumazWWaz+Y77AgAAAAAA+YeRUg+BgIAAJSYmWvZ37dpldXzXrl2qWrWqJKlevXo6fvy4SpQoIX9/f6vNw8NDJUuWVJkyZfTrr79mOl6hQgVLfwcPHtS///6bbZ9Z+emnnxQcHKw+ffpo0qRJeXHpAAAAAADgPkVSqgC5cOGCWrRooWXLlunQoUM6deqU1qxZo7ffflsdO3a01FuzZo0WL16sX375RePGjdMPP/ygoUOHSpJ69uyp4sWLq2PHjtq6datOnTqlzZs368UXX9Tvv/8uSRo/frymTJmid999V7/88ot+/PFHRUZGaubMmZKkHj16yM7OTv3799eRI0f05Zdfavr06TnGnpGQatWqlUaMGKGzZ8/q7NmzOn/+/D26WwAAAAAAID8xfa8AcXNzU8OGDfXOO+/o5MmTSklJkY+PjwYOHKjXXnvNUi8iIkIrV67UkCFD5O3treXLlysgIECS5OLioi1btmj06NEKDQ3V5cuXVaZMGbVs2VLu7u6SpAEDBsjFxUXTpk3TqFGj5Orqqpo1a2r48OGWOD7//HMNHjxYdevWVUBAgKZOnarOnTtnG/uaNWt0/vx5LV++3GrqYPny5XX69Om8v1kAAAAAACBfmYy7WQAIDxyTyaRPP/1UnTp1yu9Q8lxCQoI8PDxUe9h82Zud8zscAAAAAADu2L5pvfM7hDuW8fs8Pj7eMsAlK0zfAwAAAAAAgM2RlAIAAAAAAIDNsabUQ4bZmgAAAAAA4H7ASCkAAAAAAADYHEkpAAAAAAAA2BxJKQAAAAAAANgcSSkAAAAAAADYHAudo8DZMrG73N3d8zsMAAAAAACQA0ZKAQAAAAAAwOZISgEAAAAAAMDmSEoBAAAAAADA5khKAQAAAAAAwOZISgEAAAAAAMDmePoeCpxmb6yQvdk5v8MAAADAHdg3rXd+hwAAsBFGSgEAAAAAAMDmSEoBAAAAAADA5khKAQAAAAAAwOZISgEAAAAAAMDmSEoBAAAAAADA5khKAQAAAAAAwOZISgEAAAAAAMDmSErBJk6fPi2TyaSYmJj8DgUAAAAAANwHSEoVMOfOndOgQYNUrlw5mc1meXt7KyQkRDt37szv0KxklaR68cUXVb9+fZnNZtWpUyffYgMAAAAAAPeeQ34HgLzVuXNnpaSkaMmSJfLz89Nff/2l77//XhcvXszv0G7JMAz169dPu3fv1qFDh/I7HAAAAAAAcA8xUqoAuXTpkrZt26apU6cqODhY5cuXV4MGDRQeHq527dpJkkwmk+bNm6c2bdrI2dlZFSpU0Jo1a6za+eOPP9StWzcVKVJExYoVU8eOHXX69GmrOpGRkapWrZqcnJxUtWpVzZ071+r4Dz/8oLp168rJyUmBgYE6cODALeOfPXu2nn/+efn5+d3djQAAAAAAAPc9klIFiJubm9zc3LRu3TolJydnW2/MmDHq3LmzDh48qF69eql79+46evSoJOnq1asKDg6Wm5ubtmzZom3btsnNzU2tW7fWtWvXJEkLFy7U66+/rkmTJuno0aOaPHmyxowZoyVLlkiSEhMT1b59e1WpUkX79u3T+PHjNXLkyHt/AwAAAAAAwAODpFQB4uDgoKioKC1ZskSenp5q0qSJXnvttUxT4bp06aIBAwaocuXKmjBhggIDAzVnzhxJ0sqVK2VnZ6dFixapZs2aqlatmiIjIxUbG6vo6GhJ0oQJEzRjxgyFhoaqQoUKCg0N1UsvvaQFCxZIkpYvX660tDQtXrxY1atXV/v27fXKK6/k+fUmJycrISHBagMAAAAAAA8GklIFTOfOnfXnn3/qs88+U0hIiKKjo1WvXj1FRUVZ6jRq1MjqnEaNGllGSu3bt08nTpxQ4cKFLSOvihYtqqSkJJ08eVLnz5/XmTNn1L9/f8txNzc3TZw4USdPnpQkHT16VLVr15aLi0u2feaFKVOmyMPDw7L5+PjkeR8AAAAAAODeYKHzAsjJyUmtWrVSq1atNHbsWA0YMEDjxo1TWFhYtueYTCZJUnp6uurXr6/ly5dnquPl5aWkpCRJ16fwNWzY0Oq4vb29pOsLlttCeHi4RowYYdlPSEggMQUAAAAAwAOCpNRDICAgQOvWrbPs79q1S71797bar1u3riSpXr16WrVqlUqUKCF3d/dMbXl4eKhMmTL69ddf1bNnz2z7W7p0qf799185Oztb+shrZrNZZrM5z9sFAAAAAAD3HtP3CpALFy6oRYsWWrZsmQ4dOqRTp05pzZo1evvtt9WxY0dLvTVr1mjx4sX65ZdfNG7cOP3www8aOnSoJKlnz54qXry4OnbsqK1bt+rUqVPavHmzXnzxRf3++++SpPHjx2vKlCl699139csvv+jHH39UZGSkZs6cKUnq0aOH7Ozs1L9/fx05ckRffvmlpk+ffsv4T5w4oZiYGJ09e1b//vuvYmJiFBMTY1lgHQAAAAAAFByMlCpA3Nzc1LBhQ73zzjs6efKkUlJS5OPjo4EDB+q1116z1IuIiNDKlSs1ZMgQeXt7a/ny5QoICJAkubi4aMuWLRo9erRCQ0N1+fJllSlTRi1btrSMnBowYIBcXFw0bdo0jRo1Sq6urqpZs6aGDx9uiePzzz/X4MGDVbduXQUEBGjq1Knq3LlzjvEPGDBAmzdvtuxnjN46deqUfH198/BOAQAAAACA/GYybLUAEO4LJpNJn376qTp16pTfoeS5hIQEeXh4qPaw+bI3O+d3OAAAALgD+6b1vnUlAMB9LeP3eXx8fJZLA2Vg+h4AAAAAAABsjqQUAAAAAAAAbI41pR4yzNYEAAAAAAD3A0ZKAQAAAAAAwOZISgEAAAAAAMDmSEoBAAAAAADA5khKAQAAAAAAwOZY6BwFzpaJ3eXu7p7fYQAAAAAAgBwwUgoAAAAAAAA2R1IKAAAAAAAANkdSCgAAAAAAADZHUgoAAAAAAAA2R1IKAAAAAAAANkdSCgAAAAAAADbnkN8BAHmt2RsrZG92zu8wAOChtW9a7/wOAQAAAA8ARkoBAAAAAADA5khKAQAAAAAAwOZISgEAAAAAAMDmSEoBAAAAAADA5khKAQAAAAAAwOZISgEAAAAAAMDmSEoBAAAAAADA5khKwSaio6NlMpl06dIlS9m6devk7+8ve3t7DR8+PN9iAwAAAAAAtkdSqgAymUw5bmFhYfekX19fX82aNSvLY40bN1ZcXJw8PDwsZYMGDdJTTz2lM2fOaMKECfckJgAAAAAAcH9yyO8AkPfi4uIsf69atUpjx47VsWPHLGXOzs65ai8lJUWFChW6q5gcHR3l7e1t2b9y5YrOnTunkJAQlS5d+q7aBgAAAAAADx5GShVA3t7els3Dw0Mmk0ne3t4qWbKkHnvsMS1cuNCq/uHDh2VnZ6eTJ09Kuj7Sav78+erYsaNcXV01ceJESdLnn3+u+vXry8nJSX5+foqIiFBqauptxXTj9L3o6GgVLlxYktSiRQuZTCZFR0dLknbs2KFmzZrJ2dlZPj4+euGFF5SYmJhHdwYAAAAAANwvSEo9REwmk/r166fIyEir8sWLF6tp06aqWLGipWzcuHHq2LGjfvzxR/Xr109ff/21evXqpRdeeEFHjhzRggULFBUVpUmTJuU6jsaNG1tGbn3yySeKi4tT48aN9eOPPyokJEShoaE6dOiQVq1apW3btmno0KF3d+EAAAAAAOC+Q1LqIdO3b18dO3ZMP/zwg6TrU/OWLVumfv36WdXr0aOH+vXrJz8/P5UvX16TJk3Sq6++qj59+sjPz0+tWrXShAkTtGDBglzH4OjoqBIlSkiSihYtKm9vbzk6OmratGnq0aOHhg8frkqVKqlx48aaPXu2PvzwQyUlJWVqJzk5WQkJCVYbAAAAAAB4MLCm1EOmVKlSateunRYvXqwGDRpo/fr1SkpKUpcuXazqBQYGWu3v27dPe/bssRoZlZaWpqSkJF29elUuLi53Hdu+fft04sQJLV++3FJmGIbS09N16tQpVatWzar+lClTFBERcdf9AgAAAAAA2yMp9RAaMGCAnnnmGb3zzjuKjIxUt27dMiWVXF1drfbT09MVERGh0NDQTO05OTnlSVzp6ekaNGiQXnjhhUzHypUrl6ksPDxcI0aMsOwnJCTIx8cnT2IBAAAAAAD3Fkmph1Dbtm3l6uqqefPm6auvvtKWLVtueU69evV07Ngx+fv737O46tWrp59++um2+zCbzTKbzfcsHgAAAAAAcO+QlHoI2dvbKywsTOHh4fL391ejRo1uec7YsWPVvn17+fj4qEuXLrKzs9OhQ4f0448/Wp7OJ0l//PGHYmJirM7NapRTVkaPHq1HH31Uzz//vAYOHChXV1cdPXpU3377rebMmZOrawQAAAAAAPc3Fjp/SPXv31/Xrl3LtMB5dkJCQrR+/Xp9++23euSRR/Too49q5syZKl++vFW96dOnq27dulbbZ599dlt91KpVS5s3b9bx48fVtGlT1a1bV2PGjFGpUqVyfX0AAAAAAOD+ZjIMw8jvIGB727dvV1BQkH7//XeVLFkyv8PJEwkJCfLw8FDtYfNlb3bO73AA4KG1b1rv/A4BAAAA+Sjj93l8fLzc3d2zrcf0vYdMcnKyzpw5ozFjxqhr164FJiEFAAAAAAAeLEzfe8isWLFCVapUUXx8vN5+++38DgcAAAAAADykSEo9ZMLCwpSWlqZ9+/apTJky+R0OAAAAAAB4SJGUAgAAAAAAgM2RlAIAAAAAAIDNkZQCAAAAAACAzZGUAgAAAAAAgM055HcAQF7bMrG73N3d8zsMAAAAAACQA0ZKAQAAAAAAwOZISgEAAAAAAMDmSEoBAAAAAADA5khKAQAAAAAAwOZISgEAAAAAAMDmSEoBAAAAAADA5hzyOwAgrzV7Y4Xszc75HQYAWOyb1ju/QwAAAADuO4yUAgAAAAAAgM2RlAIAAAAAAIDNkZQCAAAAAACAzZGUAgAAAAAAgM2RlAIAAAAAAIDNkZQCAAAAAACAzZGUAgAAAAAAgM2RlHpIRUdHy2Qy6dKlS7k6b/z48SpZsqRMJpPWrVuXbRkAAAAAAEBOSErdx8LCwmQymTJtJ06cyPO+MpJUWW1nz56VJB09elQRERFasGCB4uLi1KZNmyzL7tb48eNVp06du24HAAAAAADcvxzyOwDkrHXr1oqMjLQq8/Lyumf9HTt2TO7u7lZlJUqUkCSdPHlSktSxY0eZTKZsywAAAAAAAG6FkVL3ObPZLG9vb6utf//+6tSpk1W94cOHKygoyLJvGIbefvtt+fn5ydnZWbVr19bHH398y/5KlCiRqT87OzuNHz9eHTp0kCTZ2dnJZDJlWZYhMjJS1apVk5OTk6pWraq5c+da9fP777/r6aefVtGiReXq6qrAwEDt3r1bUVFRioiI0MGDBy0jtaKiou7s5gEAAAAAgPsWI6UKqDfeeENr167VvHnzVKlSJW3ZskW9evWSl5eXmjdvnuv2Ro4cKV9fX/Xt21dxcXGSJDc3t0xlkrRw4UKNGzdO//3vf1W3bl0dOHBAAwcOlKurq/r06aMrV66oefPmKlOmjD777DN5e3tr//79Sk9PV7du3XT48GFt2LBB3333nSTJw8Mjy5iSk5OVnJxs2U9ISMj1dQEAAAAAgPxBUuo+t379erm5uVn227RpI1dX1xzPSUxM1MyZM7Vx40Y1atRIkuTn56dt27ZpwYIFOSalypYta7VfpkwZHTt2TG5ubvL09JQkeXt7W45nVTZhwgTNmDFDoaGhkqQKFSroyJEjWrBggfr06aOPPvpI58+f1549e1S0aFFJkr+/v+V8Nzc3OTg4WLWZlSlTpigiIiLHOgAAAAAA4P5EUuo+FxwcrHnz5ln2XV1dFR4enuM5R44cUVJSklq1amVVfu3aNdWtWzfHc7du3arChQtb9h0ccvcWOX/+vM6cOaP+/ftr4MCBlvLU1FTLiKeYmBjVrVvXkpC6U+Hh4RoxYoRlPyEhQT4+PnfVJgAAAAAAsA2SUvc5V1dXq1FE0vX1mwzDsCpLSUmx/J2eni5J+uKLL1SmTBmremazOcf+KlSoYBn9dCcy+l64cKEaNmxodcze3l6S5OzsfMft38hsNt/yegAAAAAAwP2JpNQDyMvLS4cPH7Yqi4mJUaFChSRJAQEBMpvNio2NvaP1o+5GyZIlVaZMGf3666/q2bNnlnVq1aqlRYsW6eLFi1mOlnJ0dFRaWtq9DhUAAAAAAOQjklIPoBYtWmjatGn68MMP1ahRIy1btkyHDx+2TM0rXLiwRo4cqZdeeknp6el67LHHlJCQoB07dsjNzU19+vTJtu1z584pKSnJqqxYsWKWhNftGD9+vF544QW5u7urTZs2Sk5O1t69e/XPP/9oxIgR6t69uyZPnqxOnTppypQpKlWqlA4cOKDSpUurUaNG8vX11alTpxQTE6OyZcuqcOHCjIgCAAAAAKCAscvvAJB7ISEhGjNmjEaNGqVHHnlEly9fVu/eva3qTJgwQWPHjtWUKVNUrVo1hYSE6PPPP1eFChVybLtKlSoqVaqU1bZv375cxTdgwAAtWrRIUVFRqlmzppo3b66oqChL346Ojvrmm29UokQJtW3bVjVr1tRbb71lmd7XuXNntW7dWsHBwfLy8tKKFSty1T8AAAAAALj/mYybFycCHlAJCQny8PBQ7WHzZW/Om3WrACAv7JvW+9aVAAAAgAIi4/d5fHy83N3ds63HSCkAAAAAAADYHEkpAAAAAAAA2BxJKQAAAAAAANgcSSkAAAAAAADYHEkpAAAAAAAA2BxJKQAAAAAAANgcSSkAAAAAAADYnEN+BwDktS0Tu8vd3T2/wwAAAAAAADlgpBQAAAAAAABsjqQUAAAAAAAAbI6kFAAAAAAAAGyOpBQAAAAAAABsjqQUAAAAAAAAbI6kFAAAAAAAAGzOIb8DAPJaszdWyN7snN9hAA+kfdN653cIAAAAAB4SjJQCAAAAAACAzZGUAgAAAAAAgM2RlAIAAAAAAIDNkZQCAAAAAACAzZGUAgAAAAAAgM2RlAIAAAAAAIDNkZQCAAAAAACAzZGUuk+cPn1aJpNJMTEx+RrH+PHjVadOnbtuJyoqSp6ennfdDgAAAAAAKJhISmXBZDLluIWFheVLXL6+vlnG89Zbb+VLPDfGNWvWLKuybt266ZdffsmfgAAAAAAAwH3PIb8DuB/FxcVZ/l61apXGjh2rY8eOWcqcnZ2t6qekpKhQoUI2ie3NN9/UwIEDrcoKFy5sk75zw9nZOdN9AgAAAAAAyMBIqSx4e3tbNg8PD5lMJst+UlKSPD09tXr1agUFBcnJyUnLli3ThQsX1L17d5UtW1YuLi6qWbOmVqxYYdVuenq6pk6dKn9/f5nNZpUrV06TJk3KMob09HQNHDhQlStX1m+//WYpL1y4sFV83t7ecnV1VXp6usqWLav58+dbtbN//36ZTCb9+uuvkqTY2Fh17NhRbm5ucnd3V9euXfXXX39ley+CgoI0fPhwq7JOnTpZRosFBQXpt99+00svvWQZuSVlPX1v3rx5qlixohwdHVWlShUtXbrU6rjJZNKiRYv05JNPysXFRZUqVdJnn32WbWwAAAAAAODBRVLqDo0ePVovvPCCjh49qpCQECUlJal+/fpav369Dh8+rGeffVbPPPOMdu/ebTknPDxcU6dO1ZgxY3TkyBF99NFHKlmyZKa2r127pq5du2rv3r3atm2bypcvf8t47Ozs9PTTT2v58uVW5R999JEaNWokPz8/GYahTp066eLFi9q8ebO+/fZbnTx5Ut26dbvj+7B27VqVLVtWb775puLi4qxGmd3o008/1YsvvqiXX35Zhw8f1qBBg9S3b19t2rTJql5ERIS6du2qQ4cOqW3bturZs6cuXryYZZvJyclKSEiw2gAAAAAAwIOBpNQdGj58uEJDQ1WhQgWVLl1aZcqU0ciRI1WnTh35+flp2LBhCgkJ0Zo1ayRJly9f1rvvvqu3335bffr0UcWKFfXYY49pwIABVu1euXJF7dq109mzZxUdHa0SJUpYHR89erTc3NystujoaElSz549tX37dsvIqvT0dK1cuVK9evWSJH333Xc6dOiQPvroI9WvX18NGzbU0qVLtXnzZu3Zs+eO7kPRokVlb29vNYIrK9OnT1dYWJiGDBmiypUra8SIEQoNDdX06dOt6oWFhal79+7y9/fX5MmTlZiYqB9++CHLNqdMmSIPDw/L5uPjc0fXAAAAAAAAbI+k1B0KDAy02k9LS9OkSZNUq1YtFStWTG5ubvrmm28UGxsrSTp69KiSk5PVsmXLHNvt3r27rly5om+++UYeHh6Zjr/yyiuKiYmx2ho2bChJqlu3rqpWrWqZNrh582adO3dOXbt2tcTg4+NjlbwJCAiQp6enjh49euc34zYcPXpUTZo0sSpr0qRJpn5r1apl+dvV1VWFCxfWuXPnsmwzPDxc8fHxlu3MmTN5HzgAAAAAALgnSErdIVdXV6v9GTNm6J133tGoUaO0ceNGxcTEKCQkRNeuXZOUeXH07LRt21aHDh3Srl27sjxevHhx+fv7W203tt2zZ0999NFHkq5P3QsJCVHx4sUlSYZhWNZ8ulF25dL1aYGGYViVpaSk3Na13OzmPrLq9+YF400mk9LT07Nsz2w2y93d3WoDAAAAAAAPBpJSeWTr1q3q2LGjevXqpdq1a8vPz0/Hjx+3HK9UqZKcnZ31/fff59jOc889p7feekv/+c9/tHnz5lzH0aNHD/3444/at2+fPv74Y/Xs2dNyLCAgQLGxsVYjio4cOaL4+HhVq1Yty/a8vLys1olKS0vT4cOHreo4OjoqLS0tx7iqVaumbdu2WZXt2LEj234BAAAAAEDB5pDfARQU/v7++uSTT7Rjxw4VKVJEM2fO1NmzZy1JFycnJ40ePVqjRo2So6OjmjRpovPnz+unn35S//79rdoaNmyY0tLS1L59e3311Vd67LHHLMcuX76ss2fPWtV3cXGxjBKqUKGCGjdurP79+ys1NVUdO3a01Hv88cdVq1Yt9ezZU7NmzVJqaqqGDBmi5s2bZ5qOmKFFixYaMWKEvvjiC1WsWFHvvPOOLl26ZFXH19dXW7Zs0dNPPy2z2WwZmXWjV155RV27dlW9evXUsmVLff7551q7dq2+++6727/JAAAAAACgwGCkVB4ZM2aM6tWrp5CQEAUFBcnb21udOnXKVOfll1/W2LFjVa1aNXXr1i3b9ZKGDx+uiIgItW3bVjt27LCUjx07VqVKlbLaRo0aZXVuz549dfDgQYWGhlpN7TOZTFq3bp2KFCmiZs2a6fHHH5efn59WrVqV7XX169dPffr0Ue/evdW8eXNVqFBBwcHBVnXefPNNnT59WhUrVpSXl1eW7XTq1Envvvuupk2bpurVq2vBggWKjIxUUFBQtn0DAAAAAICCy2TcvGAQ8IBKSEiQh4eHag+bL3vz7a3hBcDavmm98zsEAAAAAA+4jN/n8fHxOa7/zEgpAAAAAAAA2BxJKQAAAAAAANgcSSkAAAAAAADYHEkpAAAAAAAA2BxJKQAAAAAAANgcSSkAAAAAAADYHEkpAAAAAAAA2JxDfgcA5LUtE7vL3d09v8MAAAAAAAA5YKQUAAAAAAAAbI6kFAAAAAAAAGyOpBQAAAAAAABsjqQUAAAAAAAAbI6kFAAAAAAAAGyOpBQAAAAAAABsziG/AwDyWrM3Vsje7JzfYQC3tG9a7/wOAQAAAADyDSOlAAAAAAAAYHMkpQAAAAAAAGBzJKUAAAAAAABgcySlAAAAAAAAYHMkpQAAAAAAAGBzJKUAAAAAAABgcySlAAAAAAAAYHMkpR5Sp0+flslkUkxMTH6HAgAAAAAAHkIkpe4DJpMpxy0sLMym8URHR98ypqioKJvGBAAAAAAAChaH/A4AUlxcnOXvVatWaezYsTp27JilzNnZ2ap+SkqKChUqdM/iady4sVVML774ohISEhQZGWkp8/DwuGf9AwAAAACAgo+RUvcBb29vy+bh4SGTyWTZT0pKkqenp1avXq2goCA5OTlp2bJlunDhgrp3766yZcvKxcVFNWvW1IoVK6zaTU9P19SpU+Xv7y+z2axy5cpp0qRJWcaQnp6ugQMHqnLlyoqLi7OKydnZWWaz2bJfsmRJzZkzR35+fnJ2dlbt2rX18ccfW9rKGGn19ddfq27dunJ2dlaLFi107tw5ffXVV6pWrZrc3d3VvXt3Xb161XJeUFCQhg4dqqFDh8rT01PFihXTG2+8IcMw7s2NBwAAAAAA+YaRUg+I0aNHa8aMGYqMjJTZbFZSUpLq16+v0aNHy93dXV988YWeeeYZ+fn5qWHDhpKk8PBwLVy4UO+8844ee+wxxcXF6eeff87U9rVr19SjRw+dPHlS27ZtU4kSJXKM5Y033tDatWs1b948VapUSVu2bFGvXr3k5eWl5s2bW+qNHz9e//3vf+Xi4qKuXbuqa9euMpvN+uijj3TlyhU9+eSTmjNnjkaPHm05Z8mSJerfv792796tvXv36tlnn1X58uU1cODATHEkJycrOTnZsp+QkJDr+woAAAAAAPIHSakHxPDhwxUaGmpVNnLkSMvfw4YN04YNG7RmzRo1bNhQly9f1rvvvqv//ve/6tOnjySpYsWKeuyxx6zauHLlitq1a6d///1X0dHRt5yWl5iYqJkzZ2rjxo1q1KiRJMnPz0/btm3TggULrJJSEydOVJMmTSRJ/fv3V3h4uE6ePCk/Pz9J0lNPPaVNmzZZJaV8fHz0zjvvyGQyqUqVKvrxxx/1zjvvZJmUmjJliiIiIm557wAAAAAAwP2H6XsPiMDAQKv9tLQ0TZo0SbVq1VKxYsXk5uamb775RrGxsZKko0ePKjk5WS1btsyx3e7du+vKlSv65ptvbmudqCNHjigpKUmtWrWSm5ubZfvwww918uRJq7q1atWy/F2yZEm5uLhYElIZZefOnbM659FHH5XJZLLsN2rUSMePH1daWlqmWMLDwxUfH2/Zzpw5c8v4AQAAAADA/YGRUg8IV1dXq/0ZM2bonXfe0axZs1SzZk25urpq+PDhunbtmqTMi6Nnp23btlq2bJl27dqlFi1a3LJ+enq6JOmLL75QmTJlrI6ZzWar/RsXYzeZTJkWZzeZTJb27oTZbM7UJwAAAAAAeDCQlHpAbd26VR07dlSvXr0kXU8WHT9+XNWqVZMkVapUSc7Ozvr+++81YMCAbNt57rnnVKNGDf3nP//RF198YTX9LisBAQEym82KjY29Zd07sWvXrkz7lSpVkr29fZ73BQAAAAAA8g9JqQeUv7+/PvnkE+3YsUNFihTRzJkzdfbsWUtSysnJSaNHj9aoUaPk6OioJk2a6Pz58/rpp5/Uv39/q7aGDRumtLQ0tW/fXl999VWmdaduVLhwYY0cOVIvvfSS0tPT9dhjjykhIUE7duyQm5ubZf2qO3XmzBmNGDFCgwYN0v79+zVnzhzNmDHjrtoEAAAAAAD3H5JSD6gxY8bo1KlTCgkJkYuLi5599ll16tRJ8fHxVnUcHBw0duxY/fnnnypVqpQGDx6cZXvDhw9Xenq62rZtqw0bNqhx48bZ9j1hwgSVKFFCU6ZM0a+//ipPT0/Vq1dPr7322l1fV+/evfXvv/+qQYMGsre317Bhw/Tss8/edbsAAAAAAOD+YjIMw8jvIABJCgoKUp06dTRr1qw7Oj8hIUEeHh6qPWy+7M23t6YWkJ/2Teud3yEAAAAAQJ7L+H0eHx8vd3f3bOvx9D0AAAAAAADYHEkpAAAAAAAA2BxrSuG+ER0dnd8hAAAAAAAAG2GkFAAAAAAAAGyOpBQAAAAAAABsjqQUAAAAAAAAbI6kFAAAAAAAAGyOhc5R4GyZ2F3u7u75HQYAAAAAAMgBI6UAAAAAAABgcySlAAAAAAAAYHMkpQAAAAAAAGBzJKUAAAAAAABgcySlAAAAAAAAYHM8fQ8FTrM3Vsje7JzfYeSZfdN653cIAAAAAADkOUZKAQAAAAAAwOZISgEAAAAAAMDmSEoBAAAAAADA5khKAQAAAAAAwOZISgEAAAAAAMDmSEoBAAAAAADA5khKAQAAAAAAwOZISgEAAAAAAMDm8i0pZTKZctzCwsLyK7RsBQUFafjw4ZnKo6Ki5OnpafN4bhQWFpblfTxx4oQkacuWLerQoYNKly4tk8mkdevW5dheUFBQjq+Pr6/vvb8oAAAAAABQYDnkV8dxcXGWv1etWqWxY8fq2LFjljJnZ+f8COuB1rp1a0VGRlqVeXl5SZISExNVu3Zt9e3bV507d75lW2vXrtW1a9ckSWfOnFGDBg303XffqXr16pIke3v7PI4eAAAAAAA8TPJtpJS3t7dl8/DwkMlksirbsmWL6tevLycnJ/n5+SkiIkKpqamW82fOnKmaNWvK1dVVPj4+GjJkiK5cuWI5njF6af369apSpYpcXFz01FNPKTExUUuWLJGvr6+KFCmiYcOGKS0tLU+v7eTJk+rYsaNKliwpNzc3PfLII/ruu++s6ixbtkyBgYEqXLiwvL291aNHD507d85y/J9//lHPnj3l5eUlZ2dnVapUKVPC6WZms9nqHnp7e1uSR23atNHEiRMVGhp6W9dQtGhRSxsZia1ixYpZys6fP6+2bdvKzc1NJUuW1DPPPKO///7bcv6GDRv02GOPydPTU8WKFVP79u118uRJy/HTp0/LZDJp9erVatq0qZydnfXII4/ol19+0Z49exQYGCg3Nze1bt1a58+fv62YAQAAAADAg+O+XFPq66+/Vq9evfTCCy/oyJEjWrBggaKiojRp0iRLHTs7O82ePVuHDx/WkiVLtHHjRo0aNcqqnatXr2r27NlauXKlNmzYoOjoaIWGhurLL7/Ul19+qaVLl+r999/Xxx9/nKfxX7lyRW3bttV3332nAwcOKCQkRB06dFBsbKylzrVr1zRhwgQdPHhQ69at06lTp6ymLI4ZM0ZHjhzRV199paNHj2revHkqXrx4nsZ5p+Li4tS8eXPVqVNHe/fu1YYNG/TXX3+pa9euljqJiYkaMWKE9uzZo++//152dnZ68sknlZ6ebtXWuHHj9MYbb2j//v1ycHBQ9+7dNWrUKL377rvaunWrTp48qbFjx9r6EgEAAAAAwD1mMgzDyO8goqKiNHz4cF26dEmS1KxZM7Vp00bh4eGWOsuWLdOoUaP0559/ZtnGmjVr9Nxzz1lG60RFRalv3746ceKEKlasKEkaPHiwli5dqr/++ktubm6Srk958/X11fz5828ZZ1BQkHbs2CFHR0er8tTUVDk5OVniz0r16tX13HPPaejQoVke37Nnjxo0aKDLly/Lzc1N//nPf1S8eHEtXrz4lnFJ19eUWrZsmZycnCxlbdq00Zo1azLVNZlM+vTTT9WpU6fbavv06dOqUKGCDhw4oDp16mjs2LHavXu3vv76a0ud33//XT4+Pjp27JgqV66cqY3z58+rRIkS+vHHH1WjRg1Lm4sWLVL//v0lSStXrlT37t31/fffq0WLFpKkt956S1FRUfr5558ztZmcnKzk5GTLfkJCgnx8fFR72HzZmwvO9M9903rndwgAAAAAANy2hIQEeXh4KD4+Xu7u7tnWy7c1pXKyb98+7dmzx2pkVFpampKSknT16lW5uLho06ZNmjx5so4cOaKEhASlpqYqKSlJiYmJcnV1lSS5uLhYElKSVLJkSfn6+loSUhllN06bu5WePXvq9ddftypbu3atJk+ebNlPTExURESE1q9frz///FOpqan6999/rUZKHThwQOPHj1dMTIwuXrxoGUEUGxurgIAAPffcc+rcubP279+vJ554Qp06dVLjxo1zjC04OFjz5s2z7Gfch7y2b98+bdq0yeo+Zjh58qQqV66skydPasyYMdq1a5f+/vtvq+urUaOGpX6tWrUsf5csWVKSVLNmTauy7F6fKVOmKCIiIk+uCQAAAAAA2NZ9mZRKT09XRERElusfOTk56bffflPbtm01ePBgTZgwQUWLFtW2bdvUv39/paSkWOoWKlTI6lyTyZRl2c1TynLi4eEhf39/q7ISJUpY7b/yyiv6+uuvNX36dPn7+8vZ2VlPPfWUZeHwxMREPfHEE3riiSe0bNkyeXl5KTY2ViEhIZY6bdq00W+//aYvvvhC3333nVq2bKnnn39e06dPzzY2V1fXTLHdC+np6erQoYOmTp2a6VipUqUkSR06dJCPj48WLlyo0qVLKz09XTVq1LBcX4YbXw+TyZRlWXavT3h4uEaMGGHZzxgpBQAAAAAA7n/3ZVKqXr16OnbsWLYJlr179yo1NVUzZsyQnd31ZbFWr15tyxBztHXrVoWFhenJJ5+UdH2NqdOnT1uO//zzz/r777/11ltvWZIoe/fuzdSOl5eXwsLCFBYWpqZNm+qVV17JMSllK/Xq1dMnn3wiX19fOThkfgtduHBBR48e1YIFC9S0aVNJ0rZt2/I8DrPZLLPZnOftAgAAAACAe+++TEqNHTtW7du3l4+Pj7p06SI7OzsdOnRIP/74oyZOnKiKFSsqNTVVc+bMUYcOHbR9+/bbWhPKVvz9/bV27Vp16NBBJpNJY8aMsRrtU65cOTk6OmrOnDkaPHiwDh8+rAkTJli1MXbsWNWvX1/Vq1dXcnKy1q9fr2rVqt1xTFeuXNGJEycs+6dOnVJMTIyKFi2qcuXK5aqt559/XgsXLlT37t31yiuvqHjx4jpx4oRWrlyphQsXqkiRIipWrJjef/99lSpVSrGxsXr11VfvOHYAAAAAAFDw3JdP3wsJCdH69ev17bff6pFHHtGjjz6qmTNnqnz58pKkOnXqaObMmZo6dapq1Kih5cuXa8qUKfkc9f955513VKRIETVu3FgdOnRQSEiI6tWrZznu5eWlqKgorVmzRgEBAXrrrbcyjYBydHRUeHi4atWqpWbNmsne3l4rV66845j27t2runXrqm7dupKkESNGqG7dunf0ZLvSpUtr+/btSktLU0hIiGrUqKEXX3xRHh4esrOzk52dnVauXKl9+/apRo0aeumllzRt2rQ7jh0AAAAAABQ898XT94C8kLG6P0/fAwAAAAAg/9zu0/fuy5FSAAAAAAAAKNhISv1/W7dulZubW7YbAAAAAAAA8s59udB5fggMDFRMTEx+hwEAAAAAAPBQICn1/zk7O8vf3z+/wwAAAAAAAHgoMH0PAAAAAAAANndHSamTJ0/qjTfeUPfu3XXu3DlJ0oYNG/TTTz/laXAAAAAAAAAomHKdlNq8ebNq1qyp3bt3a+3atbpy5Yok6dChQxo3blyeBwgAAAAAAICCx2QYhpGbExo1aqQuXbpoxIgRKly4sA4ePCg/Pz/t2bNHnTp10h9//HGvYgVylJCQIA8PD8XHx8vd3T2/wwEAAAAA4KF0u7/Pcz1S6scff9STTz6ZqdzLy0sXLlzIbXMAAAAAAAB4COU6KeXp6am4uLhM5QcOHFCZMmXyJCgAAAAAAAAUbLlOSvXo0UOjR4/W2bNnZTKZlJ6eru3bt2vkyJHq3bv3vYgRAAAAAAAABUyuk1KTJk1SuXLlVKZMGV25ckUBAQFq1qyZGjdurDfeeONexAgAAAAAAIACJlcLnRuGodjYWHl5eens2bPav3+/0tPTVbduXVWqVOlexgncEgudAwAAAACQ/27397lDbho1DEOVKlXSTz/9pEqVKsnPz++uAwUAAAAAAMDDJ1dJKTs7O1WqVEkXLlxgZBTuW83eWCF7s3N+h2Fl3zTWWwMAAAAA4Ea5XlPq7bff1iuvvKLDhw/fi3gAAAAAAADwEMjVSClJ6tWrl65evaratWvL0dFRzs7WI1IuXryYZ8EBAAAAAACgYMp1UmrWrFn3IAwAAAAAAAA8THKdlOrTp8+9iAMAAAAAAAAPkVwnpWJjY3M8Xq5cuTsOBgAAAAAAAA+HXCelfH19ZTKZsj2elpZ2VwEBAAAAAACg4Mt1UurAgQNW+ykpKTpw4IBmzpypSZMm5VlgAAAAAAAAKLhynZSqXbt2prLAwECVLl1a06ZNU2hoaJ4EhoIjKipKw4cP16VLl/I7FAAAAAAAcJ+wy6uGKleurD179uRVcw8Nk8mU4xYWFpYvcY0fP94Sg4ODg4oXL65mzZpp1qxZSk5Ovuu269SpkzeBAgAAAACAB1KuR0olJCRY7RuGobi4OI0fP16VKlXKs8AeFnFxcZa/V61apbFjx+rYsWOWMmdn5/wIS5JUvXp1fffdd0pPT9eFCxcUHR2tiRMnaunSpYqOjlbhwoXzLTYAAAAAAPBgy/VIKU9PTxUpUsSyFS1aVAEBAdq5c6fmzZt3L2Is0Ly9vS2bh4eHTCaTVdmWLVtUv359OTk5yc/PTxEREUpNTbWcbzKZtGDBArVv314uLi6qVq2adu7cqRMnTigoKEiurq5q1KiRTp48aTknY6TSggUL5OPjIxcXF3Xp0iXT9DoHBwd5e3urdOnSqlmzpoYNG6bNmzfr8OHDmjp1qqXetWvXNGrUKJUpU0aurq5q2LChoqOjs7zeqKgoRURE6ODBg5aRWFFRUZKkmTNnqmbNmnJ1dZWPj4+GDBmiK1eu5Nm9BgAAAAAA949cJ6U2bdqkjRs3Wrbo6GgdOXJEJ0+eVKNGje5FjA+tr7/+Wr169dILL7ygI0eOaMGCBYqKisq0oPyECRPUu3dvxcTEqGrVqurRo4cGDRqk8PBw7d27V5I0dOhQq3NOnDih1atX6/PPP9eGDRsUExOj559//pYxVa1aVW3atNHatWstZX379tX27du1cuVKHTp0SF26dFHr1q11/PjxTOd369ZNL7/8sqpXr664uDjFxcWpW7dukiQ7OzvNnj1bhw8f1pIlS7Rx40aNGjUq1/cNAAAAAADc/3I9fc9kMqlx48ZycLA+NTU1VVu2bFGzZs3yLLiH3aRJk/Tqq6+qT58+kiQ/Pz9NmDBBo0aN0rhx4yz1+vbtq65du0qSRo8erUaNGmnMmDEKCQmRJL344ovq27evVdtJSUlasmSJypYtK0maM2eO2rVrpxkzZsjb2zvHuKpWrapvvvlGknTy5EmtWLFCv//+u0qXLi1JGjlypDZs2KDIyEhNnjzZ6lxnZ2e5ublZRmHdaPjw4Za/K1SooAkTJui5557T3Llzs4wjOTnZan2rm6eWAgAAAACA+1euk1LBwcGKi4tTiRIlrMrj4+MVHBystLS0PAvuYbdv3z7t2bPHamRUWlqakpKSdPXqVbm4uEiSatWqZTlesmRJSVLNmjWtypKSkpSQkCB3d3dJUrly5SwJKUlq1KiR0tPTdezYsVsmpQzDkMlkkiTt379fhmGocuXKVnWSk5NVrFixXF3vpk2bNHnyZB05ckQJCQlKTU1VUlKSEhMT5erqmqn+lClTFBERkas+AAAAAADA/SHXSakbExI3unDhQpaJA9y59PR0RUREKDQ0NNMxJycny9+FChWy/J3x2mRVlp6enm1fGXWyem1vdvToUVWoUMHSpr29vfbt2yd7e3urem5ubrdsK8Nvv/2mtm3bavDgwZowYYKKFi2qbdu2qX///kpJScnynPDwcI0YMcKyn5CQIB8fn9vuEwAAAAAA5J/bTkplJEZMJpPCwsJkNpstx9LS0nTo0CE1btw47yN8iNWrV0/Hjh2Tv79/nrcdGxurP//80zLlbufOnbKzs8s04ulmP//8szZs2KDw8HBJUt26dZWWlqZz586padOmt9W3o6NjphF1e/fuVWpqqmbMmCE7u+tLna1evTrHdsxms9X7EAAAAAAAPDhuOynl4eEh6fpIqcKFC8vZ2dlyzNHRUY8++qgGDhyY9xE+xMaOHav27dvLx8dHXbp0kZ2dnQ4dOqQff/xREydOvKu2nZyc1KdPH02fPl0JCQl64YUX1LVrV6upe6mpqTp79qzS09N14cIFRUdHa+LEiapTp45eeeUVSVLlypXVs2dP9e7dWzNmzFDdunX1999/a+PGjapZs6batm2bqW9fX1+dOnVKMTExKlu2rAoXLqyKFSsqNTVVc+bMUYcOHbR9+3bNnz//rq4RAAAAAADcv247KRUZGSnpekJh5MiRTNWzgZCQEK1fv15vvvmm3n77bRUqVEhVq1bVgAED7rptf39/hYaGqm3btrp48aLatm2baUHxn376SaVKlZK9vb08PDwUEBCg8PBwPffcc1YjlCIjIzVx4kS9/PLL+uOPP1SsWDE1atQoy4SUJHXu3Flr165VcHCwLl26pMjISIWFhWnmzJmaOnWqwsPD1axZM02ZMkW9e/e+62sFAAAAAAD3H5NhGEZ+BwHbGj9+vNatW6eYmJj8DiVPJSQkyMPDQ7WHzZe92fnWJ9jQvmkk1wAAAAAAD4eM3+fx8fGWB65lJdcLnUvSxx9/rNWrVys2NlbXrl2zOrZ///47aRIAAAAAAAAPEbvcnjB79mz17dtXJUqU0IEDB9SgQQMVK1ZMv/76q9q0aXMvYgQAAAAAAEABk+uk1Ny5c/X+++/rv//9rxwdHTVq1Ch9++23euGFFxQfH38vYkQeGz9+fIGbugcAAAAAAB4suU5KxcbGqnHjxpIkZ2dnXb58WZL0zDPPaMWKFXkbHQAAAAAAAAqkXCelvL29deHCBUlS+fLltWvXLknSqVOnxJrpAAAAAAAAuB25Tkq1aNFCn3/+uSSpf//+eumll9SqVSt169ZNTz75ZJ4HCAAAAAAAgIIn10/fe//995Weni5JGjx4sIoWLapt27apQ4cOGjx4cJ4HCAAAAAAAgILHZDDnDgVEQkKCPDw8FB8fL3d39/wOBwAAAACAh9Lt/j7P9fQ9Sdq6dat69eqlRo0a6Y8//pAkLV26VNu2bbuzaAEAAAAAAPBQyXVS6pNPPlFISIicnZ114MABJScnS5IuX76syZMn53mAAAAAAAAAKHhynZSaOHGi5s+fr4ULF6pQoUKW8saNG2v//v15GhwAAAAAAAAKplwnpY4dO6ZmzZplKnd3d9elS5fyIiYAAAAAAAAUcLlOSpUqVUonTpzIVL5t2zb5+fnlSVAAAAAAAAAo2HKdlBo0aJBefPFF7d69WyaTSX/++aeWL1+ukSNHasiQIfciRgAAAAAAABQwDrdT6dChQ6pRo4bs7Ow0atQoxcfHKzg4WElJSWrWrJnMZrNGjhypoUOH3ut4gVtq9sYK2Zud8zsMi33Teud3CAAAAAAA3HduKylVt25dxcXFqUSJEvLz89OePXv02muv6ejRo0pPT1dAQIDc3NzudawAAAAAAAAoIG4rKeXp6alTp06pRIkSOn36tNLT0+Xq6qrAwMB7HR8AAAAAAAAKoNtKSnXu3FnNmzdXqVKlZDKZFBgYKHt7+yzr/vrrr3kaIAAAAAAAAAqe20pKvf/++woNDdWJEyf0wgsvaODAgSpcuPC9jg0AAAAAAAAF1G0lpSSpdevWkqR9+/bpxRdfJCkFAAAAAACAO3bbSakMkZGR9yIOAAAAAAAAPETs8jsAAAAAAAAAPHxISiFXTp8+LZPJpJiYmGzrREdHy2Qy6dKlS5KkqKgoeXp62iQ+AAAAAADwYCAp9QAKCwtTp06dMpXfnAy6F3x8fBQXF6caNWrc9jndunXTL7/8YtkfP3686tSpcw+iAwAAAAAAD4pcrymFh5u9vb28vb1zdY6zs7OcnZ3vUUQAAAAAAOBBxEipAiqr0UizZs2Sr6+vZT9jxNXkyZNVsmRJeXp6KiIiQqmpqXrllVdUtGhRlS1bVosXL7ack9X0vS+//FKVK1eWs7OzgoODdfr0aat+b5y+FxUVpYiICB08eFAmk0kmk0lRUVHq16+f2rdvb3VeamqqvL29rfoHAAAAAAAFAyOlHnIbN25U2bJltWXLFm3fvl39+/fXzp071axZM+3evVurVq3S4MGD1apVK/n4+GQ6/8yZMwoNDdXgwYP13HPPae/evXr55Zez7a9bt246fPiwNmzYoO+++06S5OHhocqVK6tZs2aKi4tTqVKlJF1Pdl25ckVdu3bNsq3k5GQlJydb9hMSEu7mVgAAAAAAABtipNQDav369XJzc7Pa2rRpk+t2ihYtqtmzZ6tKlSrq16+fqlSpoqtXr+q1115TpUqVFB4eLkdHR23fvj3L8+fNmyc/Pz+98847qlKlinr27KmwsLBs+3N2dpabm5scHBzk7e0tb29vOTs7q3HjxqpSpYqWLl1qqRsZGakuXbrIzc0ty7amTJkiDw8Py5ZV0gwAAAAAANyfSEo9oIKDgxUTE2O1LVq0KNftVK9eXXZ2//c2KFmypGrWrGnZt7e3V7FixXTu3Lkszz969KgeffRRmUwmS1mjRo1yHYckDRgwQJGRkZKkc+fO6YsvvlC/fv2yrR8eHq74+HjLdubMmTvqFwAAAAAA2B7T9x5Qrq6u8vf3tyr7/fffLX/b2dnJMAyr4ykpKZnaKVSokNW+yWTKsiw9PT3LOG7u42707t1br776qnbu3KmdO3fK19dXTZs2zba+2WyW2WzOs/4BAAAAAIDtkJQqoLy8vHT27FkZhmEZxXTj4uR5JSAgQOvWrbMq27VrV47nODo6Ki0tLVN5sWLF1KlTJ0VGRmrnzp3q27dvXoYKAAAAAADuI0zfK6CCgoJ0/vx5vf322zp58qTee+89ffXVV3nez+DBg3Xy5EmNGDFCx44d00cffaSoqKgcz/H19dWpU6cUExOjv//+22qx8gEDBmjJkiU6evSo+vTpk+fxAgAAAACA+wNJqQKqWrVqmjt3rt577z3Vrl1bP/zwg0aOHJnn/ZQrV06ffPKJPv/8c9WuXVvz58/X5MmTczync+fOat26tYKDg+Xl5aUVK1ZYjj3++OMqVaqUQkJCVLp06TyPFwAAAAAA3B9MRl4uCgTcpatXr6p06dJavHixQkNDc3VuQkKCPDw8VHvYfNmbne9RhLm3b1rv/A4BAAAAAACbyfh9Hh8fL3d392zrsaYU7gvp6ek6e/asZsyYIQ8PD/3nP//J75AAAAAAAMA9RFIK94XY2FhVqFBBZcuWVVRUlBwceGsCAAAAAFCQ8csf9wVfX18xkxQAAAAAgIcHC50DAAAAAADA5khKAQAAAAAAwOZISgEAAAAAAMDmSEoBAAAAAADA5ljoHAXOlond5e7unt9hAAAAAACAHDBSCgAAAAAAADZHUgoAAAAAAAA2R1IKAAAAAAAANkdSCgAAAAAAADZHUgoAAAAAAAA2R1IKAAAAAAAANueQ3wEAea3ZGytkb3bO7zAkSfum9c7vEAAAAAAAuC8xUgoAAAAAAAA2R1IKAAAAAAAANkdSCgAAAAAAADZHUgoAAAAAAAA2R1IKAAAAAAAANkdSCgAAAAAAADZHUgoAAAAAAAA2R1LqIRMdHS2TyaRLly7ldygAAAAAAOAhRlKqgNqxY4fs7e3VunVrq/LGjRsrLi5OHh4e2Z7r6+srk8mU7RYUFHSPowcAAAAAAAWdQ34HgHtj8eLFGjZsmBYtWqTY2FiVK1dOkuTo6Chvb+9sz0tLS9Pu3btlGIak68mtzp0769ixY3J3d7e0AQAAAAAAcDcYKVUAJSYmavXq1XruuefUvn17RUVFWY7dPH0vKipKnp6eWr9+vQICAmQ2m3X16lV5e3vL29tbRYsWlSSVKFHCUvbzzz+rWbNmcnZ2lo+Pj1544QUlJiZa+vD19dXEiRPVu3dvubm5qXz58vrf//6n8+fPq2PHjnJzc1PNmjW1d+9eyzkZcaxbt06VK1eWk5OTWrVqpTNnztjkngEAAAAAANsiKVUArVq1SlWqVFGVKlXUq1cvRUZGWkY+ZeXq1auaMmWKFi1apJ9++kklSpTItu6PP/6okJAQhYaG6tChQ1q1apW2bdumoUOHWtV755131KRJEx04cEDt2rXTM888o969e6tXr17av3+//P391bt3b6u4rl69qkmTJmnJkiXavn27EhIS9PTTT2cbS3JyshISEqw2AAAAAADwYCApVQB98MEH6tWrlySpdevWunLlir7//vts66ekpGju3Llq3LixqlSpIldX12zrTps2TT169NDw4cNVqVIlNW7cWLNnz9aHH36opKQkS722bdtq0KBBqlSpksaOHavLly/rkUceUZcuXVS5cmWNHj1aR48e1V9//WUVx3//+181atRI9evX15IlS7Rjxw798MMPWcYyZcoUeXh4WDYfH5/c3ioAAAAAAJBPSEoVMMeOHdMPP/xgGWHk4OCgbt26afHixdme4+joqFq1at1W+/v27VNUVJTc3NwsW0hIiNLT03Xq1ClLvRvbK1mypCSpZs2amcrOnTtnKXNwcFBgYKBlv2rVqvL09NTRo0ezjCU8PFzx8fGWjal+AAAAAAA8OFjovID54IMPlJqaqjJlyljKDMNQoUKF9M8//2R5jrOzs0wm0221n56erkGDBumFF17IdCxjMXVJKlSokOXvjLazKktPT7dqI6s4sovNbDbLbDbfVtwAAAAAAOD+QlKqAElNTdWHH36oGTNm6IknnrA61rlzZy1fvlw1atS4qz7q1aunn376Sf7+/nfVTlZSU1O1d+9eNWjQQNL1UV+XLl1S1apV87wvAAAAAACQv5i+V4CsX79e//zzj/r3768aNWpYbU899ZQ++OCDu+5j9OjR2rlzp55//nnFxMTo+PHj+uyzzzRs2LC7brtQoUIaNmyYdu/erf3796tv37569NFHLUkqAAAAAABQcJCUKkA++OADPf744/Lw8Mh0rHPnzoqJidH+/fvvqo9atWpp8+bNOn78uJo2baq6detqzJgxKlWq1F21K0kuLi4aPXq0evTooUaNGsnZ2VkrV66863YBAAAAAMD9x2QYhpHfQQBRUVEaPny4Ll26dMdtJCQkyMPDQ7WHzZe92TnvgrsL+6b1zu8QAAAAAACwqYzf5/Hx8XJ3d8+2HiOlAAAAAAAAYHMkpQAAAAAAAGBzJKVwXwgLC7urqXsAAAAAAODBQlIKAAAAAAAANkdSCgAAAAAAADZHUgoAAAAAAAA2R1IKAAAAAAAANueQ3wEAeW3LxO5yd3fP7zAAAAAAAEAOGCkFAAAAAAAAmyMpBQAAAAAAAJsjKQUAAAAAAACbIykFAAAAAAAAmyMpBQAAAAAAAJvj6XsocJq9sUL2Zud70va+ab3vSbsAAAAAADxsGCkFAAAAAAAAmyMpBQAAAAAAAJsjKQUAAAAAAACbIykFAAAAAAAAmyMpBQAAAAAAAJsjKQUAAAAAAACbIykFAAAAAAAAmyMphfva+PHjVadOnfwOAwAAAAAA5DGSUnnEZDLluIWFheV3iJkEBQVlGWtqamp+h2YxcuRIff/99/kdBgAAAAAAyGMO+R1AQREXF2f5e9WqVRo7dqyOHTtmKXN2ds6PsG5p4MCBevPNN63KHBzu7G2RkpKiQoUKWZVdu3ZNjo6OuW7LMAylpaXJzc1Nbm5udxQPAAAAAAC4fzFSKo94e3tbNg8PD5lMJquyLVu2qH79+nJycpKfn58iIiKsRiTNnDlTNWvWlKurq3x8fDRkyBBduXLFcjwqKkqenp5av369qlSpIhcXFz311FNKTEzUkiVL5OvrqyJFimjYsGFKS0u77bhdXFys4vT29rYci4yMVLVq1eTk5KSqVatq7ty5lmOnT5+WyWTS6tWrFRQUJCcnJy1btkxhYWHq1KmTpkyZotKlS6ty5cqSpGXLlikwMFCFCxeWt7e3evTooXPnzlnai46Olslk0tdff63AwECZzWZt3bqV6XsAAAAAABRQjJSyga+//lq9evXS7Nmz1bRpU508eVLPPvusJGncuHGSJDs7O82ePVu+vr46deqUhgwZolGjRlklgq5evarZs2dr5cqVunz5skJDQxUaGipPT099+eWX+vXXX9W5c2c99thj6tat213FvHDhQo0bN07//e9/VbduXR04cEADBw6Uq6ur+vTpY6k3evRozZgxQ5GRkTKbzdq8ebO+//57ubu769tvv5VhGJKuj5iaMGGCqlSponPnzumll15SWFiYvvzyS6t+R40apenTp8vPz0+enp7avHnzXV0HAAAAAAC4P5GUsoFJkybp1VdftSRz/Pz8NGHCBI0aNcqSlBo+fLilfoUKFTRhwgQ999xzVkmplJQUzZs3TxUrVpQkPfXUU1q6dKn++usvubm5KSAgQMHBwdq0adNtJ6Xmzp2rRYsWWfYHDRqkGTNmaMKECZoxY4ZCQ0MtMR05ckQLFiywSkoNHz7cUieDq6urFi1aZDVtr1+/fpa//fz8NHv2bDVo0EBXrlyxmp735ptvqlWrVrcVe3JyspKTky37CQkJt3UeAAAAAADIfySlbGDfvn3as2ePJk2aZClLS0tTUlKSrl69KhcXF23atEmTJ0/WkSNHlJCQoNTUVCUlJSkxMVGurq6Srk+1y0hISVLJkiXl6+trldQpWbKk1bS4W+nZs6def/11y76np6fOnz+vM2fOqH///ho4cKDlWGpqqjw8PKzODwwMzNRmzZo1M60jdeDAAY0fP14xMTG6ePGi0tPTJUmxsbEKCAjIsb3sTJkyRREREbddHwAAAAAA3D9IStlAenq6IiIiMo0okiQnJyf99ttvatu2rQYPHqwJEyaoaNGi2rZtm/r376+UlBRL3ZsXETeZTFmWZSR8boeHh4f8/f2tyv766y9J16fwNWzY0OqYvb291X5GwiynssTERD3xxBN64okntGzZMnl5eSk2NlYhISG6du3aLdvLTnh4uEaMGGHZT0hIkI+Pz22fDwAAAAAA8g9JKRuoV6+ejh07lin5k2Hv3r1KTU3VjBkzZGd3fe351atX2zJEKyVLllSZMmX066+/qmfPnnfd3s8//6y///5bb731liVptHfv3rtu12w2y2w233U7AAAAAADA9khK2cDYsWPVvn17+fj4qEuXLrKzs9OhQ4f0448/auLEiapYsaJSU1M1Z84cdejQQdu3b9f8+fPzNebx48frhRdekLu7u9q0aaPk5GTt3btX//zzj9XopNtRrlw5OTo6as6cORo8eLAOHz6sCRMm3KPIAQAAAADAg8AuvwN4GISEhGj9+vX69ttv9cgjj+jRRx/VzJkzVb58eUlSnTp1NHPmTE2dOlU1atTQ8uXLNWXKlHyNecCAAVq0aJGioqJUs2ZNNW/eXFFRUapQoUKu2/Ly8lJUVJTWrFmjgIAAvfXWW5o+ffo9iBoAAAAAADwoTIZhGPkdBJAXEhIS5OHhodrD5sve7HxP+tg3rfc9aRcAAAAAgIIi4/d5fHy83N3ds63HSCkAAAAAAADYHEmpAmrr1q1yc3PLdgMAAAAAAMhPLHReQAUGBiomJia/wwAAAAAAAMgSSakCytnZWf7+/vkdBgAAAAAAQJaYvgcAAAAAAACbIykFAAAAAAAAmyMpBQAAAAAAAJtjTSkUOFsmdpe7u3t+hwEAAAAAAHLASCkAAAAAAADYHEkpAAAAAAAA2BxJKQAAAAAAANgcSSkAAAAAAADYHEkpAAAAAAAA2BxJKQAAAAAAANicQ34HAOS1Zm+skL3ZOc/b3Tetd563CQAAAADAw4qRUgAAAAAAALA5klIAAAAAAACwOZJSAAAAAAAAsDmSUgAAAAAAALA5klIAAAAAAACwOZJSAAAAAAAAsDmSUgAAAAAAALA5klIPiOjoaJlMJl26dOmu2gkLC1OnTp3yJKZ77fTp0zKZTIqJicnvUAAAAAAAQB4jKZUP5s+fr8KFCys1NdVSduXKFRUqVEhNmza1qrt161aZTCaVLl1acXFx8vDwyNNYzp07p0GDBqlcuXIym83y9vZWSEiIdu7cmaf9AAAAAAAA3MghvwN4GAUHB+vKlSvau3evHn30UUnXk0/e3t7as2ePrl69KhcXF0nXR0iVLl1alStXviexdO7cWSkpKVqyZIn8/Pz0119/6fvvv9fFixfvSX8AAAAAAAASI6XyRZUqVVS6dGlFR0dbyqKjo9WxY0dVrFhRO3bssCoPDg7ONH0vKipKnp6e+vrrr1WtWjW5ubmpdevWiouLs5yblpamESNGyNPTU8WKFdOoUaNkGIbl+KVLl7Rt2zZNnTpVwcHBKl++vBo0aKDw8HC1a9fOUs9kMmnevHlq06aNnJ2dVaFCBa1Zs8bqmv744w9169ZNRYoUUbFixdSxY0edPn3aqk5kZKSqVasmJycnVa1aVXPnzrU6/sMPP6hu3bpycnJSYGCgDhw4cKe3GAAAAAAA3OdISuWToKAgbdq0ybK/adMmBQUFqXnz5pbya9euaefOnQoODs6yjatXr2r69OlaunSptmzZotjYWI0cOdJyfMaMGVq8eLE++OADbdu2TRcvXtSnn35qOe7m5iY3NzetW7dOycnJOcY7ZswYde7cWQcPHlSvXr3UvXt3HT161BJHcHCw3NzctGXLFm3bts2SJLt27ZokaeHChXr99dc1adIkHT16VJMnT9aYMWO0ZMkSSVJiYqLat2+vKlWqaN++fRo/frzVtQAAAAAAgIKFpFQ+CQoK0vbt25WamqrLly/rwIEDatasmZo3b24ZQbVr1y79+++/2SalUlJSNH/+fAUGBqpevXoaOnSovv/+e8vxWbNmKTw8XJ07d1a1atU0f/58qzWpHBwcFBUVpSVLlsjT01NNmjTRa6+9pkOHDmXqq0uXLhowYIAqV66sCRMmKDAwUHPmzJEkrVy5UnZ2dlq0aJFq1qypatWqKTIyUrGxsZZrmTBhgmbMmKHQ0FBVqFBBoaGheumll7RgwQJJ0vLly5WWlqbFixerevXqat++vV555ZUc72FycrISEhKsNgAAAAAA8GAgKZVPgoODlZiYqD179mjr1q2qXLmySpQooebNm2vPnj1KTExUdHS0ypUrJz8/vyzbcHFxUcWKFS37pUqV0rlz5yRJ8fHxiouLU6NGjSzHHRwcFBgYaNVG586d9eeff+qzzz5TSEiIoqOjVa9ePUVFRVnVu7GdjP2MkVL79u3TiRMnVLhwYcvoq6JFiyopKUknT57U+fPndebMGfXv399y3M3NTRMnTtTJkyclSUePHlXt2rUta2ll1efNpkyZIg8PD8vm4+OTY30AAAAAAHD/YKHzfOLv76+yZctq06ZN+ueff9S8eXNJkre3typUqKDt27dr06ZNatGiRbZtFCpUyGrfZDJZrRl1u5ycnNSqVSu1atVKY8eO1YABAzRu3DiFhYXleJ7JZJIkpaenq379+lq+fHmmOl5eXkpKSpJ0fQpfw4YNrY7b29tL0h3FHR4erhEjRlj2ExISSEwBAAAAAPCAYKRUPspYwDw6OlpBQUGW8ubNm+vrr7/Wrl27sp26dyseHh4qVaqUdu3aZSlLTU3Vvn37bnluQECAEhMTrcpubCdjv2rVqpKkevXq6fjx4ypRooT8/f2tNg8PD5UsWVJlypTRr7/+mul4hQoVLH0ePHhQ//77b7Z93sxsNsvd3d1qAwAAAAAADwaSUvkoODhY27ZtU0xMjGWklHQ9KbVw4UIlJSXdcVJKkl588UW99dZb+vTTT/Xzzz9ryJAhlqf3SdKFCxfUokULLVu2TIcOHdKpU6e0Zs0avf322+rYsaNVW2vWrNHixYv1yy+/aNy4cfrhhx80dOhQSVLPnj1VvHhxdezYUVu3btWpU6e0efNmvfjii/r9998lSePHj9eUKVP07rvv6pdfftGPP/6oyMhIzZw5U5LUo0cP2dnZqX///jpy5Ii+/PJLTZ8+/Y6vHQAAAAAA3N+YvpePgoOD9e+//6pq1aoqWbKkpbx58+a6fPmyKlaseFfT0V5++WXFxcUpLCxMdnZ26tevn5588knFx8dLuv70vYYNG+qdd97RyZMnlZKSIh8fHw0cOFCvvfaaVVsRERFauXKlhgwZIm9vby1fvlwBAQGSrq9ttWXLFo0ePVqhoaG6fPmyypQpo5YtW1pGLw0YMEAuLi6aNm2aRo0aJVdXV9WsWVPDhw+3xPL5559r8ODBqlu3rgICAjR16lR17tz5jq8fAAAAAADcv0zGnSzmg4eKyWTSp59+qk6dOuV3KDlKSEiQh4eHag+bL3uzc563v29a7zxvEwAAAACAgibj93l8fHyOS+0wfQ8AAAAAAAA2R1IKAAAAAAAANseaUrglZngCAAAAAIC8xkgpAAAAAAAA2BxJKQAAAAAAANgcSSkAAAAAAADYHEkpAAAAAAAA2BwLnaPA2TKxu9zd3fM7DAAAAAAAkANGSgEAAAAAAMDmSEoBAAAAAADA5khKAQAAAAAAwOZISgEAAAAAgP/X3r3HVVXl/x9/H+6XI4ioiEYgkiBe85ampU55x+mmVo7irb5jeYnKGBwtIXPUMS1xyksjHqILlWhNxHgZhcxrSVAajqWl1DfS0ozERIH9+6Ov5+eRi6hwUM7r+Xjsx6Oz9trrfPb281g9/Lj2OoDdUZQCAAAAAACA3VGUAgAAAAAAgN251HUAQE27fdabcnb3vKoxshdG11A0AAAAAACgIqyUAgAAAAAAgN1RlAIAAAAAAIDdUZQCAAAAAACA3VGUAgAAAAAAgN1RlAIAAAAAAIDdUZQCAAAAAACA3VGUAgAAAAAAgN1RlEKdycrKkslk0smTJ+s6FAAAAAAAYGfXdFHKZDJVeYwbN66uQ6zUG2+8IWdnZ02aNOmyrrN3oeb8s9y1a5dNe3Fxsfz9/WUymZSVlXXV39O3b1/FxMTYtN16660qKCiQr6/vVY8PAAAAAACuL9d0UaqgoMB6vPjii/Lx8bFpW7JkSV2HWKmkpCTFxsYqNTVVp0+frutwqhQUFKTVq1fbtK1bt05ms/mqxz537lyl59zc3NSsWTOZTKar/h4AAAAAAHB9uaaLUs2aNbMevr6+MplMNm1bt25Vly5d5OHhodDQUCUkJKikpMR6/eLFi9W+fXt5e3srKChIjz76qE6dOmU9b7FY1LBhQ6Wnpys8PFxeXl4aPny4ioqKlJycrJCQEPn5+Wnq1KkqLS2tdtyHDx/Wjh07FBcXp4iICK1Zs8bm/JEjRzRs2DD5+fnJ29tbbdu2VUZGhg4fPqx+/fpJkvz8/GxWgxUXF2vatGlq2rSpPDw81Lt3b33yySfWMc+vsNq8ebO6du0qLy8v3XrrrTpw4MAl4x07dqxSU1P122+/WduSkpI0duzYcn3/8pe/qHXr1vLy8lJoaKiefvppm8JTfHy8OnXqpKSkJIWGhsrd3V1jx47Vhx9+qCVLllhXZh0+fLjcqrDzfx4bNmxQmzZtZDabNWjQIBUUFFT72QMAAAAAgOvDNV2UqsqGDRs0evRoTZs2TXl5eVqxYoUsFovmzp1r7ePk5KTExETt27dPycnJ2rJli2JjY23GOX36tBITE5Wamqr169crKytL9957rzIyMpSRkaGUlBStXLmyXGGpKklJSRo6dKh8fX01evRorVq1yub85MmTVVxcrK1bt2rv3r1asGCBzGazgoKClJaWJkk6cOCAzWqw2NhYpaWlKTk5WZ9++qnCwsI0cOBAnThxwmbsmTNnatGiRdqzZ49cXFw0YcKES8bbpUsXtWzZ0vrd3377rbZu3aoxY8aU69ugQQNZLBbl5eVpyZIleuWVV/TCCy/Y9Dl48KDefvttpaWlKTc3V4mJierZs6cefvhh6yq3oKCgCmM5ffq0nn/+eaWkpGjr1q3Kz8/X9OnTK+xbXFyswsJCmwMAAAAAAFwfrtui1Ny5cxUXF6exY8cqNDRU/fv315w5c7RixQprn5iYGPXr108tW7bUH/7wB82ZM0dvv/22zTjnzp3TsmXLdPPNN+v222/X8OHDtW3bNq1atUqRkZGKiopSv379lJmZWa24ysrKZLFYNHr0aEnSAw88oJ07d+rgwYPWPvn5+erVq5fat2+v0NBQRUVF6fbbb5ezs7MaNWokSWratKl1hVhRUZGWLVumhQsXavDgwYqMjNQrr7wiT0/PcgWvuXPnqk+fPoqMjFRcXJx27NihM2fOXDLu8ePHKykpSZK0evVqDRkyRE2aNCnXb9asWbr11lsVEhKiYcOG6cknnyz3TM+ePauUlBTdfPPN6tChg3x9feXm5iYvLy/rKjdnZ+cK4zh37pyWL1+url27qnPnzpoyZYo2b95cYd958+bJ19fXelRW6AIAAAAAANee67YolZ2drWeffVZms9l6nF+Jc34Pp8zMTPXv318tWrRQgwYNFB0drePHj6uoqMg6jpeXl1q1amX9HBAQoJCQEJv9lAICAnTs2LFqxbVx40YVFRVp8ODBkqTGjRtrwIAB1oKPJE2bNk3PPfecevXqpdmzZ+vzzz+vcsxDhw7p3Llz6tWrl7XN1dVV3bt31/79+236dujQwfrfgYGBklSt2EePHq2dO3fq66+/lsViqXSF1Zo1a9S7d281a9ZMZrNZTz/9tPLz8236BAcHV1jQqo6L/zwCAwMrjX/GjBn65ZdfrMe33357Rd8JAAAAAADs77otSpWVlSkhIUG5ubnWY+/evfrqq6/k4eGhI0eOaMiQIWrXrp3S0tKUnZ2tl156SZLt5tuurq4245pMpgrbysrKqhVXUlKSTpw4IS8vL7m4uMjFxUUZGRlKTk627kv10EMP6euvv9aYMWO0d+9ede3aVUuXLq10TMMwrHFc3H5x24Wxnz9Xndj9/f0VFRWliRMn6syZM9ai2oV27dqlBx54QIMHD1Z6erpycnI0c+ZMnT171qaft7f3Jb+vMhU9+/P3fzF3d3f5+PjYHAAAAAAA4Ppw3RalOnfurAMHDigsLKzc4eTkpD179qikpESLFi1Sjx491Lp1a33//fe1GtPx48f13nvvKTU11aZYlpubq1OnTunf//63tW9QUJAmTZqktWvX6sknn9Qrr7wi6fdfpJNks7F6WFiY3NzctG3bNmvbuXPntGfPHrVp06bG4p8wYYKysrIUHR1d4et127dvV3BwsGbOnKmuXbvqpptu0pEjR6o1tpub22VtFg8AAAAAAOo3l7oO4Eo988wzioqKUlBQkEaMGCEnJyd9/vnn2rt3r5577jm1atVKJSUlWrp0qYYNG6bt27dr+fLltRpTSkqK/P39rfFcKCoqSqtWrVJUVJRiYmI0ePBgtW7dWj///LO2bNliLS4FBwfLZDIpPT1dQ4YMkaenp8xmsx555BE99dRTatSokW688Ub9/e9/1+nTpzVx4sQai3/QoEH68ccfK11xFBYWpvz8fKWmpqpbt2764IMPtG7dumqNHRISot27d+vw4cMym83WvbMAAAAAAIBjum5XSg0cOFDp6enatGmTunXrph49emjx4sUKDg6WJHXq1EmLFy/WggUL1K5dO73++uuaN29ercaUlJSke+65p1xBSpLuu+8+paen6+jRoyotLdXkyZPVpk0bDRo0SOHh4Xr55ZclSS1atFBCQoLi4uIUEBCgKVOmSJLmz5+v++67T2PGjFHnzp118OBBbdiwQX5+fjUWv8lkUuPGja2rtS5211136fHHH9eUKVPUqVMn7dixQ08//XS1xp4+fbqcnZ0VGRmpJk2alNuHCgAAAAAAOBaTUdmGPcB1prCwUL6+vuo4dbmc3T2vaqzshdE1FBUAAAAAAI7l/N/Pf/nllyr3f75uV0oBAAAAAADg+kVR6jJ89NFHMpvNlR4AAAAAAAConut2o/O60LVrV+Xm5tZ1GAAAAAAAANc9ilKXwdPTU2FhYXUdBgAAAAAAwHWP1/cAAAAAAABgdxSlAAAAAAAAYHcUpQAAAAAAAGB37CmFemfrcw/Kx8enrsMAAAAAAABVYKUUAAAAAAAA7I6iFAAAAAAAAOyOohQAAAAAAADsjqIUAAAAAAAA7I6iFAAAAAAAAOyOohQAAAAAAADszqWuAwBq2u2z3pSzu+cVX5+9MLoGowEAAAAAABVhpRQAAAAAAADsjqIUAAAAAAAA7I6iFAAAAAAAAOyOohQAAAAAAADsjqIUAAAAAAAA7I6iFAAAAAAAAOyOohQAAAAAAADsjqLUdcZisahhw4aXdc24ceN0991310o8ta1v376KiYmp6zAAAAAAAEANq7dFKZPJVOUxbty4ug6xUm+88YacnZ01adKkug5FkhQfH3/J53n48OFa+e61a9dqzpw5tTI2AAAAAACoO/W2KFVQUGA9XnzxRfn4+Ni0LVmypK5DrFRSUpJiY2OVmpqq06dP13U4mj59us2zu+GGG/Tss8/atAUFBdXod547d06S1KhRIzVo0KBGxwYAAAAAAHWv3halmjVrZj18fX1lMpls2rZu3aouXbrIw8NDoaGhSkhIUElJifX6xYsXq3379vL29lZQUJAeffRRnTp1ynr+/Gt06enpCg8Pl5eXl4YPH66ioiIlJycrJCREfn5+mjp1qkpLS6sd9+HDh7Vjxw7FxcUpIiJCa9asqbJ/fHy8OnXqpBUrVigoKEheXl4aMWKETp48Wa7v888/r8DAQPn7+2vy5MnWwo8kvfbaa+ratasaNGigZs2aadSoUTp27JgkyWw22zw7Z2dna79mzZrpP//5j2655ZYKr73wWV3o3XfflclkKncfSUlJCg0Nlbu7uwzD4PU9AAAAAADqqXpblKrKhg0bNHr0aE2bNk15eXlasWKFLBaL5s6da+3j5OSkxMRE7du3T8nJydqyZYtiY2Ntxjl9+rQSExOVmpqq9evXKysrS/fee68yMjKUkZGhlJQUrVy58pKFpQslJSVp6NCh8vX11ejRo7Vq1apLXnPw4EG9/fbbev/997V+/Xrl5uZq8uTJNn0yMzN16NAhZWZmKjk5WRaLRRaLxXr+7NmzmjNnjj777DO9++67+uabb6r9iuPVXFvRfaSlpSk3N/eS/YuLi1VYWGhzAAAAAACA64NLXQdQF+bOnau4uDiNHTtWkhQaGqo5c+YoNjZWs2fPliSb1TktW7bUnDlz9Mgjj+jll1+2tp87d07Lli1Tq1atJEnDhw9XSkqKjh49KrPZrMjISPXr10+ZmZm6//77LxlXWVmZLBaLli5dKkl64IEH9MQTT+jgwYMKCwur9LozZ84oOTlZN9xwgyRp6dKlGjp0qBYtWqRmzZpJkvz8/PSPf/xDzs7OioiI0NChQ7V582Y9/PDDkqQJEyZYxwsNDVViYqK6d++uU6dOyWw2Vxn31Vx7obNnzyolJUVNmjSpVv958+YpISGh2uMDAAAAAIBrh0OulMrOztazzz4rs9lsPR5++GEVFBRY93DKzMxU//791aJFCzVo0EDR0dE6fvy4ioqKrON4eXlZC1KSFBAQoJCQEJtCTEBAgM2rbFXZuHGjioqKNHjwYElS48aNNWDAACUlJVV53Y033mgtSElSz549VVZWpgMHDljb2rZtK2dnZ+vnwMBAm7hycnJ01113KTg4WA0aNFDfvn0lSfn5+ZeM+2quvVBwcHC1C1KSNGPGDP3yyy/W49tvv72s7wMAAAAAAHXHIYtSZWVlSkhIUG5urvXYu3evvvrqK3l4eOjIkSMaMmSI2rVrp7S0NGVnZ+ull16SJJt9mFxdXW3GNZlMFbaVlZVVK66kpCSdOHFCXl5ecnFxkYuLizIyMpScnHxZ+1Kd36vpwj2bqoqrqKhIAwYMkNls1muvvaZPPvlE69atk/T76qWqVOdaJycnGYZhc92Fz/E8b2/vat+jJLm7u8vHx8fmAAAAAAAA1weHfH2vc+fOOnDgQKWvxO3Zs0clJSVatGiRnJx+r9u9/fbbtRrT8ePH9d577yk1NVVt27a1tpeVlem2227Tv//9b0VFRVV4bX5+vr7//ns1b95ckrRz5045OTmpdevW1fru//73v/rpp580f/5866/o7dmzp8aubdKkiX799VcVFRVZC0/V2TMKAAAAAADUXw5ZlHrmmWcUFRWloKAgjRgxQk5OTvr888+1d+9ePffcc2rVqpVKSkq0dOlSDRs2TNu3b9fy5ctrNaaUlBT5+/tb47lQVFSUVq1aVWlRysPDQ2PHjtXzzz+vwsJCTZs2TSNHjrTuJ3UpN954o9zc3LR06VJNmjRJ+/bt05w5c2rs2ltuuUVeXl7661//qqlTp+rjjz+22WQdAAAAAAA4Hod8fW/gwIFKT0/Xpk2b1K1bN/Xo0UOLFy9WcHCwJKlTp05avHixFixYoHbt2un111/XvHnzajWmpKQk3XPPPeUKUpJ03333KT09XUePHq3w2rCwMN17770aMmSIBgwYoHbt2tlsyH4pTZo0kcVi0TvvvKPIyEjNnz9fzz//fI1d26hRI7322mvKyMhQ+/bt9eabbyo+Pr7a8QEAAAAAgPrHZFy82Q+uK/Hx8Xr33Xd5HU5SYWGhfH191XHqcjm7e17xONkLo2swKgAAAAAAHMv5v5//8ssvVe7/7JArpQAAAAAAAFC3KErZyUcffSSz2VzpAQAAAAAA4Eh4fc9OfvvtN/3v//5vpecr+yVAVB+v7wEAAAAAUPeq+/qeQ/76Xl3w9PSk8AQAAAAAAPB/eH0PAAAAAAAAdkdRCgAAAAAAAHZHUQoAAAAAAAB2x55SqHe2PvdglRupAQAAAACAusdKKQAAAAAAANgdRSkAAAAAAADYHUUpAAAAAAAA2B1FKQAAAAAAANgdRSkAAAAAAADYHb++h3rn9llvytnd84qvz14YXYPRAAAAAACAirBSCgAAAAAAAHZHUQoAAAAAAAB2R1EKAAAAAAAAdkdRCgAAAAAAAHZHUQoAAAAAAAB2R1EKAAAAAAAAdkdRCgAAAAAAAHZHUQq1qm/fvoqJianrMAAAAAAAwDXG4YpSJpOpymPcuHF1HWI5ffv2lclk0vz588udGzJkiEwmk+Lj4+0fGAAAAAAAwBVyuKJUQUGB9XjxxRfl4+Nj07ZkyZK6DrFCQUFBWr16tU3b999/ry1btigwMPCqxi4tLVVZWdlVjQEAAAAAAHA5HK4o1axZM+vh6+srk8lk07Z161Z16dJFHh4eCg0NVUJCgkpKSqzXL168WO3bt5e3t7eCgoL06KOP6tSpU9bzFotFDRs2VHp6usLDw+Xl5aXhw4erqKhIycnJCgkJkZ+fn6ZOnarS0tJqxx0VFaXjx49r+/btNt81YMAANW3a1Kbv2bNnFRsbqxYtWsjb21u33HKLsrKyKowxMjJS7u7uOnLkiIqLixUbG6ugoCC5u7vrpptu0qpVq6zX5eXlaciQITKbzQoICNCYMWP0008/Wc8XFRUpOjpaZrNZgYGBWrRoUbn7uFRsR44c0bBhw+Tn5ydvb2+1bdtWGRkZ1X5OAAAAAADg+uBwRamqbNiwQaNHj9a0adOUl5enFStWyGKxaO7cudY+Tk5OSkxM1L59+5ScnKwtW7YoNjbWZpzTp08rMTFRqampWr9+vbKysnTvvfcqIyNDGRkZSklJ0cqVK7VmzZpqx+bm5qY//elPNqulLBaLJkyYUK7v+PHjtX37dqWmpurzzz/XiBEjNGjQIH311Vc2Mc6bN0///Oc/9cUXX6hp06aKjo5WamqqEhMTtX//fi1fvlxms1nS7yvM+vTpo06dOmnPnj1av369jh49qpEjR1rHfOqpp5SZmal169Zp48aNysrKUnZ29mXFNnnyZBUXF2vr1q3au3evFixYYI0BAAAAAADUHybDMIy6DqKuWCwWxcTE6OTJk5Kk22+/XYMHD9aMGTOsfV577TXFxsbq+++/r3CMd955R4888oh1xZDFYtH48eN18OBBtWrVSpI0adIkpaSk6OjRo9YCy6BBgxQSEqLly5dfMs6+ffuqU6dOmjBhgnr37q2CggJlZ2drxIgR+u6779StWzfdfffdio+P16FDh3TTTTfpu+++U/Pmza1j3Hnnnerevbv+9re/WWPMzc1Vx44dJUlffvmlwsPDtWnTJt15553lYnjmmWe0e/dubdiwwdr23XffKSgoSAcOHFDz5s3l7++vV199Vffff78k6cSJE7rhhhv0P//zP3rxxRerFVuHDh103333afbs2Zd8LsXFxSouLrZ+LiwsVFBQkDpOXS5nd89LXl+Z7IXRV3wtAAAAAACOrrCwUL6+vvrll1/k4+NTaT8XO8Z0zcvOztYnn3xiszKqtLRUZ86c0enTp+Xl5aXMzEz97W9/U15engoLC1VSUqIzZ86oqKhI3t7ekiQvLy9rQUqSAgICFBISYrPiJyAgQMeOHbus+Dp06KCbbrpJa9asUWZmpsaMGSNXV1ebPp9++qkMw1Dr1q1t2ouLi+Xv72/97Obmpg4dOlg/5+bmytnZWX369Kn02WRmZla4aunQoUP67bffdPbsWfXs2dPa3qhRI4WHh19WbNOmTdMjjzyijRs36s4779R9991nE+eF5s2bp4SEhArPAQAAAACAaxtFqQuUlZUpISFB9957b7lzHh4eOnLkiIYMGaJJkyZpzpw5atSokbZt26aJEyfq3Llz1r4XF4pMJlOFbVeyufiECRP00ksvKS8vTx9//HGF9+Ds7Kzs7Gw5OzvbnLuwoOTp6SmTyWTzuSplZWUaNmyYFixYUO5cYGCgzauBVY1xqdgeeughDRw4UB988IE2btyoefPmadGiRZo6dWq58WbMmKEnnnjC+vn8SikAAAAAAHDtoyh1gc6dO+vAgQMKCwur8PyePXtUUlKiRYsWycnp9+243n77bXuGqFGjRmn69Onq2LGjIiMjy52/+eabVVpaqmPHjum2226r9rjt27dXWVmZPvzwwwpf3+vcubPS0tIUEhIiF5fyaRMWFiZXV1ft2rVLN954oyTp559/1pdffmldfVXd2IKCgjRp0iRNmjRJM2bM0CuvvFJhUcrd3V3u7u7VvkcAAAAAAHDtYKPzCzzzzDN69dVXFR8fry+++EL79+/XW2+9pVmzZkmSWrVqpZKSEi1dulRff/21UlJSqrUnVE3y8/NTQUGBNm/eXOH51q1b609/+pOio6O1du1affPNN/rkk0+0YMGCKn/FLiQkRGPHjtWECRP07rvv6ptvvlFWVpa16DZ58mSdOHFCDz74oD7++GN9/fXX2rhxoyZMmKDS0lKZzWZNnDhRTz31lDZv3qx9+/Zp3Lhx1uJddWOLiYnRhg0b9M033+jTTz/Vli1b1KZNmxp8ggAAAAAA4FpAUeoCAwcOVHp6ujZt2qRu3bqpR48eWrx4sYKDgyVJnTp10uLFi7VgwQK1a9dOr7/+uubNm2f3OBs2bGjdv6oiq1evVnR0tJ588kmFh4frj3/8o3bv3n3JV9uWLVum4cOH69FHH1VERIQefvhhFRUVSZKaN2+u7du3q7S0VAMHDlS7du302GOPydfX11p4WrhwoW6//Xb98Y9/1J133qnevXurS5culxVbaWmpJk+erDZt2mjQoEEKDw/Xyy+/fDWPCwAAAAAAXIMc+tf3UL+c392fX98DAAAAAKDuVPfX91gpBQAAAAAAALujKFXHPvroI5nN5koPAAAAAACA+ohf36tjXbt2VW5ubl2HAQAAAAAAYFcUpeqYp6enwsLC6joMAAAAAAAAu+L1PQAAAAAAANgdRSkAAAAAAADYHUUpAAAAAAAA2B17SqHe2frcg/Lx8anrMAAAAAAAQBVYKQUAAAAAAAC7oygFAAAAAAAAu+P1PdQbhmFIkgoLC+s4EgAAAAAAHNf5v5ef/3t6ZShKod44fvy4JCkoKKiOIwEAAAAAAL/++qt8fX0rPU9RCvVGo0aNJEn5+flVJj1QHYWFhQoKCtK3337Lxvm4auQTahL5hJpEPqGmkEuoSeTT9c8wDP36669q3rx5lf0oSqHecHL6fYs0X19fJi7UGB8fH/IJNYZ8Qk0in1CTyCfUFHIJNYl8ur5VZ7EIG50DAAAAAADA7ihKAQAAAAAAwO4oSqHecHd31+zZs+Xu7l7XoaAeIJ9Qk8gn1CTyCTWJfEJNIZdQk8gnx2EyLvX7fAAAAAAAAEANY6UUAAAAAAAA7I6iFAAAAAAAAOyOohQAAAAAAADsjqIUrmkvv/yyWrZsKQ8PD3Xp0kUfffRRlf0//PBDdenSRR4eHgoNDdXy5cvL9UlLS1NkZKTc3d0VGRmpdevW1Vb4uMbUdD5ZLBaZTKZyx5kzZ2rzNnANuJxcKigo0KhRoxQeHi4nJyfFxMRU2I+5yXHVdD4xNzm2y8mntWvXqn///mrSpIl8fHzUs2dPbdiwoVw/5ifHVdP5xPzkuC4nl7Zt26ZevXrJ399fnp6eioiI0AsvvFCuH3NT/UBRCtest956SzExMZo5c6ZycnJ02223afDgwcrPz6+w/zfffKMhQ4botttuU05Ojv76179q2rRpSktLs/bZuXOn7r//fo0ZM0afffaZxowZo5EjR2r37t32ui3UkdrIJ0ny8fFRQUGBzeHh4WGPW0IdudxcKi4uVpMmTTRz5kx17Nixwj7MTY6rNvJJYm5yVJebT1u3blX//v2VkZGh7Oxs9evXT8OGDVNOTo61D/OT46qNfJKYnxzR5eaSt7e3pkyZoq1bt2r//v2aNWuWZs2apZUrV1r7MDfVIwZwjerevbsxadIkm7aIiAgjLi6uwv6xsbFGRESETduf//xno0ePHtbPI0eONAYNGmTTZ+DAgcYDDzxQQ1HjWlUb+bR69WrD19e3xmPFte1yc+lCffr0MR577LFy7cxNjqs28om5yXFdTT6dFxkZaSQkJFg/Mz85rtrIJ+Ynx1QTuXTPPfcYo0ePtn5mbqo/WCmFa9LZs2eVnZ2tAQMG2LQPGDBAO3bsqPCanTt3lus/cOBA7dmzR+fOnauyT2Vjon6orXySpFOnTik4OFg33HCDoqKiyv1rIOqXK8ml6mBucky1lU8Sc5Mjqol8Kisr06+//qpGjRpZ25ifHFNt5ZPE/ORoaiKXcnJytGPHDvXp08faxtxUf1CUwjXpp59+UmlpqQICAmzaAwIC9MMPP1R4zQ8//FBh/5KSEv30009V9qlsTNQPtZVPERERslgs+te//qU333xTHh4e6tWrl7766qvauRHUuSvJpepgbnJMtZVPzE2OqSbyadGiRSoqKtLIkSOtbcxPjqm28on5yfFcTS7dcMMNcnd3V9euXTV58mQ99NBD1nPMTfWHS10HAFTFZDLZfDYMo1zbpfpf3H65Y6L+qOl86tGjh3r06GE936tXL3Xu3FlLly5VYmJiTYWNa1BtzCPMTY6rpv/smZsc25Xm05tvvqn4+Hi99957atq0aY2MietfTecT85PjupJc+uijj3Tq1Cnt2rVLcXFxCgsL04MPPnhVY+LaQ1EK16TGjRvL2dm5XKX72LFj5Sri5zVr1qzC/i4uLvL396+yT2Vjon6orXy6mJOTk7p168a/9tVjV5JL1cHc5JhqK58uxtzkGK4mn9566y1NnDhR77zzju68806bc8xPjqm28ulizE/139XkUsuWLSVJ7du319GjRxUfH28tSjE31R+8vodrkpubm7p06aJNmzbZtG/atEm33nprhdf07NmzXP+NGzeqa9eucnV1rbJPZWOifqitfLqYYRjKzc1VYGBgzQSOa86V5FJ1MDc5ptrKp4sxNzmGK82nN998U+PGjdMbb7yhoUOHljvP/OSYaiufLsb8VP/V1P/rDMNQcXGx9TNzUz1i963VgWpKTU01XF1djVWrVhl5eXlGTEyM4e3tbRw+fNgwDMOIi4szxowZY+3/9ddfG15eXsbjjz9u5OXlGatWrTJcXV2NNWvWWPts377dcHZ2NubPn2/s37/fmD9/vuHi4mLs2rXL7vcH+6qNfIqPjzfWr19vHDp0yMjJyTHGjx9vuLi4GLt377b7/cF+LjeXDMMwcnJyjJycHKNLly7GqFGjjJycHOOLL76wnmducly1kU/MTY7rcvPpjTfeMFxcXIyXXnrJKCgosB4nT5609mF+cly1kU/MT47pcnPpH//4h/Gvf/3L+PLLL40vv/zSSEpKMnx8fIyZM2da+zA31R8UpXBNe+mll4zg4GDDzc3N6Ny5s/Hhhx9az40dO9bo06ePTf+srCzj5ptvNtzc3IyQkBBj2bJl5cZ85513jPDwcMPV1dWIiIgw0tLSavs2cI2o6XyKiYkxbrzxRsPNzc1o0qSJMWDAAGPHjh32uBXUscvNJUnljuDgYJs+zE2Oq6bzibnJsV1OPvXp06fCfBo7dqzNmMxPjqum84n5yXFdTi4lJiYabdu2Nby8vAwfHx/j5ptvNl5++WWjtLTUZkzmpvrBZBj/t3MvAAAAAAAAYCfsKQUAAAAAAAC7oygFAAAAAAAAu6MoBQAAAAAAALujKAUAAAAAAAC7oygFAAAAAAAAu6MoBQAAAAAAALujKAUAAAAAAAC7oygFAAAAAAAAu6MoBQAA4KD69u2rmJiYug4DAAA4KJNhGEZdBwEAAAD7O3HihFxdXdWgQYO6DqWcrKws9evXTz///LMaNmxY1+EAAIBa4FLXAQAAAKBuNGrUqK5DqNC5c+fqOgQAAGAHvL4HAADgoC58fS8kJETPPfecoqOjZTabFRwcrPfee08//vij7rrrLpnNZrVv31579uyxXm+xWNSwYUO9++67at26tTw8PNS/f399++23Nt+zbNkytWrVSm5ubgoPD1dKSorNeZPJpOXLl+uuu+6St7e3HnroIfXr10+S5OfnJ5PJpHHjxkmS1q9fr969e6thw4by9/dXVFSUDh06ZB3r8OHDMplMWrt2rfr16ycvLy917NhRO3futPnO7du3q0+fPvLy8pKfn58GDhyon3/+WZJkGIb+/ve/KzQ0VJ6enurYsaPWrFlTI88cAAD8fxSlAAAAIEl64YUX1KtXL+Xk5Gjo0KEaM2aMoqOjNXr0aH366acKCwtTdHS0Ltz94fTp05o7d66Sk5O1fft2FRYW6oEHHrCeX7dunR577DE9+eST2rdvn/785z9r/PjxyszMtPnu2bNn66677tLevXv17LPPKi0tTZJ04MABFRQUaMmSJZKkoqIiPfHEE/rkk0+0efNmOTk56Z577lFZWZnNeDNnztT06dOVm5ur1q1b68EHH1RJSYkkKTc3V3fccYfatm2rnTt3atu2bRo2bJhKS0slSbNmzdLq1au1bNkyffHFF3r88cc1evRoffjhhzX/0AEAcGDsKQUAAOCg+vbtq06dOunFF19USEiIbrvtNusqph9++EGBgYF6+umn9eyzz0qSdu3apZ49e6qgoEDNmjWTxWLR+PHjtWvXLt1yyy2SpP/+979q06aNdu/ere7du6tXr15q27atVq5caf3ekSNHqqioSB988IGk31dKxcTE6IUXXrD2qe6eUj/++KOaNm2qvXv3ql27djp8+LBatmypf/7zn5o4caIkKS8vT23bttX+/fsVERGhUaNGKT8/X9u2bSs3XlFRkRo3bqwtW7aoZ8+e1vaHHnpIp0+f1htvvHGFTxsAAFyMlVIAAACQJHXo0MH63wEBAZKk9u3bl2s7duyYtc3FxUVdu3a1fo6IiFDDhg21f/9+SdL+/fvVq1cvm+/p1auX9fx5F45RlUOHDmnUqFEKDQ2Vj4+PWrZsKUnKz8+v9F4CAwNt4j6/UqoieXl5OnPmjPr37y+z2Ww9Xn31VZvXBAEAwNVjo3MAAABIklxdXa3/bTKZKm27+FW58+2VtV183jCMcm3e3t7VinHYsGEKCgrSK6+8oubNm6usrEzt2rXT2bNnL3kv5+P29PSsdPzzfT744AO1aNHC5py7u3u1YgQAANXDSikAAABcsZKSEpvNzw8cOKCTJ08qIiJCktSmTZtyr8nt2LFDbdq0qXJcNzc3SbLu8yRJx48f1/79+zVr1izdcccdatOmjXVz8svRoUMHbd68ucJzkZGRcnd3V35+vsLCwmyOoKCgy/4uAABQOVZKAQAA4Iq5urpq6tSpSkxMlKurq6ZMmaIePXqoe/fukqSnnnpKI0eOVOfOnXXHHXfo/fff19q1a/Wf//ynynGDg4NlMpmUnp6uIUOGyNPTU35+fvL399fKlSsVGBio/Px8xcXFXXbMM2bMUPv27fXoo49q0qRJcnNzU2ZmpkaMGKHGjRtr+vTpevzxx1VWVqbevXursLBQO3bskNls1tixY6/oOQEAgPJYKQUAAIAr5uXlpb/85S8aNWqUevbsKU9PT6WmplrP33333VqyZIkWLlyotm3basWKFVq9erX69u1b5bgtWrRQQkKC4uLiFBAQoClTpsjJyUmpqanKzs5Wu3bt9Pjjj2vhwoWXHXPr1q21ceNGffbZZ+revbt69uyp9957Ty4uv/977Zw5c/TMM89o3rx5atOmjQYOHKj333/fun8VAACoGfz6HgAAAK6IxWJRTEyMTp48WdehAACA6xArpQAAAAAAAGB3FKUAAAAAAABgd7y+BwAAAAAAALtjpRQAAAAAAADsjqIUAAAAAAAA7I6iFAAAAAAAAOyOohQAAAAAAADsjqIUAAAAAAAA7I6iFAAAAAAAAOyOohQAAAAAAADsjqIUAAAAAAAA7I6iFAAAAAAAAOzu/wGeZFLujOXi8wAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 1200x600 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Training models for São Paulo Grand Prix\n",
"\n",
"Model Performance for São Paulo Grand Prix:\n",
"\n",
"Linear Regression:\n",
"RMSE: 4.66 seconds\n",
"R2 Score: 0.837\n",
"Cross-validation R2: 0.843 (±0.026)\n",
"\n",
"Random Forest:\n",
"RMSE: 1.91 seconds\n",
"R2 Score: 0.973\n",
"Cross-validation R2: 0.956 (±0.010)\n",
"\n",
"XGBoost:\n",
"RMSE: 2.01 seconds\n",
"R2 Score: 0.970\n",
"Cross-validation R2: 0.957 (±0.010)\n",
"\n",
"Gradient Boosting:\n",
"RMSE: 2.35 seconds\n",
"R2 Score: 0.959\n",
"Cross-validation R2: 0.951 (±0.011)\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAJOCAYAAABm7rQwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACq/UlEQVR4nOzdeVhU5f//8dcAOuzghrjggihi4Z6GloJmuJWmqbnvaaZlahrlvqbm0uZSCrhvn8zUykoLzX3FlaxM0wrTNMENZDm/P/wxX0cWQXEwfT6u61xx7nOf+36fw8zgvLvv+5gMwzAEAAAAAAAA2JBdXgcAAAAAAACARw9JKQAAAAAAANgcSSkAAAAAAADYHEkpAAAAAAAA2BxJKQAAAAAAANgcSSkAAAAAAADYHEkpAAAAAAAA2BxJKQAAAAAAANgcSSkAAAAAAADYHEkpAECWTCZTtraoqKj7HsvChQv10ksvyd/fX3Z2dipTpkyG9aKiojKNc+fOnXfsZ/To0TKZTLKzs9Nvv/2W7vjVq1fl7u4uk8mkbt263eNVZezYsWMaPXq0Tp06la36kZGRMplM2rt3732JxxaWLl2qmTNn2qSvu72/GW1Dhgx5IGJ8EK1YsUKPPfaYnJycZDKZFB0dfV/7i4mJUefOneXr6ytHR0cVLlxY1atXV//+/RUfH29Vd8iQIXJ1dVXbtm31xx9/qGrVqtqyZUuuxnP7a8XDw0PBwcH68ssvc7Wf25UpUybXP5tSU1O1ePFihYaGysvLS/ny5ZOnp6eefPJJvffee/rnn39ytb/ckPa+vdN7KO0zP23Lnz+/ypYtq9dff12XLl3KVl/BwcEKDg6+55hvdenSJRUuXFjLly/PNNZ8+fKpVKlS6t27t86ePZur/edEt27dMv2bnBfy4jP7Xk2cOFFr1qxJV75p0ya5urrqzz//tH1QgA045HUAAIAH244dO6z2x40bpx9++EHff/+9VXmlSpXueyyLFi3S2bNnVatWLaWmpiopKSnL+hMnTlRISIhV2eOPP57t/lxdXRUREaFx48ZZla9atUpJSUnKly9f9oPPoWPHjmnMmDEKDg5+oP6hfz8tXbpUR44c0cCBA+97X3d7fyMiIlSxYkWrsuLFi+dydDf9118D58+fV+fOndW4cWPNmjVLZrNZFSpUuG/9HThwQHXr1lVAQIBGjhypMmXK6J9//tHBgwe1fPlyDRkyRO7u7pKk69ev6/3339eqVau0evVqVahQQXXq1FGdOnVyPa4XX3xRgwcPVmpqqn777TeNHz9ezz33nNatW6dmzZrlen/3w/Xr19WiRQtt3LhR7dq10wcffKDixYsrPj5e27dv19SpU/XFF1/oxx9/zOtQ78mGDRvk4eGhy5cv66uvvtL777+v3bt3a/v27TKZTFmeO2vWrFyPZ8yYMSpevLjatWuXaaxXrlzRt99+q2nTpmn79u2Kjo6+r3+b/mts+Zl9ryZOnKgXX3xRLVu2tCpv2LChatWqpbffflsLFizIm+CA+4ikFAAgS08++aTVfpEiRWRnZ5eu3Ba++eYb2dndHOTbvHlzHTlyJMv65cuXv6c427VrpwULFmjMmDGWfiVp/vz5euGFF7R27dq7bhv/59q1a3J2ds7rMLLl8ccfV82aNfM6jHuSlJQkk8kkB4f7+8/An3/+WUlJSerUqZPq16+fK21m9VqZOXOm7OzsFBUVJTc3N0v5iy++qHHjxskwDEuZk5OTJandsmVLLVy4MFfiy0jRokUtn0N16tRRUFCQ/Pz8NHPmzP9MUmrgwIH67rvvtHTpUrVv397qWPPmzTV8+HAtWbIkyzYMw1BCQoKcnJzuZ6j3pEaNGipcuLAkqVGjRrpw4YIWLVqk7du3q27duhmek/aazO3/MXPx4kXNnTtXM2bMyDAhdmuszzzzjP755x9FRERo69at6f5nzKPsfn1m2/rv1quvvqp27dpp/Pjx8vHxsVm/gC0wfQ8AcM8uXryofv36qUSJEsqfP798fX31zjvvKDEx0aqeyWRS//79NXfuXFWoUEFms1mVKlWympqQlVsTQ7bQo0cPnTlzRt99952l7Oeff9bWrVvVo0ePDM85ffq0OnXqJC8vL5nNZgUEBGjatGlKTU21qjd79mxVqVJFrq6ucnNzU8WKFfX2229LujntoE2bNpKkkJAQy5SDyMjIHMXfrVs3ubq66qefflJoaKhcXFxUrFgxvfvuu5KknTt36qmnnpKLi4sqVKiQ7v/Apk1/+O6779S9e3cVLFhQLi4ueu655zKc1hgeHq4qVarI0dFRBQsW1AsvvKCYmJgMYzp8+LCeffZZubm5qWHDhpYpTb///rvVNIs0Y8aMUe3atVWwYEG5u7urevXqmj9/vlWiQbo5bal58+basGGDqlevLicnJ1WsWFHh4eFW15Ub9zcjK1asUFBQkFxcXOTq6qrQ0FAdOHDAqs7evXv10ksvqUyZMnJyclKZMmXUvn17/f7779mOMbPpWbdPIUqbyrpo0SINHjxYJUqUkNls1q+//ipJ2rhxoxo2bCh3d3c5Ozurbt262rRpk1Wb58+f18svvywfHx+ZzWYVKVJEdevW1caNGzO9D926ddNTTz0l6WZy12QyWcW1du1aBQUFydnZWW5ubmrUqFG6UZlp05T279+vF198UQUKFFC5cuUy7fPChQtyd3eXq6trhsdvfT199913atGihUqWLClHR0f5+fmpT58+GU5B27p1qxo2bCg3Nzc5OzurTp069zT9rly5cipSpIjl953dWDKbHpV2n+4ku59Nt4uNjVV4eLiaNWuWLiGVxtnZWb1797YqS/u8nzNnjgICAmQ2my2fMbn5fk6zc+dO1a1bV46OjipevLjCwsLuOJr2TtKSiWm/q+DgYD3++OPasmWL6tSpI2dnZ8vfgtvfe++++67s7Oy0bt06qza7desmZ2dnHT58OMu+IyMjlZycnOEoqYykJV7+/vtvS9n58+fVr18/VapUSa6urvLy8lKDBg3SjWg7deqUTCaT3nvvPU2fPl1ly5aVq6urgoKCMpzyHhkZKX9/f8vrKLOkbk7/bRARESF/f385OTmpZs2a2rlzpwzD0NSpUy0xNWjQwPL5lRvu9bPIMAzNmjVLVatWlZOTkwoUKKAXX3wx3d/IAwcOqHnz5pb3X/HixdWsWTP98ccflntw9epVLViwwPJ5f+vr6bnnnpOrq6s+/fTTXLt24EFBUgoAcE8SEhIUEhKihQsXatCgQfryyy/VqVMnTZkyRa1atUpXf+3atfrggw80duxY/e9//1Pp0qXVvn17/e9//8v12F599VU5ODjI3d1doaGh2rp1a47OL1++vJ5++mmrL0Dh4eEqU6aMGjZsmK7++fPnVadOHX377bcaN26c1q5dq2eeeUZDhgxR//79LfWWL1+ufv36qX79+vr888+1Zs0avfHGG7p69aokqVmzZpo4caIk6eOPP9aOHTu0Y8eOuxpVkZSUpFatWqlZs2b64osv1KRJE4WFhentt99W165d1aNHD33++efy9/dXt27dtG/fvnRt9OzZU3Z2dpY1n3bv3q3g4GCrtVYmTZqknj176rHHHtPq1av1/vvv69ChQwoKCtIvv/xi1d6NGzf0/PPPq0GDBvriiy80ZswYzZo1S3Xr1pW3t7flem/9YnDq1Cn16dNHK1eu1OrVq9WqVSsNGDAg3dRKSTp48KAGDx6sN954Q1988YUqV66snj17WtYLupf7m5KSouTkZKstzcSJE9W+fXtVqlRJK1eu1KJFi3T58mU9/fTTOnbsmNW1+Pv7a+bMmfrmm280efJkxcbG6oknnrAkInLzNSBJYWFhOn36tObMmaN169bJy8tLixcv1rPPPit3d3ctWLBAK1euVMGCBRUaGmqVmOrcubPWrFmjkSNH6ttvv9W8efP0zDPP6MKFC5n2N2LECH388ceW+7Jjxw7L9KalS5eqRYsWcnd317JlyzR//nz9+++/Cg4OzvA92qpVK/n5+WnVqlWaM2dOpn0GBQUpNjZWHTt21ObNm3X9+vVM6544cUJBQUGaPXu2vv32W40cOVK7du3SU089ZZXI2Lx5sxo0aKC4uDjNnz9fy5Ytk5ubm5577jmtWLEi8xuehX///VcXLlxQkSJFchTLvcjuZ1NGfvjhByUnJ+v555/Pcb9r1qzR7NmzNXLkSH3zzTd6+umnJeXu+1m6OdW1YcOGunTpkiIjIzVnzhwdOHBA48ePz3HMt0pLfqT9rqSbSbpOnTqpQ4cO+uqrr9SvX78Mzx02bJiaNGmirl27WpJaERERWrBggT788EMFBgZm2feXX36patWqydPTM1uxnjx5UpKspshevHhRkjRq1Ch9+eWXioiIkK+vr4KDgzNcB/Ljjz/Wd999p5kzZ2rJkiW6evWqmjZtqri4OEudyMhIde/eXQEBAfrss880fPhwjRs3Lt2U/pz+22D9+vWaN2+e3n33XS1btkyXL19Ws2bNNHjwYG3btk0fffSRPvnkEx07dkytW7dOl8DMTFaf2bnxWdSnTx8NHDhQzzzzjNasWaNZs2bp6NGjqlOnjiVBePXqVTVq1Eh///231T0uVaqULl++LOnmUglOTk5q2rSp5fP+1imh+fPnv+eEOPDAMgAAyIGuXbsaLi4ulv05c+YYkoyVK1da1Zs8ebIhyfj2228tZZIMJycn4+zZs5ay5ORko2LFioafn1+O4mjWrJlRunTpDI/t37/feP31143PP//c2LJlixEeHm4EBAQY9vb2xoYNG+7Y9qhRowxJxvnz542IiAjDbDYbFy5cMJKTk41ixYoZo0ePNgzDMFxcXIyuXbtaznvrrbcMScauXbus2nvllVcMk8lkHD9+3DAMw+jfv7/h6emZZQyrVq0yJBk//PDDHeM1DMOIiIgwJBl79uyxlHXt2tWQZHz22WeWsqSkJKNIkSKGJGP//v2W8gsXLhj29vbGoEGD0rX5wgsvWPW1bds2Q5Ixfvx4wzAM499//zWcnJyMpk2bWtU7ffq0YTabjQ4dOqSLKTw8PN01ZPU7vVVKSoqRlJRkjB071ihUqJCRmppqOVa6dGnD0dHR+P333y1l169fNwoWLGj06dPHUna39zejLSkpyTh9+rTh4OBgDBgwwOq8y5cvG97e3kbbtm0zbTs5Odm4cuWK4eLiYrz//vvZirF06dJWr7009evXN+rXr2/Z/+GHHwxJRr169azqXb161ShYsKDx3HPPWZWnpKQYVapUMWrVqmUpc3V1NQYOHJhp/JlJ63vVqlVW7RcvXtwIDAw0UlJSLOWXL182vLy8jDp16ljK0t6HI0eOzFZ/CQkJRsuWLS2/F3t7e6NatWrGO++8Y5w7dy7T81JTU42kpCTj999/NyQZX3zxheXYk08+aXh5eRmXL1+2lCUnJxuPP/64UbJkSavXXkYkGf369TOSkpKMGzduGDExMUaTJk0MScbHH3+co1i6du2a4fsj7T7d6vbXR3Y/mzLy7rvvGpIy/OxMSkqy2m6/dg8PD+PixYuZtm0YufN+bteuXaZ/WyQZJ0+ezDKGtHt49uxZIykpyfj333+NxYsXG05OToaPj49x/fp1wzBuvr8kGZs2bUrXxu3vPcMwjH/++ccoWbKkUatWLWP//v2Gs7Oz0alTpyxjSePs7Gz07ds3W7GuXLnScHFxMdq3b59lm8nJyUZSUpLRsGFDq8/1kydPGpKMwMBAIzk52VK+e/duQ5KxbNkywzD+7/1bvXp1q9/TqVOnjHz58lm9PnP6bwNvb2/jypUrlrI1a9YYkoyqVata9TVz5kxDknHo0KEsr/VOn9m58Vm0Y8cOQ5Ixbdo0q/IzZ84YTk5OxtChQw3DMIy9e/cakow1a9ZkGfPt/6a43TvvvGPY2dlZ3SfgYcBIKQDAPfn+++/l4uKiF1980ao8bWrR7VOBGjZsqKJFi1r27e3t1a5dO/3666+WYez3qlq1apo5c6Zatmypp59+Wt27d9f27dtVrFgxDR06NEdttWnTRvnz59eSJUv01Vdf6ezZs5k+1er7779XpUqVVKtWLavybt26yTAMy/9JrlWrli5duqT27dvriy++uK9PrTKZTGratKll38HBQX5+fipWrJiqVatmKS9YsKC8vLysppCl6dixo9V+nTp1VLp0af3www+Sbv4f3uvXr6e7Lz4+PmrQoEG614AktW7dOkfX8f333+uZZ56Rh4eH7O3tlS9fPo0cOVIXLlzQuXPnrOpWrVpVpUqVsuw7OjqqQoUKGV5bTi1cuFB79uyx2hwcHPTNN98oOTlZXbp0sfo/8o6Ojqpfv77VqIQrV65o2LBh8vPzk4ODgxwcHOTq6qqrV6+mm+6YW26/39u3b9fFixfVtWtXq3hTU1PVuHFj7dmzxzJyr1atWoqMjNT48eO1c+fOexq9c/z4cf3111/q3Lmz1XRcV1dXtW7dWjt37tS1a9eyjD0zZrNZn3/+uY4dO6YZM2bopZde0vnz5zVhwgQFBATo+PHjlrrnzp1T37595ePjIwcHB+XLl0+lS5eWJMvv4OrVq9q1a5defPFFqymB9vb26ty5s/744w+rNjMza9Ys5cuXT/nz51dAQIC2b9+usWPHWkbYZCeWe5Xdz6acSFtQ+9bt9s+yBg0aqECBAhnGk5vv5x9++CHTvy054e3trXz58qlAgQLq1KmTqlevrg0bNsjR0dFSp0CBAmrQoEG22itUqJBWrFih/fv3q06dOipVqlSWo/3SXLp0SdeuXZOXl1e2Ym3btq1q1KiR4SLYc+bMUfXq1eXo6Gh5fW3atCnD11azZs1kb29v2a9cubKk/5u+mPb+7dChg9WU0dKlS6d7SEBO/20QEhIiFxcXy35AQIAkqUmTJlZ9pZVn9/M8s8/s3PgsWr9+vUwmkzp16mT1Oert7a0qVapYPvf9/PxUoEABDRs2THPmzLEaOZsTXl5eSk1NzdOnLAL3AwudAwDuyYULF+Tt7Z1uTRMvLy85ODikm+Lj7e2dro20sgsXLqhkyZL3JU5PT081b95cc+bM0fXr17O92K6Li4vatWun8PBwlS5dWs8884zlC+PtLly4kOGaL2lP+km7F507d1ZycrI+/fRTtW7dWqmpqXriiSc0fvx4NWrU6O4uMBPOzs5WX6ikm9MAChYsmK5u/vz5lZCQkK48s99Z2vWk/bdYsWLp6hUvXtxqTa60mNKegpYdu3fv1rPPPqvg4GB9+umnKlmypPLnz681a9ZowoQJ6aZpFSpUKF0bZrM5y+lc2RUQEJDhorlp0zSeeOKJDM+79UtPhw4dtGnTJo0YMUJPPPGE3N3dLcnD3IgxI7f/btLivf0L460uXrwoFxcXrVixQuPHj9e8efM0YsQIubq66oUXXtCUKVMyfG1k5U6vldTUVP37779WCwhnVDcrAQEBli+uhmFo5syZGjRokEaMGKGVK1cqNTVVzz77rP766y+NGDFCgYGBcnFxUWpqqp588knL7+Dff/+VYRiZxnrr9WSlbdu2evPNN2UymeTm5qZy5cpZvvhnN5Z7ld3PpoykJYRuTwL4+/trz549kqRPPvkkw7VuMrp39+P9nPZ36HY5fX1u3LhRHh4eypcvn0qWLJlh3zl9PdauXVuPPfaYDh48qFdeecUq8ZKZtGu7/bM7o1gvXryoTz75RJ999pkGDBhglfSaPn26Bg8erL59+2rcuHEqXLiw7O3tNWLEiAyTUrdfr9lstoon7XWS2b0+deqUZT+n/za4/W9S/vz5syzP6G9VRjL7zM6Nz6K///5bhmFYJUNv5evrK0ny8PDQ5s2bNWHCBL399tv6999/VaxYMfXu3VvDhw/P9tMS014P9+vvBJBXSEoBAO5JoUKFtGvXLhmGYfWPz3Pnzik5OdnydKA0Gf0fvrSyjL4A5Cbj/69BkZ1FgW/Vo0cPzZs3T4cOHcryCVOFChVSbGxsuvK//vpLkqzuRffu3dW9e3ddvXpVW7Zs0ahRo9S8eXP9/PPPmSa98kpmvzM/Pz9J//d7y+zab38N5PT+L1++XPny5dP69eutvqStWbMmR+3cT2nXmLZOWmbi4uK0fv16jRo1Sm+99ZalPDEx0bL+S3Y4OjqmWyxYkv75559091tKf8/T6nz44YeZPqEy7YtW4cKFNXPmTM2cOVOnT5/W2rVr9dZbb+ncuXPasGFDtmOW7vxasbOzSzeyJqevl9vPfeONNzR27FjL0zqPHDmigwcPKjIyUl27drXUvX3x5AIFCsjOzi7b7+nMFClSJNOnf2U3Finr3/md5OSz6XbBwcFycHDQ2rVr9fLLL1vK0xajlm6OGMlIRr+7+/F+LlSoUJZ/W7KrSpUqd/yd5vT1OGrUKB0+fFg1atTQyJEj1bx5c0uyIjNp75OsPhNujbVRo0YKDQ3VJ598op49e1qS44sXL1ZwcLBmz55tdW7aOkY5lRZXdu51Tv9tYGu58VlUuHBhmUwm/fjjj5YE3q1uLQsMDNTy5ctlGIYOHTqkyMhIjR07Vk5OTlZ/C7KS9nrI63sH5Dam7wEA7knDhg115cqVdF8o0p7Gc/uC4Js2bbJ6OlBKSopWrFihcuXK3bdRUtLNUQ/r169X1apVs/y/zxkJCgpSjx499MILL+iFF17ItF7Dhg117Ngx7d+/36p84cKFMplMGT6m28XFRU2aNNE777yjGzdu6OjRo5LS/x/qvHR7Im779u36/fffLU8GCgoKkpOTkxYvXmxV748//tD333+f4aLwGclsNJPJZJKDg4PVtJLr169r0aJFObwS677S2skNoaGhcnBw0IkTJ1SzZs0MN+nmtRiGke4LzLx585SSkpLtGMuUKaNDhw5Zlf3888/Zmk4mSXXr1pWnp6eOHTuWabxpIxJuVapUKfXv31+NGjVK9zrPDn9/f5UoUUJLly61Wqj46tWr+uyzzyxPwbobGX25lG5+wYyPj7eMCkr7Ynn772Du3LlW+y4uLqpdu7ZWr15t9TtITU3V4sWLVbJkSatFpe9GdmORbv7Oz507Z/X5eePGDX3zzTd37OduPpvSFCtWTD169NCXX36Z7SelZuV+vJ9DQkIy/duSl7777jtNmjRJw4cP13fffScPDw+1a9dON27cyPK8tCfVnThxIlv9mEwmffzxx7K3t9fw4cOtym9/bR06dCjd0+Wyy9/fX8WKFdOyZcus3r+///67tm/fblU3p/82sLXc+Cxq3ry5DMPQn3/+meFnaEaL2ZtMJlWpUkUzZsyQp6en1XvyTiN6f/vtNxUqVCjTkVnAfxUjpQAA96RLly76+OOP1bVrV506dUqBgYHaunWrJk6cqKZNm+qZZ56xql+4cGE1aNBAI0aMkIuLi2bNmqWffvopW192jh07ZlmL4ezZs7p27ZrlqX2VKlVSpUqVJN2cHlWqVCnVrFlThQsX1i+//KJp06bp77//VmRk5F1d5/z58+9Y54033tDChQvVrFkzjR07VqVLl9aXX36pWbNm6ZVXXrF8ge3du7ecnJxUt25dFStWTGfPntWkSZPk4eFh+T/cjz/+uKSb02Lc3Nzk6OiosmXL3vfRZBnZu3evevXqpTZt2ujMmTN65513VKJECcuaOJ6enhoxYoTefvttdenSRe3bt9eFCxc0ZswYOTo6atSoUdnqJzAwUKtXr9bs2bNVo0YN2dnZqWbNmmrWrJmmT5+uDh066OWXX9aFCxf03nvvZfh/prMrt+9vmTJlNHbsWL3zzjv67bff1LhxYxUoUEB///23du/eLRcXF40ZM0bu7u6qV6+epk6dqsKFC6tMmTLavHmz5s+fn+4pW1nF2LlzZ3Xq1En9+vVT69at9fvvv2vKlClWTwnLiqurqz788EN17dpVFy9e1IsvvigvLy+dP39eBw8e1Pnz5zV79mzFxcUpJCREHTp0UMWKFeXm5qY9e/Zow4YNGT5B607s7Ow0ZcoUdezYUc2bN1efPn2UmJioqVOn6tKlS3r33Xdz3Gaal19+WZcuXVLr1q31+OOPy97eXj/99JNmzJghOzs7DRs2TJJUsWJFlStXTm+99ZYMw1DBggW1bt26dNNMpZtPlWzUqJFCQkI0ZMgQ5c+fX7NmzdKRI0e0bNmyexrFldNY2rVrp5EjR+qll17Sm2++qYSEBH3wwQfpkpkZye5nU2ZmzpypkydPqmPHjlq7dq1atGih4sWL69q1a5bPb0dHx2xNQ7of7+fhw4dr7dq1atCggUaOHClnZ2d9/PHHlnXR8kLaU/rq16+vUaNGyc7OTitWrFC9evU0dOhQzZw5M8vzg4OD9fXXX2e7v/Lly+vll1/WrFmztHXrVj311FNq3ry5xo0bp1GjRql+/fo6fvy4xo4dq7Jly1o9hS677OzsNG7cOPXq1UsvvPCCevfurUuXLmn06NHppvTl9N8GtpYbn0V169bVyy+/rO7du2vv3r2qV6+eXFxcFBsbq61btyowMFCvvPKK1q9fr1mzZqlly5by9fWVYRhavXq1Ll26ZDVlPzAwUFFRUVq3bp2KFSsmNzc3+fv7W47v3LlT9evXv+fPHeCBY/Ol1QEA/2m3P33PMG4+ua1v375GsWLFDAcHB6N06dJGWFiYkZCQYFVPkvHqq68as2bNMsqVK2fky5fPqFixorFkyZJs9Z32BJyMtlGjRlnqTZo0yahatarh4eFh2NvbG0WKFDFeeOEFY/fu3Tnq5/z581nWy+hJOb///rvRoUMHo1ChQka+fPkMf39/Y+rUqVZP91mwYIEREhJiFC1a1MifP79RvHhxo23btumeJjRz5kyjbNmyhr29vSHJiIiIyDSWzJ6+d/vvyjBuPiXqscceS1deunRpo1mzZuna/Pbbb43OnTsbnp6elqfs/fLLL+nOnzdvnlG5cmUjf/78hoeHh9GiRQvj6NGjVnUyi8kwDOPixYvGiy++aHh6ehomk8nqiWLh4eGGv7+/YTabDV9fX2PSpEnG/Pnz0z1Z6/ZruPWab38y1r3e34ysWbPGCAkJMdzd3Q2z2WyULl3aePHFF42NGzda6vzxxx9G69atjQIFChhubm5G48aNjSNHjmT4RL3MYkxNTTWmTJli+Pr6Go6OjkbNmjWN77//PtOn7936BLxbbd682WjWrJlRsGBBI1++fEaJEiWMZs2aWeonJCQYffv2NSpXrmy4u7sbTk5Ohr+/vzFq1Cjj6tWrWd6LrPpes2aNUbt2bcPR0dFwcXExGjZsaGzbts2qTnbfh2m++eYbo0ePHkalSpUMDw8Pw8HBwShWrJjRqlUrY8eOHVZ1jx07ZjRq1Mhwc3MzChQoYLRp08Y4ffp0us8SwzCMH3/80WjQoIHh4uJiODk5GU8++aSxbt26bMWU9pmXlZzE8tVXXxlVq1Y1nJycDF9fX+Ojjz7K1tP3DCN7n01ZSUlJMRYuXGg0atTIKFy4sOHg4GB4eHgYtWrVMkaMGGH88ccf2b72+/F+3rZtm/Hkk08aZrPZ8Pb2Nt58803jk08+ydHT9+70Wsvss/P2mJKTk4369esbRYsWNWJjY63qTZ061ZBkfP7551n2tWnTJkNSur9bWcX6999/G66urkZISIhhGIaRmJhoDBkyxChRooTh6OhoVK9e3VizZk26JzmmPX1v6tSp6drM6HU4b948o3z58kb+/PmNChUqGOHh4Rk+HTKn/za4VWYx3ekzLU1OPrPv9bMoPDzcqF27tuUzoly5ckaXLl2MvXv3GoZhGD/99JPRvn17o1y5coaTk5PlfRMZGWnVTnR0tFG3bl3D2dnZkGT1Gv/111/TPU0XeFiYDOOW8YoAANxHJpNJr776qj766KO8DgXZEBkZqe7du2vPnj2ZrokDALg/KleurLp166ZbEwqPnhEjRmjhwoU6ceKEHByY7ISHC2tKAQAAAMADZsqUKYqMjNQff/yR16EgD126dEkff/yxJk6cSEIKDyWSUgAAAADwgGncuLGmTp2qkydP5nUoyEMnT55UWFiYOnTokNehAPcF0/cAAAAAAABgc4yUAgAAAAAAgM2RlAIAAAAAAIDNkZQCAAAAAACAzbF8P5CHUlNT9ddff8nNzU0mkymvwwEAAAAA4J4ZhqHLly+rePHisrPLfDwUSSkgD/3111/y8fHJ6zAAAAAAAMh1Z86cUcmSJTM9TlIKyENubm6Sbr5R3d3d8zgaAAAAAADuXXx8vHx8fCzfeTNDUgrIQ2lT9tzd3UlKAQAAAAAeKndapoaFzgEAAAAAAGBzjJQCHgD1hi+Tvdkpr8MAAAAAADyA9k3tktch3BeMlAIAAAAAAIDNkZQCAAAAAACAzZGUAgAAAAAAgM2RlAIAAAAAAIDNkZQCAAAAAACAzZGUAgAAAAAAgM2RlAIAAAAAAIDNkZQCMnDq1CmZTCZFR0fndSgAAAAAADyUSEohT507d059+vRRqVKlZDab5e3trdDQUO3YsSOvQ7OSUZLq9ddfV40aNWQ2m1W1atU8iw0AAAAAgP8ih7wOAI+21q1bKykpSQsWLJCvr6/+/vtvbdq0SRcvXszr0O7IMAz16NFDu3bt0qFDh/I6HAAAAAAA/lMYKYU8c+nSJW3dulWTJ09WSEiISpcurVq1aiksLEzNmjWTJJlMJs2ePVtNmjSRk5OTypYtq1WrVlm18+eff6pdu3YqUKCAChUqpBYtWujUqVNWdSIiIhQQECBHR0dVrFhRs2bNsjq+e/duVatWTY6OjqpZs6YOHDhwx/g/+OADvfrqq/L19b23GwEAAAAAwCOIpBTyjKurq1xdXbVmzRolJiZmWm/EiBFq3bq1Dh48qE6dOql9+/aKiYmRJF27dk0hISFydXXVli1btHXrVrm6uqpx48a6ceOGJOnTTz/VO++8owkTJigmJkYTJ07UiBEjtGDBAknS1atX1bx5c/n7+2vfvn0aPXq0hgwZcl+uOTExUfHx8VYbAAAAAACPIpJSyDMODg6KjIzUggUL5Onpqbp16+rtt99ONxWuTZs26tWrlypUqKBx48apZs2a+vDDDyVJy5cvl52dnebNm6fAwEAFBAQoIiJCp0+fVlRUlCRp3LhxmjZtmlq1aqWyZcuqVatWeuONNzR37lxJ0pIlS5SSkqLw8HA99thjat68ud588837cs2TJk2Sh4eHZfPx8bkv/QAAAAAA8KAjKYU81bp1a/31119au3atQkNDFRUVperVqysyMtJSJygoyOqcoKAgy0ipffv26ddff5Wbm5tl5FXBggWVkJCgEydO6Pz58zpz5ox69uxpOe7q6qrx48frxIkTkqSYmBhVqVJFzs7OmfaZW8LCwhQXF2fZzpw5c1/6AQAAAADgQcdC58hzjo6OatSokRo1aqSRI0eqV69eGjVqlLp165bpOSaTSZKUmpqqGjVqaMmSJenqFClSRAkJCZJuTuGrXbu21XF7e3tJNxcstxWz2Syz2Wyz/gAAAAAAeFAxUgoPnEqVKunq1auW/Z07d1od37lzpypWrChJql69un755Rd5eXnJz8/PavPw8FDRokVVokQJ/fbbb+mOly1b1tLfwYMHdf369Uz7BAAAAAAAuYukFPLMhQsX1KBBAy1evFiHDh3SyZMntWrVKk2ZMkUtWrSw1Fu1apXCw8P1888/a9SoUdq9e7f69+8vSerYsaMKFy6sFi1a6Mcff9TJkye1efNmvf766/rjjz8kSaNHj9akSZP0/vvv6+eff9bhw4cVERGh6dOnS5I6dOggOzs79ezZU8eOHdNXX32l9957747x//rrr4qOjtbZs2d1/fp1RUdHKzo62rLAOgAAAAAAyBzT95BnXF1dVbt2bc2YMUMnTpxQUlKSfHx81Lt3b7399tuWemPGjNHy5cvVr18/eXt7a8mSJapUqZIkydnZWVu2bNGwYcPUqlUrXb58WSVKlFDDhg3l7u4uSerVq5ecnZ01depUDR06VC4uLgoMDNTAgQMtcaxbt059+/ZVtWrVVKlSJU2ePFmtW7fOMv5evXpp8+bNlv1q1apJkk6ePKkyZcrk4p0CAAAAAODhYzJsuaAOkEMmk0mff/65WrZsmdeh3Bfx8fHy8PBQlQFzZG92yutwAAAAAAAPoH1Tu+R1CDmS9l03Li7OMmAkI0zfAwAAAAAAgM2RlAIAAAAAAIDNsaYUHmjMLgUAAAAA4OHESCkAAAAAAADYHEkpAAAAAAAA2BxJKQAAAAAAANgcSSkAAAAAAADYHAudAw+ALePby93dPa/DAAAAAADAZhgpBQAAAAAAAJsjKQUAAAAAAACbIykFAAAAAAAAmyMpBQAAAAAAAJsjKQUAAAAAAACb4+l7wAOg3vBlsjc75XUYALKwb2qXvA4BAAAAeKgwUgoAAAAAAAA2R1IKAAAAAAAANkdSCgAAAAAAADZHUgoAAAAAAAA2R1IKAAAAAAAANkdSCgAAAAAAADZHUgoAAAAAAAA2R1IKyMCpU6dkMpkUHR2d16EAAAAAAPBQIimFPHXu3Dn16dNHpUqVktlslre3t0JDQ7Vjx468Ds3K7UmqgwcPqn379vLx8ZGTk5MCAgL0/vvv522QAAAAAAD8hzjkdQB4tLVu3VpJSUlasGCBfH199ffff2vTpk26ePFiXoeWpX379qlIkSJavHixfHx8tH37dr388suyt7dX//798zo8AAAAAAAeeIyUQp65dOmStm7dqsmTJyskJESlS5dWrVq1FBYWpmbNmkmSTCaTZs+erSZNmsjJyUlly5bVqlWrrNr5888/1a5dOxUoUECFChVSixYtdOrUKas6ERERCggIkKOjoypWrKhZs2ZZHd+9e7eqVasmR0dH1axZUwcOHMgy9h49euiDDz5Q/fr15evrq06dOql79+5avXr1vd8YAAAAAAAeASSlkGdcXV3l6uqqNWvWKDExMdN6I0aMUOvWrXXw4EF16tRJ7du3V0xMjCTp2rVrCgkJkaurq7Zs2aKtW7fK1dVVjRs31o0bNyRJn376qd555x1NmDBBMTExmjhxokaMGKEFCxZIkq5evarmzZvL399f+/bt0+jRozVkyJAcX09cXJwKFix4F3cCAAAAAIBHD9P3kGccHBwUGRmp3r17a86cOapevbrq16+vl156SZUrV7bUa9OmjXr16iVJGjdunL777jt9+OGHmjVrlpYvXy47OzvNmzdPJpNJ0s1RUZ6enoqKitKzzz6rcePGadq0aWrVqpUkqWzZsjp27Jjmzp2rrl27asmSJUpJSVF4eLicnZ312GOP6Y8//tArr7yS7WvZsWOHVq5cqS+//DLLeomJiVYJuPj4+Gz3AQAAAADAw4SRUshTrVu31l9//aW1a9cqNDRUUVFRql69uiIjIy11goKCrM4JCgqyjJTat2+ffv31V7m5uVlGXhUsWFAJCQk6ceKEzp8/rzNnzqhnz56W466urho/frxOnDghSYqJiVGVKlXk7OycaZ9ZOXr0qFq0aKGRI0eqUaNGWdadNGmSPDw8LJuPj0+2+wEAAAAA4GHCSCnkOUdHRzVq1EiNGjXSyJEj1atXL40aNUrdunXL9Jy0UVGpqamqUaOGlixZkq5OkSJFlJCQIOnmFL7atWtbHbe3t5ckGYZx17EfO3ZMDRo0UO/evTV8+PA71g8LC9OgQYMs+/Hx8SSmAAAAAACPJJJSeOBUqlRJa9assezv3LlTXbp0sdqvVq2aJKl69epasWKFvLy85O7unq4tDw8PlShRQr/99ps6duyYaX+LFi3S9evX5eTkZOnjTo4ePaoGDRqoa9eumjBhQrauzWw2y2w2Z6suAAAAAAAPM6bvIc9cuHBBDRo00OLFi3Xo0CGdPHlSq1at0pQpU9SiRQtLvVWrVik8PFw///yzRo0apd27d6t///6SpI4dO6pw4cJq0aKFfvzxR508eVKbN2/W66+/rj/++EOSNHr0aE2aNEnvv/++fv75Zx0+fFgRERGaPn26JKlDhw6ys7NTz549dezYMX311Vd67733soz96NGjCgkJUaNGjTRo0CCdPXtWZ8+e1fnz5+/T3QIAAAAA4OHCSCnkGVdXV9WuXVszZszQiRMnlJSUJB8fH/Xu3Vtvv/22pd6YMWO0fPly9evXT97e3lqyZIkqVaokSXJ2dtaWLVs0bNgwtWrVSpcvX1aJEiXUsGFDy8ipXr16ydnZWVOnTtXQoUPl4uKiwMBADRw40BLHunXr1LdvX1WrVk2VKlXS5MmT1bp160xjX7Vqlc6fP68lS5ZYTR0sXbq0Tp06lfs3CwAAAACAh4zJuJcFdYD7zGQy6fPPP1fLli3zOpT7Ij4+Xh4eHqoyYI7szU55HQ6ALOyb2uXOlQAAAABYvuvGxcVluNROGqbvAQAAAAAAwOZISgEAAAAAAMDmWFMKDzRmlwIAAAAA8HBipBQAAAAAAABsjqQUAAAAAAAAbI6kFAAAAAAAAGyOpBQAAAAAAABsjoXOgQfAlvHt5e7untdhAAAAAABgM4yUAgAAAAAAgM2RlAIAAAAAAIDNkZQCAAAAAACAzZGUAgAAAAAAgM2RlAIAAAAAAIDNkZQCAAAAAACAzTnkdQAApHrDl8ne7JTXYeSKfVO75HUIAAAAAID/AEZKAQAAAAAAwOZISgEAAAAAAMDmSEoBAAAAAADA5khKAQAAAAAAwOZISgEAAAAAAMDmSEoBAAAAAADA5khKAQAAAAAAwOZISuGhdurUKZlMJkVHR2daJyoqSiaTSZcuXZIkRUZGytPT0ybxAQAAAADwqCIphfuuW7duatmyZbry25NB94OPj49iY2P1+OOPZ/ucdu3a6eeff7bsjx49WlWrVr0P0QEAAAAA8OhyyOsAgPvJ3t5e3t7eOTrHyclJTk5O9ykiAAAAAAAgMVIKD4iMRiPNnDlTZcqUseynjbiaOHGiihYtKk9PT40ZM0bJycl68803VbBgQZUsWVLh4eGWczKavvfVV1+pQoUKcnJyUkhIiE6dOmXV763T9yIjIzVmzBgdPHhQJpNJJpNJkZGR6tGjh5o3b251XnJysry9va36BwAAAAAAGWOkFP5Tvv/+e5UsWVJbtmzRtm3b1LNnT+3YsUP16tXTrl27tGLFCvXt21eNGjWSj49PuvPPnDmjVq1aqW/fvnrllVe0d+9eDR48ONP+2rVrpyNHjmjDhg3auHGjJMnDw0MVKlRQvXr1FBsbq2LFikm6mey6cuWK2rZte38uHgAAAACAhwgjpWAT69evl6urq9XWpEmTHLdTsGBBffDBB/L391ePHj3k7++va9eu6e2331b58uUVFham/Pnza9u2bRmeP3v2bPn6+mrGjBny9/dXx44d1a1bt0z7c3JykqurqxwcHOTt7S1vb285OTmpTp068vf316JFiyx1IyIi1KZNG7m6umbaXmJiouLj4602AAAAAAAeRSSlYBMhISGKjo622ubNm5fjdh577DHZ2f3fy7Zo0aIKDAy07Nvb26tQoUI6d+5chufHxMToySeflMlkspQFBQXlOA5J6tWrlyIiIiRJ586d05dffqkePXpkec6kSZPk4eFh2TIazQUAAAAAwKOApBRswsXFRX5+flZbiRIlLMft7OxkGIbVOUlJSenayZcvn9W+yWTKsCw1NTXDOG7v41506dJFv/32m3bs2KHFixerTJkyevrpp7M8JywsTHFxcZbtzJkzuRYPAAAAAAD/JawphQdCkSJFdPbsWRmGYRnFdOvi5LmlUqVKWrNmjVXZzp07szwnf/78SklJSVdeqFAhtWzZUhEREdqxY4e6d+9+x/7NZrPMZnOOYgYAAAAA4GHESCk8EIKDg3X+/HlNmTJFJ06c0Mcff6yvv/461/vp27evTpw4oUGDBun48eNaunSpIiMjszynTJkyOnnypKKjo/XPP/8oMTHRcqxXr15asGCBYmJi1LVr11yPFwAAAACAhxVJKTwQAgICNGvWLH388ceqUqWKdu/erSFDhuR6P6VKldJnn32mdevWqUqVKpozZ44mTpyY5TmtW7dW48aNFRISoiJFimjZsmWWY88884yKFSum0NBQFS9ePNfjBQAAAADgYWUycnORHeARc+3aNRUvXlzh4eFq1apVjs+Pj4+Xh4eHqgyYI3uz032I0Pb2Te2S1yEAAAAAAPJQ2nfduLg4ubu7Z1qPNaWAu5CamqqzZ89q2rRp8vDw0PPPP5/XIQEAAAAA8J9CUgq4C6dPn1bZsmVVsmRJRUZGysGBtxIAAAAAADnBN2ngLpQpU0bMfAUAAAAA4O6x0DkAAAAAAABsjqQUAAAAAAAAbI6kFAAAAAAAAGyOpBQAAAAAAABsjoXOgQfAlvHt5e7untdhAAAAAABgM4yUAgAAAAAAgM2RlAIAAAAAAIDNkZQCAAAAAACAzZGUAgAAAAAAgM2RlAIAAAAAAIDNkZQCAAAAAACAzTnkdQAApHrDl8ne7GTzfvdN7WLzPgEAAAAAkBgpBQAAAAAAgDxAUgoAAAAAAAA2R1IKAAAAAAAANkdSCgAAAAAAADZHUgoAAAAAAAA2R1IKAAAAAAAANkdSCgAAAAAAADZHUgr/CVFRUTKZTLp06VKOzhs9erSKFi0qk8mkNWvWZFoGAAAAAABsi6QUck23bt1kMpnSbb/++muu95WWpMpoO3v2rCQpJiZGY8aM0dy5cxUbG6smTZpkWHavRo8erapVq95zOwAAAAAAPEoc8joAPFwaN26siIgIq7IiRYrct/6OHz8ud3d3qzIvLy9J0okTJyRJLVq0kMlkyrQMAAAAAADYHiOlkKvMZrO8vb2ttp49e6ply5ZW9QYOHKjg4GDLvmEYmjJlinx9feXk5KQqVarof//73x378/LyStefnZ2dRo8ereeee06SZGdnJ5PJlGFZmoiICAUEBMjR0VEVK1bUrFmzrPr5448/9NJLL6lgwYJycXFRzZo1tWvXLkVGRmrMmDE6ePCgZaRWZGTk3d08AAAAAAAeIYyUwgNh+PDhWr16tWbPnq3y5ctry5Yt6tSpk4oUKaL69evnuL0hQ4aoTJky6t69u2JjYyVJrq6u6cok6dNPP9WoUaP00UcfqVq1ajpw4IB69+4tFxcXde3aVVeuXFH9+vVVokQJrV27Vt7e3tq/f79SU1PVrl07HTlyRBs2bNDGjRslSR4eHpnGlZiYqMTERMt+fHx8jq8NAAAAAICHAUkp5Kr169fL1dXVst+kSRO5uLhkec7Vq1c1ffp0ff/99woKCpIk+fr6auvWrZo7d26WSamSJUta7ZcoUULHjx+Xq6urPD09JUne3t6W4xmVjRs3TtOmTVOrVq0kSWXLltWxY8c0d+5cde3aVUuXLtX58+e1Z88eFSxYUJLk5+dnOd/V1VUODg5WbWZm0qRJGjNmzB3rAQAAAADwsCMphVwVEhKi2bNnW/ZdXFwUFhaW5TnHjh1TQkKCGjVqZFV+48YNVatWLctzf/zxR7m5uVn2HRxy9pI+f/68zpw5o549e6p3796W8uTkZMuIp+joaFWrVs2SkLoXYWFhGjRokGU/Pj5ePj4+99wuAAAAAAD/NSSlkKtcXFysRhFJN9dvMgzDqiwpKcnyc2pqqiTpyy+/VIkSJazqmc3mLPsrW7asZfTT3Ujr+9NPP1Xt2rWtjtnb20uSnJyc7rr925nN5jteEwAAAAAAjwKSUrjvihQpoiNHjliVRUdHK1++fJKkSpUqyWw26/Tp03e1ftS9KFq0qEqUKKHffvtNHTt2zLBO5cqVNW/ePF28eDHD0VL58+dXSkrK/Q4VAAAAAICHCkkp3HcNGjTQ1KlTtXDhQgUFBWnx4sU6cuSIZWqem5ubhgwZojfeeEOpqal66qmnFB8fr+3bt8vV1VVdu3bNtO1z584pISHBqqxQoUKWhFd2jB49Wq+99prc3d3VpEkTJSYmau/evfr33381aNAgtW/fXhMnTlTLli01adIkFStWTAcOHFDx4sUVFBSkMmXK6OTJk4qOjlbJkiXl5ubGaCgAAAAAAO7ALq8DwMMvNDRUI0aM0NChQ/XEE0/o8uXL6tKli1WdcePGaeTIkZo0aZICAgIUGhqqdevWqWzZslm27e/vr2LFillt+/bty1F8vXr10rx58xQZGanAwEDVr19fkZGRlr7z58+vb7/9Vl5eXmratKkCAwP17rvvWqb3tW7dWo0bN1ZISIiKFCmiZcuW5ah/AAAAAAAeRSbj9sV+ANhMfHy8PDw8VGXAHNmbc2/tquzaN7XLnSsBAAAAAJADad914+Li5O7unmk9RkoBAAAAAADA5khKAQAAAAAAwOZISgEAAAAAAMDmSEoBAAAAAADA5khKAQAAAAAAwOZISgEAAAAAAMDmSEoBAAAAAADA5hzyOgAA0pbx7eXu7p7XYQAAAAAAYDOMlAIAAAAAAIDNkZQCAAAAAACAzZGUAgAAAAAAgM2RlAIAAAAAAIDNkZQCAAAAAACAzZGUAgAAAAAAgM055HUAAKR6w5fJ3uxk0z73Te1i0/4AAAAAALgVI6UAAAAAAABgcySlAAAAAAAAYHMkpQAAAAAAAGBzJKUAAAAAAABgcySlAAAAAAAAYHMkpQAAAAAAAGBzJKUAAAAAAABgcySlcF9ERUXJZDLp0qVL99ROt27d1LJly1yJ6X47deqUTCaToqOj8zoUAAAAAAAeeCSlcEdz5syRm5ubkpOTLWVXrlxRvnz59PTTT1vV/fHHH2UymVS8eHHFxsbKw8MjV2M5d+6c+vTpo1KlSslsNsvb21uhoaHasWNHrvYDAAAAAADuL4e8DgAPvpCQEF25ckV79+7Vk08+Kelm8snb21t79uzRtWvX5OzsLOnmCKnixYurQoUK9yWW1q1bKykpSQsWLJCvr6/+/vtvbdq0SRcvXrwv/QEAAAAAgPuDkVK4I39/fxUvXlxRUVGWsqioKLVo0ULlypXT9u3brcpDQkLSTd+LjIyUp6envvnmGwUEBMjV1VWNGzdWbGys5dyUlBQNGjRInp6eKlSokIYOHSrDMCzHL126pK1bt2ry5MkKCQlR6dKlVatWLYWFhalZs2aWeiaTSbNnz1aTJk3k5OSksmXLatWqVVbX9Oeff6pdu3YqUKCAChUqpBYtWujUqVNWdSIiIhQQECBHR0dVrFhRs2bNsjq+e/duVatWTY6OjqpZs6YOHDhwt7cYAAAAAIBHDkkpZEtwcLB++OEHy/4PP/yg4OBg1a9f31J+48YN7dixQyEhIRm2ce3aNb333ntatGiRtmzZotOnT2vIkCGW49OmTVN4eLjmz5+vrVu36uLFi/r8888tx11dXeXq6qo1a9YoMTExy3hHjBih1q1b6+DBg+rUqZPat2+vmJgYSxwhISFydXXVli1btHXrVkuS7MaNG5KkTz/9VO+8844mTJigmJgYTZw4USNGjNCCBQskSVevXlXz5s3l7++vffv2afTo0VbXkpnExETFx8dbbQAAAAAAPIpISiFbgoODtW3bNiUnJ+vy5cs6cOCA6tWrp/r161tGUO3cuVPXr1/PNCmVlJSkOXPmqGbNmqpevbr69++vTZs2WY7PnDlTYWFhat26tQICAjRnzhyrNakcHBwUGRmpBQsWyNPTU3Xr1tXbb7+tQ4cOpeurTZs26tWrlypUqKBx48apZs2a+vDDDyVJy5cvl52dnebNm6fAwEAFBAQoIiJCp0+ftlzLuHHjNG3aNLVq1Uply5ZVq1at9MYbb2ju3LmSpCVLliglJUXh4eF67LHH1Lx5c7355pt3vI+TJk2Sh4eHZfPx8cnW/QcAAAAA4GFDUgrZEhISoqtXr2rPnj368ccfVaFCBXl5eal+/fras2ePrl69qqioKJUqVUq+vr4ZtuHs7Kxy5cpZ9osVK6Zz585JkuLi4hQbG6ugoCDLcQcHB9WsWdOqjdatW+uvv/7S2rVrFRoaqqioKFWvXl2RkZFW9W5tJ20/baTUvn379Ouvv8rNzc0y+qpgwYJKSEjQiRMndP78eZ05c0Y9e/a0HHd1ddX48eN14sQJSVJMTIyqVKliWUsroz4zEhYWpri4OMt25syZO54DAAAAAMDDiIXOkS1+fn4qWbKkfvjhB/3777+qX7++JMnb21tly5bVtm3b9MMPP6hBgwaZtpEvXz6rfZPJZLVmVHY5OjqqUaNGatSokUaOHKlevXpp1KhR6tatW5bnmUwmSVJqaqpq1KihJUuWpKtTpEgRJSQkSLo5ha927dpWx+3t7SXpruKWJLPZLLPZfFfnAgAAAADwMGGkFLItbQHzqKgoBQcHW8rr16+vb775Rjt37sx06t6deHh4qFixYtq5c6elLDk5Wfv27bvjuZUqVdLVq1etym5tJ22/YsWKkqTq1avrl19+kZeXl/z8/Kw2Dw8PFS1aVCVKlNBvv/2W7njZsmUtfR48eFDXr1/PtE8AAAAAAJA5klLItpCQEG3dulXR0dGWkVLSzaTUp59+qoSEhLtOSknS66+/rnfffVeff/65fvrpJ/Xr18/y9D5JunDhgho0aKDFixfr0KFDOnnypFatWqUpU6aoRYsWVm2tWrVK4eHh+vnnnzVq1Cjt3r1b/fv3lyR17NhRhQsXVosWLfTjjz/q5MmT2rx5s15//XX98ccfkqTRo0dr0qRJev/99/Xzzz/r8OHDioiI0PTp0yVJHTp0kJ2dnXr27Kljx47pq6++0nvvvXfX1w4AAAAAwKOG6XvItpCQEF2/fl0VK1ZU0aJFLeX169fX5cuXVa5cuXtauHvw4MGKjY1Vt27dZGdnpx49euiFF15QXFycpJtP36tdu7ZmzJihEydOKCkpST4+Purdu7fefvttq7bGjBmj5cuXq1+/fvL29taSJUtUqVIlSTfXttqyZYuGDRumVq1a6fLlyypRooQaNmwod3d3SVKvXr3k7OysqVOnaujQoXJxcVFgYKAGDhxoiWXdunXq27evqlWrpkqVKmny5Mlq3br1XV8/AAAAAACPEpNxt4vjAA8ok8mkzz//XC1btszrUO4oPj5eHh4eqjJgjuzNTjbte9/ULjbtDwAAAADwaEj7rhsXF2cZ/JERpu8BAAAAAADA5khKAQAAAAAAwOZYUwoPHWakAgAAAADw4GOkFAAAAAAAAGyOpBQAAAAAAABsjqQUAAAAAAAAbI6kFAAAAAAAAGyOhc6BB8CW8e3l7u6e12EAAAAAAGAzjJQCAAAAAACAzZGUAgAAAAAAgM2RlAIAAAAAAIDNkZQCAAAAAACAzZGUAgAAAAAAgM2RlAIAAAAAAIDNOeR1AACkesOXyd7sdFfn7pvaJZejAQAAAADg/mOkFAAAAAAAAGyOpBQAAAAAAABsjqQUAAAAAAAAbI6kFAAAAAAAAGyOpBQAAAAAAABsjqQUAAAAAAAAbI6kFAAAAAAAAGyOpBTuyqlTp2QymRQdHZ2ncYwePVpVq1a953YiIyPl6el5z+0AAAAAAIDsISn1EDCZTFlu3bp1y5O4ypQpk2E87777bp7Ec2tcM2fOtCpr166dfv7557wJCAAAAACAR5BDXgeAexcbG2v5ecWKFRo5cqSOHz9uKXNycrKqn5SUpHz58tkktrFjx6p3795WZW5ubjbpOyecnJzS3ScAAAAAAHD/MFLqIeDt7W3ZPDw8ZDKZLPsJCQny9PTUypUrFRwcLEdHRy1evFgXLlxQ+/btVbJkSTk7OyswMFDLli2zajc1NVWTJ0+Wn5+fzGazSpUqpQkTJmQYQ2pqqnr37q0KFSro999/t5S7ublZxeft7S0XFxelpqaqZMmSmjNnjlU7+/fvl8lk0m+//SZJOn36tFq0aCFXV1e5u7urbdu2+vvvvzO9F8HBwRo4cKBVWcuWLS2jxYKDg/X777/rjTfesIzckjKevjd79myVK1dO+fPnl7+/vxYtWmR13GQyad68eXrhhRfk7Oys8uXLa+3atZnGBgAAAAAA/g9JqUfEsGHD9NprrykmJkahoaFKSEhQjRo1tH79eh05ckQvv/yyOnfurF27dlnOCQsL0+TJkzVixAgdO3ZMS5cuVdGiRdO1fePGDbVt21Z79+7V1q1bVbp06TvGY2dnp5deeklLliyxKl+6dKmCgoLk6+srwzDUsmVLXbx4UZs3b9Z3332nEydOqF27dnd9H1avXq2SJUtq7Nixio2NtRpldqvPP/9cr7/+ugYPHqwjR46oT58+6t69u3744QeremPGjFHbtm116NAhNW3aVB07dtTFixcz7T8xMVHx8fFWGwAAAAAAjyKSUo+IgQMHqlWrVipbtqyKFy+uEiVKaMiQIapatap8fX01YMAAhYaGatWqVZKky5cv6/3339eUKVPUtWtXlStXTk899ZR69epl1e6VK1fUrFkznT17VlFRUfLy8rI6PmzYMLm6ulptUVFRkqSOHTtq27ZtlpFVqampWr58uTp16iRJ2rhxow4dOqSlS5eqRo0aql27thYtWqTNmzdrz549d3UfChYsKHt7e6sRXBl577331K1bN/Xr108VKlTQoEGD1KpVK7333ntW9bp166b27dvLz89PEydO1NWrV7V79+5M+580aZI8PDwsm4+Pz11dBwAAAAAA/3UkpR4RNWvWtNpPSUnRhAkTVLlyZRUqVEiurq769ttvdfr0aUlSTEyMEhMT1bBhwyzbbd++va5cuaJvv/1WHh4e6Y6/+eabio6Ottpq164tSapWrZoqVqxomTa4efNmnTt3Tm3btrXE4OPjY5W4qVSpkjw9PRUTE3P3NyMbYmJiVLduXauyunXrpuu3cuXKlp9dXFzk5uamc+fOZdpuWFiY4uLiLNuZM2dyN3AAAAAAAP4jSEo9IlxcXKz2p02bphkzZmjo0KH6/vvvFR0drdDQUN24cUNS+sXRM9O0aVMdOnRIO3fuzPB44cKF5efnZ7Xd2nbHjh21dOlSSTen7oWGhqpw4cKSJMMwLGs+3SqzcunmtEDDMKzKkpKSsnUtt7u9j4z6vX3BeJPJpNTU1EzbNJvNcnd3t9oAAAAAAHgUkZR6RP34449q0aKFOnXqpCpVqsjX11e//PKL5Xj58uXl5OSkTZs2ZdnOK6+8onfffVfPP/+8Nm/enOM4OnTooMOHD2vfvn363//+p44dO1qOVapUSadPn7YaTXTs2DHFxcUpICAgw/aKFClitU5USkqKjhw5YlUnf/78SklJyTKugIAAbd261aps+/btmfYLAAAAAAByxiGvA0De8PPz02effabt27erQIECmj59us6ePWtJujg6OmrYsGEaOnSo8ufPr7p16+r8+fM6evSoevbsadXWgAEDlJKSoubNm+vrr7/WU089ZTl2+fJlnT171qq+s7OzZYRQ2bJlVadOHfXs2VPJyclq0aKFpd4zzzyjypUrq2PHjpo5c6aSk5PVr18/1a9fP910xDQNGjTQoEGD9OWXX6pcuXKaMWOGLl26ZFWnTJky2rJli1566SWZzWbLyKxbvfnmm2rbtq2qV6+uhg0bat26dVq9erU2btyY/ZsMAAAAAAAyxUipR9SIESNUvXp1hYaGKjg4WN7e3mrZsmW6OoMHD9bIkSMVEBCgdu3aZbpe0sCBAzVmzBg1bdpU27dvt5SPHDlSxYoVs9qGDh1qdW7Hjh118OBBtWrVympqn8lk0po1a1SgQAHVq1dPzzzzjHx9fbVixYpMr6tHjx7q2rWrunTpovr166ts2bIKCQmxqjN27FidOnVK5cqVU5EiRTJsp2XLlnr//fc1depUPfbYY5o7d64iIiIUHBycad8AAAAAACD7TMbtC/AAsJn4+Hh5eHioyoA5sjdnbx2v2+2b2iWXowIAAAAA4O6lfdeNi4vLci1lRkoBAAAAAADA5khKAQAAAAAAwOZISgEAAAAAAMDmSEoBAAAAAADA5khKAQAAAAAAwOZISgEAAAAAAMDmSEoBAAAAAADA5hzyOgAA0pbx7eXu7p7XYQAAAAAAYDOMlAIAAAAAAIDNkZQCAAAAAACAzZGUAgAAAAAAgM2RlAIAAAAAAIDNkZQCAAAAAACAzfH0PeABUG/4MtmbnXJ83r6pXe5DNAAAAAAA3H+MlAIAAAAAAIDNkZQCAAAAAACAzZGUAgAAAAAAgM2RlAIAAAAAAIDNkZQCAAAAAACAzZGUAgAAAAAAgM2RlAIAAAAAAIDNkZTCAy0qKkomk0mXLl3K61AAAAAAAEAuIimFB8L27dtlb2+vxo0bW5XXqVNHsbGx8vDwyPTcMmXKyGQyZboFBwff5+gBAAAAAEBOOeR1AIAkhYeHa8CAAZo3b55Onz6tUqVKSZLy588vb2/vTM9LSUnRrl27ZBiGpJvJrdatW+v48eNyd3e3tAEAAAAAAB4sjJRCnrt69apWrlypV155Rc2bN1dkZKTl2O3T9yIjI+Xp6an169erUqVKMpvNunbtmry9veXt7a2CBQtKkry8vCxlP/30k+rVqycnJyf5+Pjotdde09WrVy19lClTRuPHj1eXLl3k6uqq0qVL64svvtD58+fVokULubq6KjAwUHv37rWckxbHmjVrVKFCBTk6OqpRo0Y6c+aMTe4ZAAAAAAD/dSSlkOdWrFghf39/+fv7q1OnToqIiLCMfMrItWvXNGnSJM2bN09Hjx6Vl5dXpnUPHz6s0NBQtWrVSocOHdKKFSu0detW9e/f36rejBkzVLduXR04cEDNmjVT586d1aVLF3Xq1En79++Xn5+funTpYhXXtWvXNGHCBC1YsEDbtm1TfHy8XnrppXu/IQAAAAAAPAJISiHPzZ8/X506dZIkNW7cWFeuXNGmTZsyrZ+UlKRZs2apTp068vf3l4uLS6Z1p06dqg4dOmjgwIEqX7686tSpow8++EALFy5UQkKCpV7Tpk3Vp08flS9fXiNHjtTly5f1xBNPqE2bNqpQoYKGDRummJgY/f3331ZxfPTRRwoKClKNGjW0YMECbd++Xbt37840nsTERMXHx1ttAAAAAAA8ikhKIU8dP35cu3fvtowwcnBwULt27RQeHp7pOfnz51flypWz1f6+ffsUGRkpV1dXyxYaGqrU1FSdPHnSUu/W9ooWLSpJCgwMTFd27tw5S5mDg4Nq1qxp2a9YsaI8PT0VExOTaTyTJk2Sh4eHZfPx8cnWdQAAAAAA8LBhoXPkqfnz5ys5OVklSpSwlBmGoXz58unff//N8BwnJyeZTKZstZ+amqo+ffrotddeS3csbTF1ScqXL5/l57S2MypLTU21aiOjOLKKLSwsTIMGDbLsx8fHk5gCAAAAADySSEohzyQnJ2vhwoWaNm2ann32WatjrVu31pIlS/T444/fUx/Vq1fX0aNH5efnd0/tZCQ5OVl79+5VrVq1JN0c9XXp0iVVrFgx03PMZrPMZnOuxwIAAAAAwH8N0/eQZ9avX69///1XPXv21OOPP261vfjii5o/f/499zFs2DDt2LFDr776qqKjo/XLL79o7dq1GjBgwD23nS9fPg0YMEC7du3S/v371b17dz355JOWJBUAAAAAAMgcSSnkmfnz5+uZZ56Rh4dHumOtW7dWdHS09u/ff099VK5cWZs3b9Yvv/yip59+WtWqVdOIESNUrFixe2pXkpydnTVs2DB16NBBQUFBcnJy0vLly++5XQAAAAAAHgUm49Zn3APIlsjISA0cOFCXLl26p3bi4+Pl4eGhKgPmyN7slOPz903tck/9AwAAAACQ29K+68bFxcnd3T3TeoyUAgAAAAAAgM2RlAIAAAAAAIDNkZQC7kK3bt3ueeoeAAAAAACPMpJSAAAAAAAAsDmSUgAAAAAAALC5u0pKnThxQsOHD1f79u117tw5SdKGDRt09OjRXA0OAAAAAAAAD6ccJ6U2b96swMBA7dq1S6tXr9aVK1ckSYcOHdKoUaNyPUAAAAAAAAA8fEyGYRg5OSEoKEht2rTRoEGD5ObmpoMHD8rX11d79uxRy5Yt9eeff96vWIGHTnx8vDw8PBQXFyd3d/e8DgcAAAAAgHuW3e+6OR4pdfjwYb3wwgvpyosUKaILFy7ktDkAAAAAAAA8gnKclPL09FRsbGy68gMHDqhEiRK5EhQAAAAAAAAebjlOSnXo0EHDhg3T2bNnZTKZlJqaqm3btmnIkCHq0qXL/YgRAAAAAAAAD5kcJ6UmTJigUqVKqUSJErpy5YoqVaqkevXqqU6dOho+fPj9iBEAAAAAAAAPmRwtdG4Yhk6fPq0iRYro7Nmz2r9/v1JTU1WtWjWVL1/+fsYJPJRY6BwAAAAA8LDJ7nddh5w0ahiGypcvr6NHj6p8+fLy9fW950ABAAAAAADw6MlRUsrOzk7ly5fXhQsXGBkF5KJ6w5fJ3uyUZZ19U1mzDQAAAADw8MjxmlJTpkzRm2++qSNHjtyPeAAAAAAAAPAIyNFIKUnq1KmTrl27pipVqih//vxycrIe3XHx4sVcCw4AAAAAAAAPpxwnpWbOnHkfwgAAAAAAAMCjJMdJqa5du96POAAAAAAAAPAIyXFS6vTp01keL1Wq1F0HAwAAAAAAgEdDjpNSZcqUkclkyvR4SkrKPQUEAAAAAACAh1+Ok1IHDhyw2k9KStKBAwc0ffp0TZgwIdcCAwAAAAAAwMMrx0mpKlWqpCurWbOmihcvrqlTp6pVq1a5Ehhwq1OnTqls2bI6cOCAqlatmtfhAAAAAACAe2SXWw1VqFBBe/bsya3m8AAzmUxZbt26dbNpPFFRUXeMKTIy0qYxAQAAAACArOV4pFR8fLzVvmEYio2N1ejRo1W+fPlcCwwPrtjYWMvPK1as0MiRI3X8+HFLmZOTk1X9pKQk5cuX777FU6dOHauYXn/9dcXHxysiIsJS5uHhcd/6BwAAAAAAOZfjkVKenp4qUKCAZStYsKAqVaqkHTt2aPbs2fcjRjxgvL29LZuHh4dMJpNlPyEhQZ6enlq5cqWCg4Pl6OioxYsX68KFC2rfvr1KliwpZ2dnBQYGatmyZVbtpqamavLkyfLz85PZbFapUqUyXacsNTVVvXv3VoUKFRQbG2sVk5OTk8xms2W/aNGi+vDDD+Xr6ysnJydVqVJF//vf/yxtpY20+uabb1StWjU5OTmpQYMGOnfunL7++msFBATI3d1d7du317Vr1yznBQcHq3///urfv788PT1VqFAhDR8+XIZh3J8bDwAAAADAQyTHI6V++OEHq307OzsVKVJEfn5+cnDIcXN4SA0bNkzTpk1TRESEzGazEhISVKNGDQ0bNkzu7u768ssv1blzZ/n6+qp27dqSpLCwMH366aeaMWOGnnrqKcXGxuqnn35K1/aNGzfUoUMHnThxQlu3bpWXl1eWsQwfPlyrV6/W7NmzVb58eW3ZskWdOnVSkSJFVL9+fUu90aNH66OPPpKzs7Patm2rtm3bymw2a+nSpbpy5YpeeOEFffjhhxo2bJjlnAULFqhnz57atWuX9u7dq5dfflmlS5dW7969c+lOAgAAAADwcMpxFslkMqlOnTrpElDJycnasmWL6tWrl2vB4b9r4MCB6Ra9HzJkiOXnAQMGaMOGDVq1apVq166ty5cv6/3339dHH32krl27SpLKlSunp556yqqNK1euqFmzZrp+/bqioqLuOC3v6tWrmj59ur7//nsFBQVJknx9fbV161bNnTvXKik1fvx41a1bV5LUs2dPhYWF6cSJE/L19ZUkvfjii/rhhx+sklI+Pj6aMWOGTCaT/P39dfjwYc2YMSPTpFRiYqISExMt+7dPhwUAAAAA4FGR4+l7ISEhunjxYrryuLg4hYSE5EpQ+O+rWbOm1X5KSoomTJigypUrq1ChQnJ1ddW3336r06dPS5JiYmKUmJiohg0bZtlu+/btdeXKFX377bfZWifq2LFjSkhIUKNGjeTq6mrZFi5cqBMnTljVrVy5suXnokWLytnZ2ZKQSis7d+6c1TlPPvmkTCaTZT8oKEi//PKLUlJSMoxn0qRJ8vDwsGw+Pj53vAYAAAAAAB5GOR4pZRiG1ZfwNBcuXJCLi0uuBIX/vttfC9OmTdOMGTM0c+ZMBQYGysXFRQMHDtSNGzckpV8cPTNNmzbV4sWLtXPnTjVo0OCO9VNTUyVJX375pUqUKGF1zGw2W+3fuhi7yWRKtzi7yWSytHe3wsLCNGjQIMt+fHw8iSkAAAAAwCMp20mptKlYJpNJ3bp1s/pCn5KSokOHDqlOnTq5HyEeCj/++KNatGihTp06SbqZLPrll18UEBAgSSpfvrycnJy0adMm9erVK9N2XnnlFT3++ON6/vnn9eWXX1pNv8tIpUqVZDabdfr06TvWvRs7d+5Mt1++fHnZ29tnWN9sNqdLhgEAAAAA8CjKdlIqbaqUYRhyc3OzGtmSP39+PfnkkyzujEz5+fnps88+0/bt21WgQAFNnz5dZ8+etSSlHB0dNWzYMA0dOlT58+dX3bp1df78eR09elQ9e/a0amvAgAFKSUlR8+bN9fXXX6dbd+pWbm5uGjJkiN544w2lpqbqqaeeUnx8vLZv3y5XV1fL+lV368yZMxo0aJD69Omj/fv368MPP9S0adPuqU0AAAAAAB4F2U5KRURESJLKlCmjIUOGMFUPOTJixAidPHlSoaGhcnZ21ssvv6yWLVsqLi7Oqo6Dg4NGjhypv/76S8WKFVPfvn0zbG/gwIFKTU1V06ZNtWHDhixH6Y0bN05eXl6aNGmSfvvtN3l6eqp69ep6++237/m6unTpouvXr6tWrVqyt7fXgAED9PLLL99zuwAAAAAAPOxMhmEYeR0E8F8UHBysqlWraubMmXfdRnx8vDw8PFRlwBzZm7NeV2vf1C533Q8AAAAAALaS9l03Li5O7u7umdbL8ULnkvS///1PK1eu1OnTpy0LVafZv3//3TQJAAAAAACAR4hdTk/44IMP1L17d3l5eenAgQOqVauWChUqpN9++01NmjS5HzECAAAAAADgIZPjkVKzZs3SJ598ovbt22vBggUaOnSofH19NXLkSF28ePF+xAg8kKKiovI6BAAAAAAA/rNyPFLq9OnTlkWlnZycdPnyZUlS586dtWzZstyNDgAAAAAAAA+lHCelvL29deHCBUlS6dKltXPnTknSyZMnxZrpAAAAAAAAyI4cJ6UaNGigdevWSZJ69uypN954Q40aNVK7du30wgsv5HqAAAAAAAAAePjkeE2pTz75RKmpqZKkvn37qmDBgtq6dauee+459e3bN9cDBAAAAAAAwMPHZDDnDsgz8fHx8vDwUFxcnNzd3fM6HAAAAAAA7ll2v+vmePqeJP3444/q1KmTgoKC9Oeff0qSFi1apK1bt95dtAAAAAAAAHik5Dgp9dlnnyk0NFROTk46cOCAEhMTJUmXL1/WxIkTcz1AAAAAAAAAPHxynJQaP3685syZo08//VT58uWzlNepU0f79+/P1eAAAAAAAADwcMpxUur48eOqV69eunJ3d3ddunQpN2ICAAAAAADAQy7HSalixYrp119/TVe+detW+fr65kpQAAAAAAAAeLjlOCnVp08fvf7669q1a5dMJpP++usvLVmyREOGDFG/fv3uR4wAAAAAAAB4yDhkp9KhQ4f0+OOPy87OTkOHDlVcXJxCQkKUkJCgevXqyWw2a8iQIerfv//9jhd4KNUbvkz2Zqd05fumdsmDaAAAAAAAuP+ylZSqVq2aYmNj5eXlJV9fX+3Zs0dvv/22YmJilJqaqkqVKsnV1fV+xwoAAAAAAICHRLaSUp6enjp58qS8vLx06tQppaamysXFRTVr1rzf8QEAAAAAAOAhlK2kVOvWrVW/fn0VK1ZMJpNJNWvWlL29fYZ1f/vtt1wNEAAAAAAAAA+fbCWlPvnkE7Vq1Uq//vqrXnvtNfXu3Vtubm73OzYAAAAAAAA8pLKVlJKkxo0bS5L27dun119/naQUAAAAAAAA7lq2k1JpIiIi7kccAAAAAAAAeITY5XUAAAAAAAAAePSQlAJuExkZKU9Pz7wOAwAAAACAhxpJKeSIyWTKcuvWrVuexDV69GhLDA4ODipcuLDq1aunmTNnKjEx8Z7brlq1au4ECgAAAAAAJN3FmlJ4tMXGxlp+XrFihUaOHKnjx49bypycnPIiLEnSY489po0bNyo1NVUXLlxQVFSUxo8fr0WLFikqKorF+QEAAAAAeIAwUgo54u3tbdk8PDxkMpmsyrZs2aIaNWrI0dFRvr6+GjNmjJKTky3nm0wmzZ07V82bN5ezs7MCAgK0Y8cO/frrrwoODpaLi4uCgoJ04sQJyzlpI5Xmzp0rHx8fOTs7q02bNrp06ZJVbA4ODvL29lbx4sUVGBioAQMGaPPmzTpy5IgmT55sqXfjxg0NHTpUJUqUkIuLi2rXrq2oqKgMrzcyMlJjxozRwYMHLSOxIiMjJUnTp09XYGCgXFxc5OPjo379+unKlSu5dq8BAAAAAHiYkZRCrvnmm2/UqVMnvfbaazp27Jjmzp2ryMhITZgwwareuHHj1KVLF0VHR6tixYrq0KGD+vTpo7CwMO3du1eS1L9/f6tzfv31V61cuVLr1q3Thg0bFB0drVdfffWOMVWsWFFNmjTR6tWrLWXdu3fXtm3btHz5ch06dEht2rRR48aN9csvv6Q7v127dho8eLAee+wxxcbGKjY2Vu3atZMk2dnZ6YMPPtCRI0e0YMECff/99xo6dGiW8SQmJio+Pt5qAwAAAADgUURSCrlmwoQJeuutt9S1a1f5+vqqUaNGGjdunObOnWtVr3v37mrbtq0qVKigYcOG6dSpU+rYsaNCQ0MVEBCg119/Pd3IpYSEBC1YsEBVq1ZVvXr19OGHH2r58uU6e/bsHeOqWLGiTp06JUk6ceKEli1bplWrVunpp59WuXLlNGTIED311FOKiIhId66Tk5NcXV0to7C8vb0tUxQHDhyokJAQlS1bVg0aNNC4ceO0cuXKLGOZNGmSPDw8LJuPj88d4wcAAAAA4GHEmlLINfv27dOePXusRkalpKQoISFB165dk7OzsySpcuXKluNFixaVJAUGBlqVJSQkKD4+Xu7u7pKkUqVKqWTJkpY6QUFBSk1N1fHjx+Xt7Z1lXIZhyGQySZL2798vwzBUoUIFqzqJiYkqVKhQjq73hx9+0MSJE3Xs2DHFx8crOTlZCQkJunr1qlxcXDI8JywsTIMGDbLsx8fHk5gCAAAAADySSEoh16SmpmrMmDFq1apVumOOjo6Wn/Ply2f5OS1ZlFFZampqpn2l1Un7b1ZiYmJUtmxZS5v29vbat2+f7O3treq5urresa00v//+u5o2baq+fftq3LhxKliwoLZu3aqePXsqKSkp0/PMZrPMZnO2+wEAAAAA4GFFUgq5pnr16jp+/Lj8/Pxyve3Tp0/rr7/+UvHixSVJO3bskJ2dXboRT7f76aeftGHDBoWFhUmSqlWrppSUFJ07d05PP/10tvrOnz+/UlJSrMr27t2r5ORkTZs2TXZ2N2fB3mnqHgAAAAAA+D8kpZBrRo4cqebNm8vHx0dt2rSRnZ2dDh06pMOHD2v8+PH31Lajo6O6du2q9957T/Hx8XrttdfUtm1bq6l7ycnJOnv2rFJTU3XhwgVFRUVp/Pjxqlq1qt58801JUoUKFdSxY0d16dJF06ZNU7Vq1fTPP//o+++/V2BgoJo2bZqu7zJlyujkyZOKjo5WyZIl5ebmpnLlyik5OVkffvihnnvuOW3btk1z5sy5p2sEAAAAAOBRwkLnyDWhoaFav369vvvuOz3xxBN68sknNX36dJUuXfqe2/bz81OrVq3UtGlTPfvss3r88cc1a9YsqzpHjx5VsWLFVKpUKQUHB2vlypUKCwvTjz/+aDU1LyIiQl26dNHgwYPl7++v559/Xrt27cp0bafWrVurcePGCgkJUZEiRbRs2TJVrVpV06dP1+TJk/X4449ryZIlmjRp0j1fJwAAAAAAjwqTYRhGXgcBZGX06NFas2aNoqOj8zqUXBcfHy8PDw9VGTBH9mandMf3Te2SB1EBAAAAAHD30r7rxsXFWR5glhFGSgEAAAAAAMDmSEoBAAAAAADA5khK4YE3evToh3LqHgAAAAAAjzKSUgAAAAAAALA5klIAAAAAAACwOZJSAAAAAAAAsDmSUgAAAAAAALA5h7wOAIC0ZXx7ubu753UYAAAAAADYDCOlAAAAAAAAYHMkpQAAAAAAAGBzJKUAAAAAAABgcySlAAAAAAAAYHMkpQAAAAAAAGBzJKUAAAAAAABgcySlgAdAveHLVOPNhXkdBgAAAAAANkNSCgAAAAAAADZHUgoAAAAAAAA2R1IKAAAAAAAANkdSCgAAAAAAADZHUgoAAAAAAAA2R1IKAAAAAAAANkdSCgAAAAAAADZHUgrIQFRUlEwmky5dumQpW7Nmjfz8/GRvb6+BAwfmWWwAAAAAADwMSEohz5lMpiy3bt263Zd+y5Qpo5kzZ2Z4rE6dOoqNjZWHh4elrE+fPnrxxRd15swZjRs37r7EBAAAAADAo8IhrwMAYmNjLT+vWLFCI0eO1PHjxy1lTk5OOWovKSlJ+fLlu6eY8ufPL29vb8v+lStXdO7cOYWGhqp48eL31DYAAAAAAGCkFB4A3t7els3Dw0Mmk0ne3t4qWrSonnrqKX366adW9Y8cOSI7OzudOHFC0s2RVnPmzFGLFi3k4uKi8ePHS5LWrVunGjVqyNHRUb6+vhozZoySk5OzFdOt0/eioqLk5uYmSWrQoIFMJpOioqIkSdu3b1e9evXk5OQkHx8fvfbaa7p69Wou3RkAAAAAAB5eJKXwwDKZTOrRo4ciIiKsysPDw/X000+rXLlylrJRo0apRYsWOnz4sHr06KFvvvlGnTp10muvvaZjx45p7ty5ioyM1IQJE3IcR506dSwjtz777DPFxsaqTp06Onz4sEJDQ9WqVSsdOnRIK1as0NatW9W/f/9M20pMTFR8fLzVBgAAAADAo4ikFB5o3bt31/Hjx7V7925JN6fmLV68WD169LCq16FDB/Xo0UO+vr4qXbq0JkyYoLfeektdu3aVr6+vGjVqpHHjxmnu3Lk5jiF//vzy8vKSJBUsWFDe3t7Knz+/pk6dqg4dOmjgwIEqX7686tSpow8++EALFy5UQkJChm1NmjRJHh4els3HxyfH8QAAAAAA8DAgKYUHWrFixdSsWTOFh4dLktavX6+EhAS1adPGql7NmjWt9vft26exY8fK1dXVsvXu3VuxsbG6du1arsS2b98+RUZGWvURGhqq1NRUnTx5MsNzwsLCFBcXZ9nOnDmTK7EAAAAAAPBfw0LneOD16tVLnTt31owZMxQREaF27drJ2dnZqo6Li4vVfmpqqsaMGaNWrVqla8/R0TFX4kpNTVWfPn302muvpTtWqlSpDM8xm80ym8250j8AAAAAAP9lJKXwwGvatKlcXFw0e/Zsff3119qyZcsdz6levbqOHz8uPz+/+xZX9erVdfTo0fvaBwAAAAAADyuSUnjg2dvbq1u3bgoLC5Ofn5+CgoLueM7IkSPVvHlz+fj4qE2bNrKzs9OhQ4d0+PBhy9P5JOnPP/9UdHS01bmZjXK63bBhw/Tkk0/q1VdfVe/eveXi4qKYmBh99913+vDDD3N0jQAAAAAAPGpYUwr/CT179tSNGzfSLXCemdDQUK1fv17fffednnjiCT355JOaPn26SpcubVXvvffeU7Vq1ay2tWvXZquPypUra/Pmzfrll1/09NNPq1q1ahoxYoSKFSuW4+sDAAAAAOBRYzIMw8jrIIA72bZtm4KDg/XHH3+oaNGieR1OromPj5eHh4eqDJgje7OT9k3tktchAQAAAABwT9K+68bFxcnd3T3TekzfwwMtMTFRZ86c0YgRI9S2bduHKiEFAAAAAMCjjOl7eKAtW7ZM/v7+iouL05QpU/I6HAAAAAAAkEtISuGB1q1bN6WkpGjfvn0qUaJEXocDAAAAAAByCUkpAAAAAAAA2BxJKQAAAAAAANgcSSkAAAAAAADYHEkpAAAAAAAA2JxDXgcAQNoyvr3c3d3zOgwAAAAAAGyGkVIAAAAAAACwOZJSAAAAAAAAsDmSUgAAAAAAALA5klIAAAAAAACwOZJSAAAAAAAAsDmSUsADoN7wZarx5sK8DgMAAAAAAJshKQUAAAAAAACbIykFAAAAAAAAmyMpBQAAAAAAAJsjKQUAAAAAAACbIykFAAAAAAAAmyMpBQAAAAAAAJsjKQUAAAAAAACbIykFAAAAAAAAmyMp9ZAxmUxZbt26dbuv/U+cOFH29vZ6991371sfGV3XU089dc/tnjp1SiaTSdHR0fceJAAAAAAAyJJDXgeA3BUbG2v5ecWKFRo5cqSOHz9uKXNycspRe0lJScqXL1+260dERGjo0KEKDw/XW2+9laO+ciIiIkKNGze27OfPn/++9XU3cnrfAAAAAAB41DBS6iHj7e1t2Tw8PGQymeTt7a2iRYvqqaee0qeffmpV/8iRI7Kzs9OJEyck3RyFNGfOHLVo0UIuLi4aP368JGndunWqUaOGHB0d5evrqzFjxig5Odmqrc2bN+v69esaO3asrl69qi1btqSLb/z48fLy8pKbm5t69eqlt956S1WrVrWqExERoYCAADk6OqpixYqaNWtWunY8PT2trrVgwYK6cOGC2rdvr5IlS8rZ2VmBgYFatmyZ1XmpqamaPHmy/Pz8ZDabVapUKU2YMEGSVLZsWUlStWrVZDKZFBwcbDln7NixKlmypMxms6pWraoNGzZY2kwbYbVy5UoFBwfL0dFRixcvvtOvCgAAAACARxpJqUeEyWRSjx49FBERYVUeHh6up59+WuXKlbOUjRo1Si1atNDhw4fVo0cPffPNN+rUqZNee+01HTt2THPnzlVkZKQlmZNm/vz5at++vfLly6f27dtr/vz5VseXLFmiCRMmaPLkydq3b59KlSql2bNnW9X59NNP9c4772jChAmKiYnRxIkTNWLECC1YsOCO15iQkKAaNWpo/fr1OnLkiF5++WV17txZu3btstQJCwvT5MmTNWLECB07dkxLly5V0aJFJUm7d++WJG3cuFGxsbFavXq1JOn999/XtGnT9N577+nQoUMKDQ3V888/r19++cWq/2HDhum1115TTEyMQkND7xgvAAAAAACPNAMPrYiICMPDw8Oy/9dffxn29vbGrl27DMMwjBs3bhhFihQxIiMjLXUkGQMHDrRq5+mnnzYmTpxoVbZo0SKjWLFilv24uDjD2dnZiI6ONgzDMA4cOGA4OzsbcXFxljq1a9c2Xn31Vat26tata1SpUsWy7+PjYyxdutSqzrhx44ygoCCrGB0dHQ0XFxfL9vnnn2d4D5o2bWoMHjzYMAzDiI+PN8xms/Hpp59mWPfkyZOGJOPAgQNW5cWLFzcmTJhgVfbEE08Y/fr1szpv5syZGbZ7q4SEBCMuLs6ynTlzxpBkVBkwx6g+ZMEdzwcAAAAA4EEXFxdnSLLKCWSEkVKPkGLFiqlZs2YKDw+XJK1fv14JCQlq06aNVb2aNWta7e/bt09jx46Vq6urZevdu7diY2N17do1SdLSpUvl6+urKlWqSJKqVq0qX19fLV++3NLO8ePHVatWLau2b90/f/68zpw5o549e1r1NX78eMv0wjQzZsxQdHS0ZWvUqJFSUlI0YcIEVa5cWYUKFZKrq6u+/fZbnT59WpIUExOjxMRENWzYMNv3LD4+Xn/99Zfq1q1rVV63bl3FxMRked8yMmnSJHl4eFg2Hx+fbMcCAAAAAMDDhIXOHzG9evVS586dNWPGDEVERKhdu3Zydna2quPi4mK1n5qaqjFjxqhVq1bp2nN0dJR0cxrg0aNH5eDgYHXe/Pnz9fLLL1vKTCaT1fmGYVjVl25O4atdu7ZVPXt7e6t9b29v+fn5WZVNmTJFM2bM0MyZMxUYGCgXFxcNHDhQN27ckJTzRd5vlVHct5fdft8yEhYWpkGDBln24+PjSUwBAAAAAB5JJKUeMU2bNpWLi4tmz56tr7/+OsPFyG9XvXp1HT9+PF0SKM3hw4e1d+9eRUVFqWDBgpbyS5cuqV69ejpy5Igef/xx+fv7a/fu3ercubOlzt69ey0/Fy1aVCVKlNBvv/2mjh075vjafvzxR7Vo0UKdOnWSdDPJ9csvvyggIECSVL58eTk5OWnTpk3q1atXuvPTnuCXkpJiKXN3d1fx4sW1detW1atXz1K+ffv2dKO+ssNsNstsNuf4PAAAAAAAHjYkpR4x9vb26tatm8LCwuTn56egoKA7njNy5Eg1b95cPj4+atOmjezs7HTo0CEdPnxY48eP1/z581WrVi2rpE2aoKAgzZ8/XzNmzNCAAQPUu3dv1axZU3Xq1NGKFSt06NAh+fr6WuqPHj1ar732mtzd3dWkSRMlJiZq7969+vfff61GGGXEz89Pn332mbZv364CBQpo+vTpOnv2rCUp5ejoqGHDhmno0KHKnz+/6tatq/Pnz+vo0aPq2bOnvLy85OTkpA0bNqhkyZJydHSUh4eH3nzzTY0aNUrlypVT1apVFRERoejoaC1ZsiSHdx8AAAAAAKRhTalHUM+ePXXjxg316NEjW/VDQ0O1fv16fffdd3riiSf05JNPavr06SpdurRu3LihxYsXq3Xr1hme27p1ay1evFg3btxQx44dFRYWpiFDhqh69eo6efKkunXrZpkCKN2cXjhv3jxFRkYqMDBQ9evXV2RkpMqWLXvHOEeMGKHq1asrNDRUwcHB8vb2VsuWLdPVGTx4sEaOHKmAgAC1a9dO586dkyQ5ODjogw8+0Ny5c1W8eHG1aNFCkvTaa69p8ODBGjx4sAIDA7VhwwatXbtW5cuXz9b9AwAAAAAA6ZmMWxf1wSNh27ZtCg4O1h9//KGiRYvmaSyNGjWSt7e3Fi1alKdx5JX4+Hh5eHioyoA5sjc7ad/ULnkdEgAAAAAA9yTtu25cXJzc3d0zrcf0vUdIYmKizpw5oxEjRqht27Y2T0hdu3ZNc+bMUWhoqOzt7bVs2TJt3LhR3333nU3jAAAAAAAAeY/pe4+QZcuWyd/fX3FxcZoyZYrN+zeZTPrqq6/09NNPq0aNGlq3bp0+++wzPfPMMzaPBQAAAAAA5C2m7wF5iOl7AAAAAICHTXan7zFSCgAAAAAAADZHUgoAAAAAAAA2R1IKAAAAAAAANkdSCgAAAAAAADbnkNcBAJC2jG+f5eJvAAAAAAA8bBgpBQAAAAAAAJsjKQUAAAAAAACbIykFAAAAAAAAmyMpBQAAAAAAAJsjKQUAAAAAAACbIykFAAAAAAAAmyMpBTwA6g1fltchAAAAAABgUySlAAAAAAAAYHMkpQAAAAAAAGBzJKUAAAAAAABgcySlAAAAAAAAYHMkpQAAAAAAAGBzJKUAAAAAAABgcySlAAAAAAAAYHMkpR5Ap06dkslkUnR0dF6HAgAAAAAAcF/keVLq7NmzGjBggHx9fWU2m+Xj46PnnntOmzZtyuvQ/hNuT2Cl7Xt5eeny5ctWdatWrarRo0db6mS13anezp07JUmRkZFW5UWLFtVzzz2no0ePWvXdrVs3mUwm9e3bN9019OvXTyaTSd26dUtX//atcePGljplypSxlDs5OalMmTJq27atvv/++yzv0a2effZZ2dvbW64nN+8NAAAAAADIXJ4mpU6dOqUaNWro+++/15QpU3T48GFt2LBBISEhevXVV/MytP+8y5cv67333svwmI+Pj2JjYy3b4MGD9dhjj1mVDRkyxFJ/48aNVsdiY2NVo0YNy3F3d3fFxsbqr7/+0pdffqmrV6+qWbNmunHjRrp+ly9fruvXr1vKEhIStGzZMpUqVSpdnI0bN07X77Jly6zqjB07VrGxsTp+/LgWLlwoT09PPfPMM5owYcId79Hp06e1Y8cO9e/fX/Pnz78v9wYAAAAAAGQsT5NSaSNkdu/erRdffFEVKlTQY489pkGDBllGm5w+fVotWrSQq6ur3N3d1bZtW/3999+WNkaPHq2qVasqPDxcpUqVkqurq1555RWlpKRoypQp8vb2lpeXV7okhclk0uzZs9WkSRM5OTmpbNmyWrVqlVWdw4cPq0GDBnJyclKhQoX08ssv68qVK5bjwcHBGjhwoNU5LVu2tBrxU6ZMGU2cOFE9evSQm5ubSpUqpU8++cTqnN27d6tatWpydHRUzZo1deDAgXu5rZKkAQMGaPr06Tp37ly6Y/b29vL29rZsrq6ucnBwSFeWplChQlbHvL29lS9fPstxk8kkb29vFStWTDVr1tQbb7yh33//XcePH7fqt3r16ipVqpRWr15tKVu9erV8fHxUrVq1dHGazeZ0/RYoUMCqjpubm7y9vVWqVCnVq1dPn3zyiUaMGKGRI0em6/92ERERat68uV555RWtWLFCV69ezfV7AwAAAAAAMpZnSamLFy9qw4YNevXVV+Xi4pLuuKenpwzDUMuWLXXx4kVt3rxZ3333nU6cOKF27dpZ1T1x4oS+/vprbdiwQcuWLVN4eLiaNWumP/74Q5s3b9bkyZM1fPjwdNOqRowYodatW+vgwYPq1KmT2rdvr5iYGEnStWvX1LhxYxUoUEB79uzRqlWrtHHjRvXv3z/H1zpt2jRLsqlfv3565ZVX9NNPP0mSrl69qubNm8vf31/79u3T6NGjrUbi3K327dvLz89PY8eOvee2cuLSpUtaunSpJGWYnOnevbsiIiIs++Hh4erRo0euxvD666/LMAx98cUXmdYxDEMRERHq1KmTKlasqAoVKmjlypW5GgcAAAAAAMhcniWlfv31VxmGoYoVK2ZaZ+PGjTp06JCWLl2qGjVqqHbt2lq0aJE2b96sPXv2WOqlpqYqPDxclSpV0nPPPaeQkBAdP35cM2fOlL+/v7p37y5/f39FRUVZtd+mTRv16tVLFSpU0Lhx41SzZk19+OGHkqQlS5bo+vXrWrhwoR5//HE1aNBAH330kRYtWmQ1Uis7mjZtqn79+snPz0/Dhg1T4cKFLbEsWbJEKSkpCg8P12OPPabmzZvrzTffzFH7GTGZTHr33Xf1ySef6MSJE/fUVp06deTq6mq1paSkWI7HxcXJ1dVVLi4uKlCggJYvX67nn38+w99t586dtXXrVp06dUq///67tm3bpk6dOmXY7/r169P1O27cuDvGW7BgQXl5eenUqVOZ1tm4caOuXbum0NBQSVKnTp0sU/hy4k735naJiYmKj4+32gAAAAAAeBQ55FXHhmFIupk8yUxMTIx8fHzk4+NjKatUqZI8PT0VExOjJ554QtLNKXJubm6WOkWLFpW9vb3s7Oysym6fyhYUFJRuP20x7JiYGFWpUsVqFFfdunWVmpqq48ePq2jRotm+1sqVK1t+TpvqlhZLWj/Ozs6ZxnW3QkND9dRTT2nEiBGW0Ut3Y8WKFQoICLAqs7e3t/zs5uam/fv3Kzk5WZs3b9bUqVM1Z86cDNsqXLiwmjVrpgULFsgwDDVr1kyFCxfOsG5ISIhmz55tVVawYMFsxWwYRpavrfnz56tdu3ZycLj5Fmjfvr3efPNNHT9+XP7+/tnqQ7rzvbndpEmTNGbMmGy3DwAAAADAwyrPklLly5eXyWRSTEyMWrZsmWGdzBILt5ffPk3MZDJlWJaamnrHuNLazSqpkVZuZ2dnSa6lSUpKSlc/q1huPz+3vfvuuwoKCrqn0Vc+Pj7y8/PL9LidnZ3leMWKFXX27Fm1a9dOW7ZsybB+jx49LNMgP/7440zbdXFxybLfzFy4cEHnz59X2bJlMzx+8eJFrVmzRklJSVZJr7QRa5MnT852X3e6N7cLCwvToEGDLPvx8fFWSVcAAAAA/6+9Ow+rqtz////ayAyCiopoKCrihPOcmXocKIsGNcsZh3M0zTHHVNRMTcuxYw5lYqZROZVDDjkPeZzAVBBzxE9hDikoKgas7x/93L+2oALCwuH5uK51Xe77vve9XmvvO2C/W2ttAE+LXLt8r0CBAgoKCtKsWbOUmJiYpv/q1auqUKGCYmNjde7cOWt7VFSU4uPj05ydkhV332Nqz5491kvOKlSooMjISJtsu3btkp2dnQICAiRJhQoVUlxcnLU/JSVFR44cyVSGChUq6NChQzbfSHd3rodRu3ZttWzZUsOGDcu2OR9kwIABOnTokFasWJFu/wsvvKDbt2/r9u3b1svnstOMGTNkZ2d3z2Ln4sWL9cwzz+jQoUOKjIy0btOnT9fChQuVnJyc7ZnucHJykoeHh80GAAAAAMDTKFe/fe/TTz9VSkqKateurWXLlunXX39VdHS0Zs6cqXr16qlp06aqXLmy2rdvr4MHD2rv3r3q1KmTGjZsqJo1az70/r/77jt98cUXOn78uEaPHq29e/daz+Bp3769nJ2d1blzZx05ckRbtmxRnz591LFjR+ule//617+0Zs0arVmzRseOHVOvXr109erVTGVo166d7Ozs1K1bN0VFRWnt2rX6+OOPH/rY/mn8+PHavHnzA7+N7l4uX76s8+fP22y3bt2653gPDw91795do0ePTvdMsDx58ig6OlrR0dH3vdQtKSkpzX4vXbpkM+batWs6f/68zp07p+3bt+s///mPPvjgA40fP/6eZzDNnz9frVu3VmBgoM3WtWtXXb16VWvWrMngK5P51wYAAAAAAPwtV4tSJUuW1MGDB9W4cWO9++67CgwMVLNmzbRp0ybNnj1bFotFK1euVP78+fX888+radOmKlWqlL755pts2f/YsWMVHh6uypUra+HChVq8eLEqVKggSXJ1ddX69ev1559/qlatWmrdurWaNGmi//73v9bnd+3aVZ07d7YWykqWLKnGjRtnKoO7u7tWrVqlqKgoVatWTSNGjMjU5WMZERAQoK5du2a5WNK0aVP5+PjYbCtXrrzvc/r166fo6Gh999136fZn5CyhdevWpdnvc889ZzMmNDRUPj4+8vf3V8eOHRUfH69NmzZp6NCh6c554MABHTp0SK1atUrTlzdvXjVv3jxTNzzPymsDAAAAAAAki5HTNzV6RFksFq1YseKel3gBZkhISJCnp6eq9JmjyJk9cjsOAAAAAAAP7c5n3fj4+PuekJKrZ0oBAAAAAADg6URR6hHXs2dPubu7p7v17Nkzt+MBAAAAAABkiX1uB8gtj8tVi++//74GDRqUbh/f3AYAAAAAAB5XT21R6nFRuHBhFS5cOLdjAAAAAAAAZCsu3wMAAAAAAIDpKEoBAAAAAADAdBSlAAAAAAAAYDqKUsAjYPsHbXM7AgAAAAAApqIoBQAAAAAAANNRlAIAAAAAAIDpKEoBAAAAAADAdBSlAAAAAAAAYDqKUgAAAAAAADAdRSkAAAAAAACYjqIUAAAAAAAATEdRCgAAAAAAAKajKAUAAAAAAADTUZQCAAAAAACA6ShKAQAAAAAAwHQUpQAAAAAAAGA6ilIAAAAAAAAwHUUpAAAAAAAAmI6iFPAPjRo1Uv/+/XM7BgAAAAAATzyKUo84i8Vy3y0kJCS3I6bRqFEjWSwWffjhh2n6WrRoIYvFojFjxpgfDAAAAAAAPDIoSj3i4uLirNv06dPl4eFh0zZjxozcjpguX19fLViwwKbt999/1+bNm+Xj4/NQc6ekpCg1NfWh5gAAAAAAALmLotQjrkiRItbN09NTFovFpm379u2qUaOGnJ2dVapUKY0dO1bJycnW50+dOlWVKlWSm5ubfH191atXL12/ft3aHxYWpnz58mn16tUqW7asXF1d1bp1ayUmJmrhwoXy8/NT/vz51adPH6WkpGQ498svv6zLly9r165dNvtq3ry5ChcubDP29u3bGjJkiIoVKyY3NzfVqVNHW7duTTdjhQoV5OTkpLNnzyopKUlDhgyRr6+vnJycVKZMGc2fP9/6vKioKLVo0ULu7u7y9vZWx44ddenSJWt/YmKiOnXqJHd3d/n4+GjKlClpjuNB2c6ePavg4GDlz59fbm5uqlixotauXZvh1wkAAAAAgKcVRanH2Pr169WhQwf17dtXUVFRmjt3rsLCwjR+/HjrGDs7O82cOVNHjhzRwoULtXnzZg0ZMsRmnhs3bmjmzJkKDw/XunXrtHXrVrVs2VJr167V2rVrtWjRIs2bN09Lly7NcDZHR0e1b9/e5mypsLAwde3aNc3YLl26aNeuXQoPD9cvv/yiN954Qy+88IJ+/fVXm4wTJ07U559/rqNHj6pw4cLq1KmTwsPDNXPmTEVHR2vOnDlyd3eX9PcZZg0bNlTVqlW1f/9+rVu3Tn/88YfatGljnXPw4MHasmWLVqxYoQ0bNmjr1q06cOBAprL17t1bSUlJ2r59uw4fPqxJkyZZM6QnKSlJCQkJNhsAAAAAAE8lA4+NBQsWGJ6entbHDRo0MCZMmGAzZtGiRYaPj8895/j2228NLy8vmzklGSdOnLC29ejRw3B1dTWuXbtmbQsKCjJ69OiRoZwNGzY0+vXrZxw6dMjImzevcf36dWPbtm1G4cKFjdu3bxtVqlQxRo8ebRiGYZw4ccKwWCzGb7/9ZjNHkyZNjOHDh9tkjIyMtPbHxMQYkoyNGzemm2HUqFFG8+bNbdrOnTtnSDJiYmKMa9euGY6OjkZ4eLi1//Lly4aLi4vRr1+/DGerVKmSMWbMmAy9LoZhGKNHjzYkpdni4+MzPAcAAAAAAI+y+Pj4DH3Wtc+tYhge3oEDB7Rv3z6bM6NSUlJ069Yt3bhxQ66urtqyZYsmTJigqKgoJSQkKDk5Wbdu3VJiYqLc3NwkSa6uripdurR1Dm9vb/n5+dmc8ePt7a0LFy5kKl/lypVVpkwZLV26VFu2bFHHjh3l4OBgM+bgwYMyDEMBAQE27UlJSfLy8rI+dnR0VOXKla2PIyMjlSdPHjVs2PCer82WLVvSPWvp5MmTunnzpm7fvq169epZ2wsUKKCyZctmKlvfvn319ttva8OGDWratKlatWplk/Nuw4cP18CBA62PExIS5Ovre8/xAAAAAAA8qShKPcZSU1M1duxYtWzZMk2fs7Ozzp49qxYtWqhnz54aN26cChQooJ07d6pbt27666+/rGPvLhRZLJZ027Jyc/GuXbtq1qxZioqK0t69e9M9hjx58ujAgQPKkyePTd8/C0ouLi6yWCw2j+8nNTVVwcHBmjRpUpo+Hx8fm0sD7zfHg7J1795dQUFBWrNmjTZs2KCJEydqypQp6tOnT7pzOjk5ycnJ6YH7BgAAAADgSUdR6jFWvXp1xcTEyN/fP93+/fv3Kzk5WVOmTJGd3d+3D/v222/NjKh27dpp0KBBqlKliipUqJCmv1q1akpJSdGFCxfUoEGDDM9bqVIlpaamatu2bWratGma/urVq2vZsmXy8/OTvX3aZe7v7y8HBwft2bNHxYsXlyRduXJFx48ft559ldFsvr6+6tmzp3r27Knhw4frs88+u2dRCgAAAAAA/I0bnT/GQkND9eWXX2rMmDE6evSooqOj9c0332jkyJGSpNKlSys5OVmffPKJTp06pUWLFmnOnDmmZsyfP7/i4uK0adOmdPsDAgLUvn17derUScuXL9fp06e1b98+TZo06b7fYufn56fOnTura9euWrlypU6fPq2tW7dai269e/fWn3/+qbZt22rv3r06deqUNmzYoK5duyolJUXu7u7q1q2bBg8erE2bNunIkSMKCQmxFu8ymq1///5av369Tp8+rYMHD2rz5s0qX758Nr6CAAAAAAA8mShKPcaCgoK0evVqbdy4UbVq1VLdunU1depUlShRQpJUtWpVTZ06VZMmTVJgYKAWL16siRMnmp4zX7581vtXpWfBggXq1KmT3n33XZUtW1avvPKK/ve//z3wXkuzZ89W69at1atXL5UrV07//ve/lZiYKEkqWrSodu3apZSUFAUFBSkwMFD9+vWTp6entfD00Ucf6fnnn9crr7yipk2b6rnnnlONGjUylS0lJUW9e/dW+fLl9cILL6hs2bL69NNPH+blAgAAAADgqWAxDMPI7RDA0yohIUGenp6Kj4+Xh4dHbscBAAAAAOChZfSzLmdKAQAAAAAAwHQUpZApO3bskLu7+z03AAAAAACAjODb95ApNWvWVGRkZG7HAAAAAAAAjzmKUsgUFxcX+fv753YMAAAAAADwmOPyPQAAAAAAAJiOohQAAAAAAABMR1EKAAAAAAAApqMoBQAAAAAAANNRlAIAAAAAAIDpKEoBAAAAAADAdBSlAAAAAAAAYDqKUgAAAAAAADAdRSkAAAAAAACYjqIUAAAAAAAATEdRCgAAAAAAAKajKAUAAAAAAADTUZQCAAAAAACA6ShKAQAAAAAAwHQUpQAAAAAAAGA6ilIAAAAAAAAwHUUpAAAAAAAAmI6iFAAAAAAAAExHUQraunWrLBaLrl69muP7CgkJ0WuvvWZ93KhRI/Xv3z/H9/sgj0oOAAAAAACeFk9tUcpisdx3CwkJye2IaTRq1Miaz9HRUaVLl9bw4cOVlJSU4/v28/Oz7jtPnjwqWrSounXrpitXruTofsPCwmzeF29vbwUHB+vo0aPZup/ly5dr3Lhx2TonAAAAAAC4t6e2KBUXF2fdpk+fLg8PD5u2GTNm5HbEdP373/9WXFycTpw4ocmTJ2vWrFkaM2aMKft+//33FRcXp9jYWC1evFjbt29X3759c3y/d96b33//XWvWrFFiYqJeeukl3b59O9v2UaBAAeXNmzfb5gMAAAAAAPf31BalihQpYt08PT1lsVhs2rZv364aNWrI2dlZpUqV0tixY5WcnGx9/tSpU1WpUiW5ubnJ19dXvXr10vXr1639YWFhypcvn1avXq2yZcvK1dVVrVu3VmJiohYuXCg/Pz/lz59fffr0UUpKSoZzu7q6qkiRIipevLhatWqlZs2aacOGDdZ+wzA0efJklSpVSi4uLqpSpYqWLl1qM8fatWsVEBAgFxcXNW7cWGfOnMnQvvPmzasiRYqoWLFiaty4sTp16qSDBw9a+8eMGaOqVavaPGf69Ony8/PL8PGl58574+Pjo5o1a2rAgAE6e/asYmJirGMe9H5I0q5du9SwYUO5uroqf/78CgoKsp7pdffle35+fpowYYK6du2qvHnzqnjx4po3b57NfLt371bVqlXl7OysmjVrauXKlbJYLIqMjHyo4wUAAAAA4Gnw1Bal7mf9+vXq0KGD+vbtq6ioKM2dO1dhYWEaP368dYydnZ1mzpypI0eOaOHChdq8ebOGDBliM8+NGzc0c+ZMhYeHa926ddq6datatmyptWvXau3atVq0aJHmzZuXpmiUUYcOHdKuXbvk4OBgbRs5cqQWLFig2bNn6+jRoxowYIA6dOigbdu2SZLOnTunli1bqkWLFoqMjFT37t01bNiwTO/7t99+0+rVq1WnTp0sZc+qq1evasmSJZJkc9wPej8iIyPVpEkTVaxYUT///LN27typ4ODg+xYEp0yZopo1ayoiIkK9evXS22+/rWPHjkmSrl27puDgYFWqVEkHDx7UuHHjNHTo0AfmT0pKUkJCgs0GAAAAAMBTyYCxYMECw9PT0/q4QYMGxoQJE2zGLFq0yPDx8bnnHN9++63h5eVlM6ck48SJE9a2Hj16GK6ursa1a9esbUFBQUaPHj0ylLNhw4aGg4OD4ebmZjg6OhqSDDs7O2Pp0qWGYRjG9evXDWdnZ2P37t02z+vWrZvRtm1bwzAMY/jw4Ub58uWN1NRUa//QoUMNScaVK1fuue8SJUoYjo6Ohpubm+Hs7GxIMurUqWPznNGjRxtVqlSxed60adOMEiVKWB937tzZePXVV22OqV+/fvfc753X0c3NzXB1dTUkGZKMV1555Z7PMYy070fbtm2N+vXr33P83TlKlChhdOjQwfo4NTXVKFy4sDF79mzDMAxj9uzZhpeXl3Hz5k3rmM8++8yQZERERNxzP6NHj7Yewz+3+Pj4+x4PAAAAAACPi/j4+Ax91rXPjULYo+7AgQPat2+fzZlRKSkpunXrlm7cuCFXV1dt2bJFEyZMUFRUlBISEpScnKxbt24pMTFRbm5ukv6+1K506dLWOby9veXn5yd3d3ebtgsXLmQ4W/v27TVixAglJCRo0qRJ8vDwUKtWrSRJUVFRunXrlpo1a2bznNu3b6tatWqSpOjoaNWtW1cWi8XaX69evQzte/DgwQoJCZFhGDp37pzee+89vfTSS9q+fbvy5MmT4WPIrLx58+rgwYNKTk7Wtm3b9NFHH2nOnDk2Yx70fkRGRuqNN97I1H4rV65s/fedSwjvvFcxMTGqXLmynJ2drWNq1679wDmHDx+ugQMHWh8nJCTI19c3U7kAAAAAAHgSUJRKR2pqqsaOHauWLVum6XN2dtbZs2fVokUL9ezZU+PGjVOBAgW0c+dOdevWTX/99Zd17D8vL5P+Lmyk15aamprhbJ6envL395ckffXVV6pYsaLmz5+vbt26WedZs2aNihUrZvM8JycnSX/fcyqrChYsaN13mTJlNH36dNWrV09btmxR06ZNZWdnl2b+f74eWWVnZ2fdb7ly5XT+/Hm9+eab2r59uyRl6P1wcXHJ9H7v914ZhmFT2LvT9iBOTk7W9wIAAAAAgKcZ95RKR/Xq1RUTEyN/f/80m52dnfbv36/k5GRNmTJFdevWVUBAgH7//XfTczo4OOi9997TyJEjdePGDVWoUEFOTk6KjY1Nk/vO2TgVKlTQnj17bOa5+3FG3Tk76ubNm5KkQoUK6fz58zbFmZy46feAAQN06NAhrVixQpIy9H5UrlxZmzZtyrYM5cqV0y+//KKkpCRr2/79+7NtfgAAAAAAnnQUpdIRGhqqL7/8UmPGjNHRo0cVHR2tb775RiNHjpQklS5dWsnJyfrkk0906tQpLVq0KM3lZGZp166dLBaLPv30U+XNm1eDBg3SgAEDtHDhQp08eVIRERGaNWuWFi5cKEnq2bOnTp48qYEDByomJkZLlixRWFhYhvZ17do1nT9/XnFxcdq7d68GDx6sggUL6tlnn5X09zfYXbx4UZMnT9bJkyc1a9Ys/fjjj9l+zB4eHurevbtGjx4twzAy9H4MHz5c+/btU69evfTLL7/o2LFjmj17ti5dupSlDO3atVNqaqr+85//KDo6WuvXr9fHH38sSWnOoAIAAAAAAGlRlEpHUFCQVq9erY0bN6pWrVqqW7eupk6dqhIlSkiSqlatqqlTp2rSpEkKDAzU4sWLNXHixFzJ6ujoqHfeeUeTJ0/W9evXNW7cOIWGhmrixIkqX768goKCtGrVKpUsWVKSVLx4cS1btkyrVq1SlSpVNGfOHE2YMCFD+woNDZWPj4+KFi2ql19+WW5ubtq4caO8vLwkSeXLl9enn36qWbNmqUqVKtq7d68GDRqUI8fdr18/RUdH67vvvsvQ+xEQEKANGzbo0KFDql27turVq6fvv/9e9vZZu4LVw8NDq1atUmRkpKpWraoRI0YoNDRUkmzuMwUAAAAAANJnMR7mJkMArBYvXqwuXbooPj4+w/ewSkhIkKenp+Lj4+Xh4ZHDCQEAAAAAyHkZ/azLjc6BLPryyy9VqlQpFStWTIcOHdLQoUPVpk2bLN1UHQAAAACApw1FqUfEjh079OKLL96z//r16yamQUacP39eoaGhOn/+vHx8fPTGG29o/PjxuR0LAAAAAIDHApfvPSJu3ryp33777Z79/v7+JqaBWbh8DwAAAADwpOHyvceMi4sLhScAAAAAAPDU4Nv3AAAAAAAAYDqKUgAAAAAAADAdRSkAAAAAAACYjqIUAAAAAAAATEdRCgAAAAAAAKajKAUAAAAAAADTUZQCAAAAAACA6ShKAQAAAAAAwHQUpQAAAAAAAGA6ilIAAAAAAAAwHUUpAAAAAAAAmI6iFAAAAAAAAExHUQoAAAAAAACmoygFAAAAAAAA01GUAgAAAAAAgOkoSgEAAAAAAMB0FKUAAAAAAABgOopSAAAAAAAAMB1FqQyyWCz33UJCQnI7YhqNGjVS//7907SHhYUpX758puf5p5CQkHRfxxMnTkiStm/fruDgYBUtWlQWi0UrV66873yNGjW67/vj5+eX8wcFAAAAAAAyzD63Azwu4uLirP/+5ptvFBoaqpiYGGubi4tLbsR6rL3wwgtasGCBTVuhQoUkSYmJiapSpYq6dOmiVq1aPXCu5cuX6/bt25Kkc+fOqXbt2vrpp59UsWJFSVKePHmyOT0AAAAAAHgYnCmVQUWKFLFunp6eslgsNm3bt29XjRo15OzsrFKlSmns2LFKTk62Pn/q1KmqVKmS3Nzc5Ovrq169eun69evW/jtnL61evVply5aVq6urWrdurcTERC1cuFB+fn7Knz+/+vTpo5SUlGw9tpMnT+rVV1+Vt7e33N3dVatWLf300082Y7766ivVrFlTefPmVZEiRdSuXTtduHDB2n/lyhW1b99ehQoVkouLi8qUKZOm4HQ3Jycnm9ewSJEi1uLRiy++qA8++EAtW7bM0DEUKFDAOsedwpaXl5e17eLFi2rRooXc3d3l7e2tjh076tKlS9bnr1u3Ts8995zy5csnLy8vvfzyyzp58qS1/8yZM7JYLPr222/VoEEDubi4qFatWjp+/Lj27dunmjVryt3dXS+88IIuXryYocwAAAAAADzNKEplg/Xr16tDhw7q27evoqKiNHfuXIWFhWn8+PHWMXZ2dpo5c6aOHDmihQsXavPmzRoyZIjNPDdu3NDMmTMVHh6udevWaevWrWrZsqXWrl2rtWvXatGiRZo3b56WLl2arfmvX7+uFi1a6KefflJERISCgoIUHBys2NhY65jbt29r3LhxOnTokFauXKnTp0/bXLI4atQoRUVF6ccff1R0dLRmz56tggULZmvOrIqLi1PDhg1VtWpV7d+/X+vWrdMff/yhNm3aWMckJiZq4MCB2rdvnzZt2iQ7Ozu9/vrrSk1NtZlr9OjRGjlypA4ePCh7e3u1bdtWQ4YM0YwZM7Rjxw6dPHlSoaGhZh8iAAAAAACPHwOZtmDBAsPT09P6uEGDBsaECRNsxixatMjw8fG55xzffvut4eXlZTOnJOPEiRPWth49ehiurq7GtWvXrG1BQUFGjx49MpSzYcOGhoODg+Hm5mazOTk52eRPT4UKFYxPPvnknv179+41JFmzBQcHG126dMlQLsMwjM6dOxt58uSxydW6det0x0oyVqxYkeG5T58+bUgyIiIiDMMwjFGjRhnNmze3GXPu3DlDkhETE5PuHBcuXDAkGYcPH7aZ8/PPP7eO+frrrw1JxqZNm6xtEydONMqWLXvPbLdu3TLi4+Ot250c8fHxGT4+AAAAAAAeZfHx8Rn6rMs9pbLBgQMHtG/fPpszo1JSUnTr1i3duHFDrq6u2rJliyZMmKCoqCglJCQoOTlZt27dUmJiotzc3CRJrq6uKl26tHUOb29v+fn5yd3d3abtn5fNPUj79u01YsQIm7bly5drwoQJ1seJiYkaO3asVq9erd9//13Jycm6efOmzZlSERERGjNmjCIjI/Xnn39azyCKjY1VhQoV9Pbbb6tVq1Y6ePCgmjdvrtdee03PPvvsfbM1btxYs2fPtj6+8zpktwMHDmjLli02r+MdJ0+eVEBAgE6ePKlRo0Zpz549unTpks3xBQYGWsdXrlzZ+m9vb29JUqVKlWza7vf+TJw4UWPHjn3oYwIAAAAA4HFHUSobpKamauzYsene/8jZ2Vlnz55VixYt1LNnT40bN04FChTQzp071a1bN/3111/WsQ4ODjbPtVgs6bbdfUnZ/Xh6esrf39+mrXDhwjaPBw8erPXr1+vjjz+Wv7+/XFxc1Lp1a+uNwxMTE9W8eXM1b95cX331lQoVKqTY2FgFBQVZx7z44os6e/as1qxZo59++klNmjRR79699fHHH98zm5ubW5psOSE1NVXBwcGaNGlSmj4fHx9JUnBwsHx9ffXZZ5+paNGiSk1NVWBgoPX47vjn+2GxWNJtu9/7M3z4cA0cOND6OCEhQb6+vlk7MAAAAAAAHmMUpbJB9erVFRMTc88Cy/79+5WcnKwpU6bIzu7v23h9++23Zka8rx07digkJESvv/66pL/vMXXmzBlr/7Fjx3Tp0iV9+OGH1gLK/v3708xTqFAhhYSEKCQkRA0aNNDgwYPvW5QyS/Xq1bVs2TL5+fnJ3j7tkr98+bKio6M1d+5cNWjQQJK0c+fOHMni5OQkJyenHJkbAAAAAIDHCUWpbBAaGqqXX35Zvr6+euONN2RnZ6dffvlFhw8f1gcffKDSpUsrOTlZn3zyiYKDg7Vr1y7NmTMnt2Nb+fv7a/ny5QoODpbFYtGoUaNszvYpXry4HB0d9cknn6hnz546cuSIxo0bZzNHaGioatSooYoVKyopKUmrV69W+fLls5zp+vXrOnHihPXx6dOnFRkZqQIFCqh48eKZmqt379767LPP1LZtWw0ePFgFCxbUiRMnFB4ers8++0z58+eXl5eX5s2bJx8fH8XGxmrYsGFZzg4AAAAAAB6Mb9/LBkFBQVq9erU2btyoWrVqqW7dupo6dapKlCghSapataqmTp2qSZMmKTAwUIsXL9bEiRNzOfX/b9q0acqfP7+effZZBQcHKygoSNWrV7f2FypUSGFhYfruu+9UoUIFffjhh2nOgHJ0dNTw4cNVuXJlPf/888qTJ4/Cw8OznGn//v2qVq2aqlWrJkkaOHCgqlWrlqVvtitatKh27dqllJQUBQUFKTAwUP369ZOnp6fs7OxkZ2en8PBwHThwQIGBgRowYIA++uijLGcHAAAAAAAPZjEMw8jtEMDTKiEhQZ6enoqPj5eHh0duxwEAAAAA4KFl9LMuZ0oBAAAAAADAdBSlHlM7duyQu7v7PTcAAAAAAIBHGTc6f0zVrFlTkZGRuR0DAAAAAAAgSyhKPaZcXFzk7++f2zEAAAAAAACyhMv3AAAAAAAAYDqKUgAAAAAAADAdRSkAAAAAAACYjqIUAAAAAAAATEdRCgAAAAAAAKajKAUAAAAAAADT2ed2AOBpZhiGJCkhISGXkwAAAAAAkD3ufMa985n3XihKAbno8uXLkiRfX99cTgIAAAAAQPa6du2aPD0979lPUQrIRQUKFJAkxcbG3vc/VDwdEhIS5Ovrq3PnzsnDwyO34+ARwJrA3VgTuBtrAndjTeBurAnczYw1YRiGrl27pqJFi953HEUpIBfZ2f19WzdPT09+QcDKw8OD9QAbrAncjTWBu7EmcDfWBO7GmsDdcnpNZOTEC250DgAAAAAAANNRlAIAAAAAAIDpKEoBucjJyUmjR4+Wk5NTbkfBI4D1gLuxJnA31gTuxprA3VgTuBtrAnd7lNaExXjQ9/MBAAAAAAAA2YwzpQAAAAAAAGA6ilIAAAAAAAAwHUUpAAAAAAAAmI6iFJCDPv30U5UsWVLOzs6qUaOGduzYcd/x27ZtU40aNeTs7KxSpUppzpw5JiWFWTKzJuLi4tSuXTuVLVtWdnZ26t+/v3lBYZrMrInly5erWbNmKlSokDw8PFSvXj2tX7/exLQwQ2bWxM6dO1W/fn15eXnJxcVF5cqV07Rp00xMCzNk9u+JO3bt2iV7e3tVrVo1ZwPCdJlZE1u3bpXFYkmzHTt2zMTEyEmZ/RmRlJSkESNGqESJEnJyclLp0qX1xRdfmJQWZsjMmggJCUn3Z0TFihVNyUpRCsgh33zzjfr3768RI0YoIiJCDRo00IsvvqjY2Nh0x58+fVotWrRQgwYNFBERoffee099+/bVsmXLTE6OnJLZNZGUlKRChQppxIgRqlKlislpYYbMront27erWbNmWrt2rQ4cOKDGjRsrODhYERERJidHTsnsmnBzc9M777yj7du3Kzo6WiNHjtTIkSM1b948k5Mjp2R2TdwRHx+vTp06qUmTJiYlhVmyuiZiYmIUFxdn3cqUKWNSYuSkrKyHNm3aaNOmTZo/f75iYmL09ddfq1y5ciamRk7K7JqYMWOGzc+Gc+fOqUCBAnrjjTdMycu37wE5pE6dOqpevbpmz55tbStfvrxee+01TZw4Mc34oUOH6ocfflB0dLS1rWfPnjp06JB+/vlnUzIjZ2V2TfxTo0aNVLVqVU2fPj2HU8JMD7Mm7qhYsaLefPNNhYaG5lRMmCg71kTLli3l5uamRYsW5VRMmCira+Ktt95SmTJllCdPHq1cuVKRkZEmpIUZMrsmtm7dqsaNG+vKlSvKly+fiUlhhsyuh3Xr1umtt97SqVOnVKBAATOjwiQP+7fEypUr1bJlS50+fVolSpTIyaiSOFMKyBG3b9/WgQMH1Lx5c5v25s2ba/fu3ek+5+eff04zPigoSPv379dff/2VY1lhjqysCTzZsmNNpKam6tq1a/xR+YTIjjURERGh3bt3q2HDhjkRESbL6ppYsGCBTp48qdGjR+d0RJjsYX5OVKtWTT4+PmrSpIm2bNmSkzFhkqyshx9++EE1a9bU5MmTVaxYMQUEBGjQoEG6efOmGZGRw7Ljb4n58+eradOmphSkJMnelL0AT5lLly4pJSVF3t7eNu3e3t46f/58us85f/58uuOTk5N16dIl+fj45Fhe5LysrAk82bJjTUyZMkWJiYlq06ZNTkSEyR5mTTzzzDO6ePGikpOTNWbMGHXv3j0no8IkWVkTv/76q4YNG6YdO3bI3p4/9Z80WVkTPj4+mjdvnmrUqKGkpCQtWrRITZo00datW/X888+bERs5JCvr4dSpU9q5c6ecnZ21YsUKXbp0Sb169dKff/7JfaWeAA/792VcXJx+/PFHLVmyJKcipsFvKiAHWSwWm8eGYaRpe9D49Nrx+MrsmsCTL6tr4uuvv9aYMWP0/fffq3DhwjkVD7kgK2tix44dun79uvbs2aNhw4bJ399fbdu2zcmYMFFG10RKSoratWunsWPHKiAgwKx4yAWZ+TlRtmxZlS1b1vq4Xr16OnfunD7++GOKUk+IzKyH1NRUWSwWLV68WJ6enpKkqVOnqnXr1po1a5ZcXFxyPC9yXlb/vgwLC1O+fPn02muv5VCytChKATmgYMGCypMnT5pq9IULF9JUre8oUqRIuuPt7e3l5eWVY1lhjqysCTzZHmZNfPPNN+rWrZu+++47NW3aNCdjwkQPsyZKliwpSapUqZL++OMPjRkzhqLUEyCza+LatWvav3+/IiIi9M4770j6+wOoYRiyt7fXhg0b9K9//cuU7MgZ2fX3RN26dfXVV19ldzyYLCvrwcfHR8WKFbMWpKS/7zdkGIb+7//+jxvgP+Ye5meEYRj64osv1LFjRzk6OuZkTBvcUwrIAY6OjqpRo4Y2btxo075x40Y9++yz6T6nXr16acZv2LBBNWvWlIODQ45lhTmysibwZMvqmvj6668VEhKiJUuW6KWXXsrpmDBRdv2cMAxDSUlJ2R0PuSCza8LDw0OHDx9WZGSkdevZs6fKli2ryMhI1alTx6zoyCHZ9XMiIiKCW0M8AbKyHurXr6/ff/9d169ft7YdP35cdnZ2euaZZ3I0L3Lew/yM2LZtm06cOKFu3brlZMS0DAA5Ijw83HBwcDDmz59vREVFGf379zfc3NyMM2fOGIZhGMOGDTM6duxoHX/q1CnD1dXVGDBggBEVFWXMnz/fcHBwMJYuXZpbh4Bsltk1YRiGERERYURERBg1atQw2rVrZ0RERBhHjx7NjfjIAZldE0uWLDHs7e2NWbNmGXFxcdbt6tWruXUIyGaZXRP//e9/jR9++ME4fvy4cfz4ceOLL74wPDw8jBEjRuTWISCbZeV3xz+NHj3aqFKliklpYYbMrolp06YZK1asMI4fP24cOXLEGDZsmCHJWLZsWW4dArJRZtfDtWvXjGeeecZo3bq1cfToUWPbtm1GmTJljO7du+fWISCbZfX3RocOHYw6deqYHdfg8j0gh7z55pu6fPmy3n//fcXFxSkwMFBr1661fotBXFycYmNjreNLliyptWvXasCAAZo1a5aKFi2qmTNnqlWrVrl1CMhmmV0T0t/flHPHgQMHtGTJEpUoUUJnzpwxMzpySGbXxNy5c5WcnKzevXurd+/e1vbOnTsrLCzM7PjIAZldE6mpqRo+fLhOnz4te3t7lS5dWh9++KF69OiRW4eAbJaV3x14smV2Tdy+fVuDBg3Sb7/9JhcXF1WsWFFr1qxRixYtcusQkI0yux7c3d21ceNG9enTRzVr1pSXl5fatGmjDz74ILcOAdksK7834uPjtWzZMs2YMcP0vBbD+P/upAwAAAAAAACYhHtKAQAAAAAAwHQUpQAAAAAAAGA6ilIAAAAAAAAwHUUpAAAAAAAAmI6iFAAAAAAAAExHUQoAAAAAAACmoygFAAAAAAAA01GUAgAAAAAAgOkoSgEAACBbNWrUSP3798/tGAAA4BFnMQzDyO0QAAAAeHL8+eefcnBwUN68eXM7Shpbt25V48aNdeXKFeXLly+34wAA8FSzz+0AAAAAeLIUKFAgtyOk66+//srtCAAA4B+4fA8AAADZ6p+X7/n5+emDDz5Qp06d5O7urhIlSuj777/XxYsX9eqrr8rd3V2VKlXS/v37rc8PCwtTvnz5tHLlSgUEBMjZ2VnNmjXTuXPnbPYze/ZslS5dWo6OjipbtqwWLVpk02+xWDRnzhy9+uqrcnNzU/fu3dW4cWNJUv78+WWxWBQSEiJJWrdunZ577jnly5dPXl5eevnll3Xy5EnrXGfOnJHFYtHy5cvVuHFjubq6qkqVKvr5559t9rlr1y41bNhQrq6uyp8/v4KCgnTlyhVJkmEYmjx5skqVKiUXFxdVqVJFS5cuzZbXHACAxxFFKQAAAOSoadOmqX79+oqIiNBLL72kjh07qlOnTurQoYMOHjwof39/derUSf+8q8SNGzc0fvx4LVy4ULt27VJCQoLeeusta/+KFSvUr18/vfvuuzpy5Ih69OihLl26aMuWLTb7Hj16tF599VUdPnxY77//vpYtWyZJiomJUVxcnGbMmCFJSkxM1MCBA7Vv3z5t2rRJdnZ2ev3115Wammoz34gRIzRo0CBFRkYqICBAbdu2VXJysiQpMjJSTZo0UcWKFfXzzz9r586dCg4OVkpKiiRp5MiRWrBggWbPnq2jR49qwIAB6tChg7Zt25b9LzoAAI8B7ikFAACAbNWoUSNVrVpV06dPl5+fnxo0aGA9i+n8+fPy8fHRqFGj9P7770uS9uzZo3r16ikuLk5FihRRWFiYunTpoj179qhOnTqSpGPHjql8+fL63//+p9q1a6t+/fqqWLGi5s2bZ91vmzZtlJiYqDVr1kj6+0yp/v37a9q0adYxGb2n1MWLF1W4cGEdPnxYgYGBOnPmjEqWLKnPP/9c3bp1kyRFRUWpYsWKio6OVrly5dSuXTvFxsZq586daeZLTExUwYIFtXnzZtWrV8/a3r17d924cUNLlizJ4qsNAMDjizOlAAAAkKMqV65s/be3t7ckqVKlSmnaLly4YG2zt7dXzZo1rY/LlSunfPnyKTo6WpIUHR2t+vXr2+ynfv361v47/jnH/Zw8eVLt2rVTqVKl5OHhoZIlS0qSYmNj73ksPj4+NrnvnCmVnqioKN26dUvNmjWTu7u7dfvyyy9tLhMEAOBpwo3OAQAAkKMcHBys/7ZYLPdsu/tSuTvt92q7u98wjDRtbm5uGcoYHBwsX19fffbZZypatKhSU1MVGBio27dvP/BY7uR2cXG55/x3xqxZs0bFihWz6XNycspQRgAAnjScKQUAAIBHTnJyss3Nz2NiYnT16lWVK1dOklS+fPk0l8nt3r1b5cuXv++8jo6OkmS9z5MkXb58WdHR0Ro5cqSaNGmi8uXLW29OnhmVK1fWpk2b0u2rUKGCnJycFBsbK39/f5vN19c30/sCAOBJwJlSAAAAeOQ4ODioT58+mjlzphwcHPTOO++obt26ql27tiRp8ODBatOmjapXr64mTZpo1apVWr58uX766af7zluiRAlZLBatXr1aLVq0kIuLi/Lnzy8vLy/NmzdPPj4+io2N1bBhwzKdefjw4apUqZJ69eqlnj17ytHRUVu2bNEbb7yhggULatCgQRowYIBSU1P13HPPKSEhQbt375a7u7s6d+6cpdcJAIDHGWdKAQAA4JHj6uqqoUOHql27dqpXr55cXFwUHh5u7X/ttdc0Y8YMffTRR6pYsaLmzp2rBQsWqFGjRvedt1ixYho7dqyGDRsmb29vvfPOO7Kzs1N4eLgOHDigwMBADRgwQB999FGmMwcEBGjDhg06dOiQateurXr16un777+Xvf3f/x943LhxCg0N1cSJE1W+fHkFBQVp1apV1vtXAQDwtOHb9wAAAPBICQsLU//+/XX16tXcjgIAAHIQZ0oBAAAAAADAdBSlAAAAAAAAYDou3wMAAAAAAIDpOFMKAAAAAAAApqMoBQAAAAAAANNRlAIAAAAAAIDpKEoBAAAAAADAdBSlAAAAAAAAYDqKUgAAAAAAADAdRSkAAAAAAACYjqIUAAAAAAAATEdRCgAAAAAAAKb7f6dPavl0gBRMAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 1200x600 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Execute the modeling pipeline\n",
"event_models, event_results = train_event_models(merged_data)"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<Figure size 1200x600 with 0 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA2QAAAHWCAYAAAAYdUqfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACmzUlEQVR4nOzddzxW7/8H8Ndtb6KEyEhKRSoNLbSU0t59lDQ+fdrr+2lql9LemmiPT9IulZZKW4s2aZC2IsJ9fn/0cH7uqBDdjdfz8bgfD+ec67rO+5z7vjlv13WuIxEEQQARERERERH9cAryDoCIiIiIiOhPxYSMiIiIiIhITpiQERERERERyQkTMiIiIiIiIjlhQkZERERERCQnTMiIiIiIiIjkhAkZERERERGRnDAhIyIiIiIikhMmZERERERERHLChIxkBAYGQiKRQCKR4Pjx4zm2C4IAa2trSCQSuLi4FOq+JRIJJk2alO96sbGxkEgkCAwMzFO5rJeCggIMDAzg7u6Os2fPFizor1i8eDGsra2hoqICiUSCN2/eFPo+/jQPHjzAwIEDYWNjA3V1dWhoaKBixYoYP348njx5Iu/witykSZMgkUjkHcY3Xb9+HRKJBMrKyoiPj5d3OEUi67340is2NlbeIeLMmTOYNGkSf/cQEf3klOQdAP2ctLW1sWbNmhxJ14kTJ3D//n1oa2vLJ7BCMGjQIHTt2hWZmZm4efMmJk+eDFdXV5w9exZVqlQplH1ERkZi8ODB6N27N3r06AElJaVf+pz9DPbu3YvOnTujePHiGDhwIKpUqQKJRILr169j7dq12LdvH65cuSLvMItU79690bRpU3mH8U2rV68GAGRkZGDdunUYNWqUnCMqOgcPHoSurm6O9cbGxnKIRtaZM2cwefJkeHl5QU9PT97hEBHRFzAho1x16tQJGzduxNKlS6GjoyOuX7NmDZycnJCUlCTH6L5P6dKlUatWLQBAnTp1YG1tjYYNG2LZsmVYtWrVd7WdkpICDQ0N3Lx5EwDQp08f1KhR47tjzt72nygmJgadO3eGjY0Njh07JnMB3KBBAwwePBg7d+6UY4RFK+u9NzU1hampqbzD+aq0tDRs3LgRlStXxosXL7B27dpCS8gEQUBqairU1dULpb3CUK1aNRQvXlzeYRAR0S+MQxYpV126dAEAbN68WVz39u1b7NixA97e3rnWefXqFfr3749SpUpBRUUFVlZWGDduHNLS0mTKJSUloU+fPjAwMICWlhaaNm2KO3fu5Nrm3bt30bVrVxgaGkJVVRW2trZYunRpIR3lJ1nJ2cOHD8V1R44cQcOGDaGjowMNDQ3UqVMHR48elamXNWTp8uXLaN++PYoVK4YyZcrAxcUFf/31FwCgZs2akEgk8PLyEuutXbsWlStXhpqaGvT19dGmTRtER0fLtO3l5QUtLS1cv34dTZo0gba2Nho2bAjg09DOgQMHIiAgAOXKlYO6ujocHR0REREBQRAwe/ZsWFpaQktLCw0aNMC9e/dk2j58+DBatWoFU1NTqKmpwdraGn///TdevHiR6/HdvHkTXbp0ga6uLkqWLAlvb2+8fftWpqxUKsXixYvh4OAAdXV16OnpoVatWti9e7dMua1bt8LJyQmamprQ0tKCm5tbnnq15s2bh+TkZCxbtizX3giJRIK2bdvKrMvPeb516xbc3NygqakJY2NjzJw5EwAQERGBunXrQlNTEzY2NggKCpKpnzXE9/Dhw+jZsyf09fWhqakJDw8PPHjw4LvO++efq+zbsgsLC4OLiwsMDAygrq6O0qVLo127dkhJSRHL5PW7mfXZWr9+PWxtbaGhoYHKlStj7969X3xvPhcSEoKXL1+KvcN37txBeHh4jnJpaWmYMmUKbG1toaamBgMDA7i6uuLMmTM54vH394etrS1UVVXF9yA8PBwNGzaEtrY2NDQ0ULt2bezbt09mHykpKRg5ciQsLS3Fz4Gjo6PM77UHDx6gc+fOMDExgaqqKkqWLImGDRsiMjIyz8f8Jenp6TA0NISnp2eObW/evIG6ujqGDx8urktKShLjVVFRQalSpTB06FAkJyfL1M3L+zRp0iT873//AwBYWlrmGIqel88NERH9IAJRNgEBAQIA4cKFC4Knp6dQo0YNcdvy5csFTU1NISkpSahYsaLg7Owsbvvw4YNgb28vaGpqCnPmzBFCQ0MFHx8fQUlJSXB3dxfLSaVSwdXVVVBVVRWmT58uhIaGChMnThSsrKwEAMLEiRPFsjdv3hR0dXUFOzs7Yd26dUJoaKgwYsQIQUFBQZg0aZJYLiYmRgAgBAQEfPXYssrNnj1bZv3Vq1cFAELXrl0FQRCE9evXCxKJRGjdurUQHBws7NmzR2jRooWgqKgoHDlyRKw3ceJEAYBgbm4ujBo1Sjh8+LAQEhIi3Lx5Uxg/frwY09mzZ4V79+4JgiAIM2bMEAAIXbp0Efbt2yesW7dOsLKyEnR1dYU7d+6Ibffo0UNQVlYWLCwsBF9fX+Ho0aPCoUOHBEEQxH3Wrl1bCA4OFnbu3CnY2NgI+vr6wrBhw4RWrVoJe/fuFTZu3CiULFlSsLe3F6RSqcz76OvrK+zevVs4ceKEEBQUJFSuXFkoV66c8PHjxxzHV65cOWHChAnC4cOHhXnz5gmqqqpCz549Zc6hp6enIJFIhN69ewu7du0SDhw4IEyfPl1YuHChWGb69OmCRCIRvL29hb179wrBwcGCk5OToKmpKdy8efOr752NjY1QsmTJr5bJLj/nWUVFRbC1tRUWLlwoHD58WOjZs6cAQBgzZoxgY2MjrFmzRjh06JDQokULAYBw8eJFsX7W98XMzEzw9vYWDhw4IKxcuVIwNDQUzMzMhNevXxf4vH/+ucq+LUtMTIygpqYmNG7cWAgJCRGOHz8ubNy4UfD09BT3ndfvpiB8+mxZWFgINWrUELZt2ybs379fcHFxEZSUlIT79+/n6dw3btxYUFVVFV69eiXcu3dPkEgkgpeXl0yZ9PR0wdXVVVBSUhJGjhwp7N+/X9i9e7cwduxYYfPmzTLxlCpVSrC3txc2bdokhIWFCTdu3BCOHz8uKCsrC9WqVRO2bt0qhISECE2aNBEkEomwZcsWsf7ff/8taGhoCPPmzROOHTsm7N27V5g5c6awePFisUy5cuUEa2trYf369cKJEyeEHTt2CCNGjBCOHTv21ePMei8SEhKE9PR0mVdGRoZYbtiwYYK6urrw9u1bmfrLli0TAAjXrl0TBEEQkpOTBQcHB6F48eLCvHnzhCNHjggLFy4UdHV1hQYNGsh8h/PyPj169EgYNGiQAEAIDg4Wzp49K5w9e1Z4+/Ztnj43RET04zAhIxnZE7Jjx44JAIQbN24IgiAI1atXFy+sPk/I/P39BQDCtm3bZNqbNWuWAEAIDQ0VBEEQDhw4IACQuVAXhE8X658nZG5uboKpqWmOC5mBAwcKampqwqtXrwRByH9CNmvWLCE9PV1ITU0VLl26JFSvXl0AIOzbt09ITk4W9PX1BQ8PD5m6mZmZQuXKlWUS1KwLsgkTJnz1PGZ5/fq1oK6unuMiOC4uTlBVVRUTQkH4lCgAENauXZujbQCCkZGR8P79e3FdSEiIAEBwcHCQuXBbsGCBzEXf56RSqZCeni48fPhQACDs2rUrx/H5+fnJ1Onfv7+gpqYm7ufkyZMCAGHcuHG57iPrGJWUlIRBgwbJrH/37p1gZGQkdOzY8Yt1BUEQ1NTUhFq1an21TJaCnOcdO3aI69LT04USJUoIAITLly+L61++fCkoKioKw4cPF9dlvc9t2rSR2dfp06cFAMK0adNyjTEv5z23z9XnCdl///0nABAiIyO/eD7y+t0UhE+frZIlSwpJSUniuoSEBEFBQUHw9fX94j6yxMbGCgoKCkLnzp3Fdc7OzuI/crKsW7dOACCsWrXqq+0BEHR1dcXvepZatWoJhoaGwrt378R1GRkZQqVKlQRTU1Pxs1mpUiWhdevWX2z/xYsXAgBhwYIF3zy2z2W9F7m9ypQpI5a7du2aAEBYuXKlTP0aNWoI1apVE5d9fX0FBQUFmd8ZgvD/7/H+/fvFdXl9n2bPni0AEGJiYnJt82ufGyIi+nE4ZJG+yNnZGWXKlMHatWtx/fp1XLhw4YvDFcPCwqCpqYn27dvLrM8aqpc13O/YsWMAgG7dusmU69q1q8xyamoqjh49ijZt2kBDQwMZGRniy93dHampqYiIiCjQcY0aNQrKyspQU1NDtWrVEBcXhxUrVsDd3R1nzpzBq1ev0KNHD5l9SqVSNG3aFBcuXMgxfKhdu3Z52u/Zs2fx4cMHmeGLAGBmZoYGDRrkGBL5tbZdXV2hqakpLtva2gIAmjVrJjOkLWt99uGYiYmJ6NevH8zMzKCkpARlZWWYm5sDQI4hfQDQsmVLmWV7e3ukpqYiMTERAHDgwAEAwIABA3I/cACHDh1CRkYGunfvLnNe1dTU4OzsnOuMngWV3/MskUjg7u4uLispKcHa2hrGxsYyk7zo6+vD0NBQ5lxm+fzzXLt2bZibm4ufdyD/5z0vnysHBweoqKigb9++CAoKyjFMEsj7dzOLq6urzAQ0JUuW/OJxfy4gIABSqVTm94S3tzeSk5OxdetWcd2BAwegpqb2xd8n2TVo0ADFihUTl5OTk3Hu3Dm0b98eWlpa4npFRUV4enri8ePHuH37NgCgRo0aOHDgAEaPHo3jx4/jw4cPMm3r6+ujTJkymD17NubNm4crV65AKpV+M6bsjhw5ggsXLsi8QkJCxO12dnaoVq0aAgICxHXR0dE4f/68zPHv3bsXlSpVgoODg8x3xM3NLddZb7/nfcrL54aIiH4cTupBXySRSNCzZ08sWrQIqampsLGxQb169XIt+/LlSxgZGeW4v8XQ0BBKSkp4+fKlWE5JSQkGBgYy5YyMjHK0l5GRgcWLF2Px4sW57vPze2/yasiQIfjrr7+goKAAPT098f4KAHj27BkA5Lh4ze7Vq1cyyVBeZ1PLOge5lTcxMcHhw4dl1mloaMhMqJKdvr6+zLKKispX16empgL4dK9XkyZN8PTpU/j4+MDOzg6ampqQSqWoVatWjgtWADneK1VVVQAQyz5//hyKioo53sPsss5r9erVc92uoPD1/w2VLl0aMTExXy2TpSDnWU1NTWadiopKjnOZtT7rXGaX27EbGRmJsRTkvOflc1WmTBkcOXIEfn5+GDBgAJKTk2FlZYXBgwdjyJAhAPL+3czy+fsNfHrPc4sxO6lUisDAQJiYmKBatWriVOuNGjWCpqYm1qxZg969ewP49JkxMTH55vsO5DwPr1+/hiAIX3x/gf//DCxatAimpqbYunUrZs2aBTU1Nbi5uWH27NkoW7YsJBIJjh49iilTpsDPzw8jRoyAvr4+unXrhunTp+dpZtTKlSt/c1IPb29vDBgwALdu3UL58uUREBAAVVVV8V5d4NN35N69e1BWVs61jc9/3xX0fQLy9rkhIqIfhwkZfZWXlxcmTJgAf39/TJ8+/YvlDAwMcO7cOQiCIHPhl5iYiIyMDPGCxcDAABkZGXj58qXMBUVCQoJMe8WKFRP/4/2lnhdLS8sCHZOpqSkcHR1z3ZYV5+LFi8XJPj5XsmRJmeW8Phcq63hzey7T06dPc1zUFcXzpm7cuIGrV68iMDAQPXr0ENd/PvFHfpQoUQKZmZlISEj4YhKRdWz//fef2CuUH25ubli8eDEiIiK++L5kye95Lgyff36z1llbWwMo2HnP6/tfr1491KtXD5mZmbh48SIWL16MoUOHomTJkujcuXOev5vf68iRI2LvTG7JQkREBKKiolChQgWUKFEC4eHhkEql30zKPj8PxYoVg4KCwhffX+D/P2+ampqYPHkyJk+ejGfPnom9ZR4eHrh16xYAwNzcHGvWrAEA3LlzB9u2bcOkSZPw8eNH+Pv75/Ms5K5Lly4YPnw4AgMDMX36dKxfvx6tW7eW6fkrXrw41NXVsXbt2lzbKOzP7bc+N0RE9ONwyCJ9ValSpfC///0PHh4eMheSn2vYsCHev38vM1QHANatWyduBz4NswGAjRs3ypTbtGmTzLKGhgZcXV1x5coV2Nvbw9HRMccrt4u+71WnTh3o6ekhKioq1306OjqKvU755eTkBHV1dWzYsEFm/ePHjxEWFiaeo6KUdXGb1cuVZcWKFQVus1mzZgCA5cuXf7GMm5sblJSUcP/+/S+e168ZNmwYNDU10b9//xwzPAKfpkPPmvZeHuf588/zmTNn8PDhQ/E5fkVx3j+nqKiImjVrirOQXr58GUDev5vfa82aNVBQUEBISAiOHTsm81q/fj0AiMlGs2bNkJqa+s2HuedGU1MTNWvWRHBwsExvkFQqxYYNG2BqagobG5sc9UqWLAkvLy906dIFt2/fznU2QRsbG4wfPx52dnbi+SsMxYoVQ+vWrbFu3Trs3bsXCQkJOYZrtmjRAvfv34eBgUGu3w8LC4t87/fz3uzcfOlzQ0REPw57yOibsqYA/5ru3btj6dKl6NGjB2JjY2FnZ4fw8HDMmDED7u7uaNSoEQCgSZMmqF+/Pv79918kJyfD0dERp0+fFi/Yslu4cCHq1q2LevXq4Z9//oGFhQXevXuHe/fuYc+ePQgLCyv0Y9XS0sLixYvRo0cPvHr1Cu3bt4ehoSGeP3+Oq1ev4vnz519NPL5GT08PPj4+GDt2LLp3744uXbrg5cuXmDx5MtTU1DBx4sRCPpqcypcvjzJlymD06NEQBAH6+vrYs2dPjmF8+VGvXj14enpi2rRpePbsGVq0aAFVVVVcuXIFGhoaGDRoECwsLDBlyhSMGzcODx48QNOmTVGsWDE8e/YM58+fF3syvsTS0hJbtmxBp06d4ODgID4YGgCioqKwdu1aCIKANm3ayOU8X7x4Eb1790aHDh3w6NEjjBs3DqVKlUL//v0BFM15BwB/f3+EhYWhefPmKF26NFJTU8WkJ+s7l9fv5vd4+fIldu3aBTc3N7Rq1SrXMvPnz8e6devg6+uLLl26ICAgAP369cPt27fh6uoKqVSKc+fOwdbW9ps9NL6+vmjcuDFcXV0xcuRIqKioYNmyZbhx4wY2b94sJsA1a9ZEixYtYG9vj2LFiiE6Ohrr16+Hk5MTNDQ0cO3aNQwcOBAdOnRA2bJloaKigrCwMFy7dg2jR4/O07FfunQp10cxVKhQQWbIsbe3N7Zu3YqBAwfC1NQ0x3kfOnQoduzYgfr162PYsGGwt7eHVCpFXFwcQkNDMWLECNSsWTNPMWWxs7MD8Ol3aY8ePaCsrIxy5cph48aN3/zcEBHRDyTHCUXoJ5Tb7IC5+XyWRUH4NAtdv379BGNjY0FJSUkwNzcXxowZI6SmpsqUe/PmjeDt7S3o6ekJGhoaQuPGjYVbt27lmGVRED7NjOjt7S2UKlVKUFZWFkqUKCHUrl1bZva67532PjcnTpwQmjdvLujr6wvKyspCqVKlhObNmwvbt28Xy2TNsvb8+fMc9b92HlevXi3Y29sLKioqgq6urtCqVasc07736NFD0NTUzDU2AMKAAQPydGxZM2VmjzsqKkpo3LixoK2tLRQrVkzo0KGDEBcXl+P8f+n4so4t+8xtmZmZwvz584VKlSqJx+Xk5CTs2bNHpm5ISIjg6uoq6OjoCKqqqoK5ubnQvn17mccJfM39+/eF/v37C9bW1oKqqqqgrq4uVKhQQRg+fHiOmeS+5zw7OzsLFStWzLHe3NxcaN68eY5zERoaKnh6egp6enriDI93796Vqfu95z37tixnz54V2rRpI5ibmwuqqqqCgYGB4OzsLOzevVumXl6/m7l9trKOu0ePHjnWZ8mazTNrev7cZM32mDWj5YcPH4QJEyYIZcuWFVRUVAQDAwOhQYMGwpkzZ74ZjyAIwqlTp4QGDRoImpqagrq6ulCrVq0cn7fRo0cLjo6OQrFixQRVVVXByspKGDZsmPDixQtBEATh2bNngpeXl1C+fHlBU1NT0NLSEuzt7YX58+fLTF2fm6/NsghAOHz4sEz5zMxMwczM7Kszkr5//14YP368UK5cOfFza2dnJwwbNkxISEj45nnJ7X0aM2aMYGJiIigoKAgAhGPHjuX5c0NERD+GRBAE4UckfkREv5vAwED07NkTFy5c+OawSyIiIqLc8B4yIiIiIiIiOWFCRkREREREJCccskhERERERCQn7CEjIiIiIiKSEyZkREREREREcsKEjIiIiIiISE5+6QdDS6VSPH36FNra2uKDQImIiIh+BoIg4N27dzAxMYGCAv8HTkS5+6UTsqdPn8LMzEzeYRARERF90aNHj2BqairvMIjoJ/VLJ2Ta2toAPv2i09HRkXM0RERERP8vKSkJZmZm4vUKEVFufumELGuYoo6ODhMyIiIi+inxtgoi+hoOaCYiIiIiIpITJmRERERERERywoSMiIiIiIhITn7pe8iIiIiIKH8yMzORnp4u7zCIfmvKyspQVFTMU1kmZERERER/AEEQkJCQgDdv3sg7FKI/gp6eHoyMjL45sQ8TMiIiIqI/QFYyZmhoCA0NDc7+SFREBEFASkoKEhMTAQDGxsZfLc+EjIiIiOg3l5mZKSZjBgYG8g6H6Lenrq4OAEhMTIShoeFXhy9yUg8iIiKi31zWPWMaGhpyjoToz5H1ffvWPZtMyIiIiIj+EBymSPTj5PX7xoSMiIiIiIhITpiQERERERERyQkTMiIiIiKiQubl5QWJRJLj1bRp0x8Ww6RJk+Dg4PDD9kcFw1kWC5HF6H0Fqher1jXfdewsSxdoX9t8MwpUL8xlaYHqDfBvUKB6RERERL+6pk2bIiAgQGadqqqqnKKhnxV7yIiIiIiIioCqqiqMjIxkXsWKFUOXLl3QuXNnmbLp6ekoXry4mMAJggA/Pz9YWVlBXV0dlStXxn///SeWP378OCQSCY4ePQpHR0doaGigdu3auH37NgAgMDAQkydPxtWrV8XeucDAwB927JR3TMiIiIiIiH6gbt26Yffu3Xj//r247tChQ0hOTka7du0AAOPHj0dAQACWL1+OmzdvYtiwYfjrr79w4sQJmbbGjRuHuXPn4uLFi1BSUoK3tzcAoFOnThgxYgQqVqyI+Ph4xMfHo1OnTj/uICnPOGSRiIiIiKgI7N27F1paWjLrRo0ahdGjR0NTUxM7d+6Ep6cnAGDTpk3w8PCAjo4OkpOTMW/ePISFhcHJyQkAYGVlhfDwcKxYsQLOzs5ie9OnTxeXR48ejebNmyM1NRXq6urQ0tKCkpISjIyMftARU0EwISMiIiIiKgKurq5Yvny5zDp9fX0oKyujQ4cO2LhxIzw9PZGcnIxdu3Zh06ZNAICoqCikpqaicePGMnU/fvyIKlWqyKyzt7cXfzY2NgYAJCYmonTpgs03QD8eEzIiIiIioiKgqakJa2vrXLd169YNzs7OSExMxOHDh6GmpoZmzZoBAKRSKQBg3759KFWqlEy9zycFUVZWFn/OehBxVn36NTAhIyIiIiL6wWrXrg0zMzNs3boVBw4cQIcOHaCiogIAqFChAlRVVREXFyczPDG/VFRUkJmZWVghUxFhQkZEREREVATS0tKQkJAgs05JSQnFixeHRCJB165d4e/vjzt37uDYsWNiGW1tbYwcORLDhg2DVCpF3bp1kZSUhDNnzkBLSws9evTI0/4tLCwQExODyMhImJqaQltbm9Pu/4Q4yyIRERERURE4ePAgjI2NZV5169YVt3fr1g1RUVEoVaoU6tSpI1N36tSpmDBhAnx9fWFraws3Nzfs2bMHlpaWed5/u3bt0LRpU7i6uqJEiRLYvHlzoR0bFR72kBERERERFbLAwMBvPverQoUKEAQh120SiQSDBw/G4MGDc93u4uKSo66Dg4PMOlVVVZlnl9HPiT1kREREREREcsKEjIiIiIiISE6YkBEREREREckJEzIiIiIiIiI5YUJGREREREQkJ0zIiIiIiIiI5ESuCdmkSZMgkUhkXkZGRvIMiYiIiIiI6IeR+3PIKlasiCNHjojLioqKcoyGiIiIiIjox5F7QqakpMReMSIiIiIi+iPJ/R6yu3fvwsTEBJaWlujcuTMePHgg75CIiIiI6DcyadIkODg4FEnbgYGB0NPTK5K2fwZFde6OHz8OiUSCN2/eFHrbvxq59pDVrFkT69atg42NDZ49e4Zp06ahdu3auHnzJgwMDHKUT0tLQ1pamriclJT0I8MlIiIi+q1YjN73Q/cXO7N5vsp7eXkhKChIXNbX10f16tXh5+cHe3v7wg6vQDp16gR3d/fvbkcQBKxevRpr167FzZs3IZVKYW5ujkaNGmHQoEGwtrYuhGgLX2xsLCwtLcVlPT092NnZYerUqXB2dv5ivdq1ayM+Ph66uro/Isyfmlx7yJo1a4Z27drBzs4OjRo1wr59n34pZP/iZefr6wtdXV3xZWZm9iPDJSIiIqIfrGnTpoiPj0d8fDyOHj0KJSUltGjRosj3+/HjxzyVU1dXh6Gh4XftSxAEdO3aFYMHD4a7uztCQ0Nx7do1LFq0COrq6pg2bdp3x1nUjhw5gvj4eJw4cQI6Ojpwd3dHTExMrmXT09OhoqICIyMjSCSSHxzpz0fuQxaz09TUhJ2dHe7evZvr9jFjxuDt27fi69GjRz84QiIiIiL6kVRVVWFkZAQjIyM4ODhg1KhRePToEZ4/fy6WGTVqFGxsbKChoQErKyv4+PggPT09R1vr16+HhYUFdHV10blzZ7x7907c5uLigoEDB2L48OEoXrw4GjduDACYN28e7OzsoKmpCTMzM/Tv3x/v378X630+ZDFriN/X9vW5rVu3YsuWLdi6dSt8fHxQq1YtWFlZoWHDhpg5cyYCAgLEsl5eXmjdujV8fX1hYmICGxsbAMCGDRvg6OgIbW1tGBkZoWvXrkhMTBTrZQ0RPHr0KBwdHaGhoYHatWvj9u3bMrHMnDkTJUuWhLa2Nnr16oXU1NRvvUUAAAMDAxgZGcHe3h4rVqxASkoKQkNDAQASiQT+/v5o1aoVNDU1MW3atBxDFr29vWFvby+OhktPT0e1atXQrVu3PO3/V/ZTJWRpaWmIjo6GsbFxrttVVVWho6Mj8yIiIiKiP8P79++xceNGWFtby9zeoq2tjcDAQERFRWHhwoVYtWoV5s+fL1P3/v37CAkJwd69e7F3716cOHECM2fOlCkTFBQEJSUlnD59GitWrAAAKCgoYNGiRbhx4waCgoIQFhaGf//996tx5mVf2W3evBnlypVDy5Ytc93+eS/S0aNHER0djcOHD2Pv3r0APvWUTZ06FVevXkVISAhiYmLg5eWVo61x48Zh7ty5uHjxIpSUlODt7S1u27ZtGyZOnIjp06fj4sWLMDY2xrJly756rLnR0NAAAJmkeOLEiWjVqhWuX78us88sixYtQnJyMkaPHg0A8PHxwYsXLwq0/1+NXO8hGzlyJDw8PFC6dGkkJiZi2rRpSEpKQo8ePeQZFhERERH9JPbu3QstLS0AQHJyMoyNjbF3714oKPx/v8L48ePFny0sLDBixAhs3bpVJnGSSqUIDAyEtrY2AMDT0xNHjx7F9OnTxTLW1tbw8/OT2f/QoUPFny0tLTF16lT8888/X00U8rKv7O7cuYNy5crl2O/q1asBfLov6/Hjx+I2TU1NrF69GioqKuK67EmOlZUVFi1ahBo1auD9+/fi+QOA6dOni/d2jR49Gs2bN0dqairU1NSwYMECeHt7o3fv3gCAadOm4ciRI3nuJQM+vUdjxoyBoqKizD1kXbt2lYnx8+GMWlpa2LBhA5ydnaGtrY25c+fi6NGjf8Q9ZnLtIXv8+DG6dOmCcuXKoW3btlBRUUFERATMzc3lGRYRERER/SRcXV0RGRmJyMhInDt3Dk2aNEGzZs3w8OFDscx///2HunXrwsjICFpaWvDx8UFcXJxMOxYWFmKCBADGxsYyQ/oAwNHRMcf+jx07hsaNG6NUqVLQ1tZG9+7d8fLlSyQnJ38x5rzs63Of94KNGzcOkZGRmDBhgswQSQCws7OTScYA4MqVK2jVqhXMzc2hra0NFxcXAMhxHrJPhpI1Ki0rtujoaDg5OcmU/3z5S2rXrg0tLS1oa2tjz549CAwMhJ2dnbg9t3P7OScnJ4wcORJTp07FiBEjUL9+/Tzt+1cn1x6yLVu2yHP3RERERPST09TUlJlhsFq1atDV1cWqVaswbdo0REREoHPnzpg8eTLc3Nygq6uLLVu2YO7cuTLtKCsryyxLJBJIpdIc+8ru4cOHcHd3R79+/TB16lTo6+sjPDwcvXr1yvUetfzsK7uyZcvi1q1bMutKlCiBEiVK5DphyOdxJicno0mTJmjSpAk2bNiAEiVKIC4uDm5ubjkm/cgeW1YS+LXY8mrr1q2oUKEC9PT0cp0t/fOYcyOVSnH69GkoKip+cU6J39FPdQ8ZEREREdHXSCQSKCgo4MOHDwCA06dPw9zcHOPGjYOjoyPKli0r03v2PS5evIiMjAzMnTsXtWrVgo2NDZ4+fVoobWfXpUsX3L59G7t27SpQ/Vu3buHFixeYOXMm6tWrh/Lly3+zRy43tra2iIiIkFn3+fKXmJmZoUyZMrkmY3k1e/ZsREdH48SJEzh06JDMZCa/M7n2kBERERERfU1aWhoSEhIAAK9fv8aSJUvw/v17eHh4APh031dcXBy2bNmC6tWrY9++fdi5c2eh7LtMmTLIyMjA4sWL4eHhgdOnT8Pf379Q2s6uc+fOCA4ORufOnTFmzBi4ubmhZMmSePjwIbZu3QpFRcWv1i9dujRUVFSwePFi9OvXDzdu3MDUqVPzHceQIUPQo0cPODo6om7duti4cSNu3rwJKyurgh5anmUNz/zvv/9Qp04dLFy4EEOGDIGzs/MP2b88sYeMiIiIiH5aBw8ehLGxMYyNjVGzZk1cuHAB27dvF++RatWqFYYNG4aBAwfCwcEBZ86cgY+PT6Hs28HBAfPmzcOsWbNQqVIlbNy4Eb6+voXSdnYSiQRbt27FggULsH//fjRs2BDlypWDt7c3zMzMEB4e/tX6JUqUQGBgILZv344KFSpg5syZmDNnTr7j6NSpEyZMmIBRo0ahWrVqePjwIf7555+CHlaepaamolu3bvDy8hIT7V69eqFRo0bw9PREZmZmkccgTxJBEAR5B1FQSUlJ0NXVxdu3b3+KKfAL+rT7WLWu+a5jZ1m6QPva5ptRoHphLksLVG+Af4MC1SMiIvrV/UzXKampqYiJiYGlpSXU1NTkGgvRnyKv3zv2kBEREREREckJEzIiIiIiIiI5YUJGREREREQkJ0zIiIiIiIiI5IQJGRERERERkZwwISMiIiIiIpITJmRERERERERywoSMiIiIiIhITpiQERERERERyQkTMiIiIiIiAMePH4dEIsGbN2/kGkdsbCwkEgkiIyPlGsePVJTnXiKRICQkpNDbLSxK8g6AiIiIiORkku4P3t/bfBX38vJCUFAQ/v77b/j7+8ts69+/P5YvX44ePXogMDCwUMKrXbs24uPjoatbtOfl3r17mD59Og4fPoznz5/DxMQEtWrVwogRI+Do6AgzMzPEx8ejePHiAD4lK66urnj9+jX09PS+e//Hjh3D3Llzce7cObx79w6lSpWCo6MjBgwYgPr16393+0XFwsICDx8+BACoq6vDysoKgwYNwt9///3VevHx8ShWrNiPCLFA2ENGRERERD8tMzMzbNmyBR8+fBDXpaamYvPmzShdunSh7ktFRQVGRkaQSCSF2m52Fy9eRLVq1XDnzh2sWLECUVFR2LlzJ8qXL48RI0YAABQVFWFkZAQlpcLvO1m2bBkaNmwIAwMDbN26FdHR0Vi/fj1q166NYcOGfbFeZmYmpFJpoceTX1OmTEF8fDyuXbuG1q1bo1+/fti6dWuuZT9+/AgAMDIygqqq6o8MM1+YkBERERHRT6tq1aooXbo0goODxXXBwcEwMzNDlSpVZMoKggA/Pz9YWVlBXV0dlStXxn///Sdua9SoEZo2bQpBEAAAb968QenSpTFu3DgAuQ+bO336NJydnaGhoYFixYrBzc0Nr1+/BgCkpaVh8ODBMDQ0hJqaGurWrYsLFy588VgEQYCXlxfKli2LU6dOoXnz5ihTpgwcHBwwceJE7Nq1C4DskMXY2Fi4uroCAIoVKwaJRAIvLy+sW7cOBgYGSEtLk9lHu3bt0L1791z3HxcXh6FDh2Lo0KEICgpCgwYNYGlpidq1a2PIkCG4ePGiWDYwMBB6enrYu3cvKlSoAFVVVTx8+BAXLlxA48aNUbx4cejq6sLZ2RmXL1+W2Y9EIsHq1avRpk0baGhooGzZsti9e7dMmf3798PGxgbq6upwdXVFbGzsF89bdtra2jAyMoK1tTWmTZuGsmXLisMRXVxcMHDgQAwfPhzFixdH48aNxXiyyqxbtw5aWlq4e/eu2OagQYNgY2OD5OTkPMVQ2JiQEREREdFPrWfPnggICBCX165dC29v7xzlxo8fj4CAACxfvhw3b97EsGHD8Ndff+HEiROQSCQICgrC+fPnsWjRIgBAv379ULJkSUyaNCnX/UZGRqJhw4aoWLEizp49i/DwcHh4eCAzMxMA8O+//2LHjh0ICgrC5cuXYW1tDTc3N7x69eqL7d28eRMjRoyAgkLOy/DchiOamZlhx44dAIDbt28jPj4eCxcuRIcOHZCZmSmT6Lx48QJ79+5Fz549c93/jh07kJ6ejn///TfX7Z/3DKakpMDX1xerV6/GzZs3YWhoiHfv3qFHjx44deoUIiIiULZsWbi7u+Pdu3cydSdPnoyOHTvi2rVrcHd3R7du3cTz8ujRI7Rt2xbu7u6IjIxE7969MXr06Fxj+hY1NTWkp6eLy0FBQVBSUsLp06exYsWKHOW7d+8uxpORkYGDBw9ixYoV2LhxIzQ1NQsUw/fiPWRERERE9FPz9PTEmDFjxJ6j06dPY8uWLTh+/LhYJjk5GfPmzUNYWBicnJwAAFZWVggPD8eKFSvg7OyMUqVKYcWKFfD09MSzZ8+wZ88eXLlyBcrKyrnu18/PD46Ojli2bJm4rmLFiuL+li9fjsDAQDRr1gwAsGrVKhw+fBhr1qzB//73vxztZfXKlC9fPs/HrqioCH19fQCAoaGhTNLWtWtXBAQEoEOHDgCAjRs3wtTUFC4uLrm2defOHejo6MDIyEhct2PHDvTo0UNcPnv2LOzs7AAA6enpWLZsGSpXrixub9CggUybK1asQLFixXDixAm0aNFCXO/l5YUuXboAAGbMmIHFixfj/PnzaNq0KZYvXw4rKyvMnz8fEokE5cqVw/Xr1zFr1qw8n5eMjAxs2LAB169fxz///COut7a2hp+f31frrlixAvb29hg8eDCCg4MxceJEVK9ePc/7LmxMyIiIiIjop1a8eHE0b94cQUFBEAQBzZs3Fye8yBIVFYXU1FRxmFqWjx8/ygxt7NChA3bu3AlfX18sX74cNjY2X9xvZGSkmOx87v79+0hPT0edOnXEdcrKyqhRowaio6NzrZM1VLKw7lHr06cPqlevjidPnqBUqVIICAiAl5fXV9v/fJubmxsiIyPx5MkTuLi4iL1/wKd76uzt7WXKJyYmYsKECQgLC8OzZ8+QmZmJlJQUxMXFyZTLXk9TUxPa2tpITEwEAERHR6NWrVoysWQl0d8yatQojB8/HmlpaVBRUcH//vc/mUk9HB0dv9lGsWLFsGbNGri5uaF27doF7p0rLEzIiIiIiOin5+3tjYEDBwIAli5dmmN71oQT+/btQ6lSpWS2ZZ/QISUlBZcuXYKioqLMfUS5UVdX/+K2LyVXgiB8MSHKSv6io6Ph4ODw1X3nRZUqVVC5cmWsW7cObm5uuH79Ovbs2fPF8mXLlsXbt2+RkJAg9pJpaWnB2to61wlE1NXVcxyLl5cXnj9/jgULFsDc3ByqqqpwcnISJ9DI8nmvo0QiEd+jrHNXEP/73//g5eUFDQ0NGBsb54gvr8MOT548CUVFRTx9+hTJycnQ0dEpcEzfi/eQEREREdFPr2nTpvj48SM+fvwINze3HNuzJp6Ii4uDtbW1zMvMzEwsl3X/1oEDB7Bo0SKEhYV9cZ/29vY4evRortusra2hoqKC8PBwcV16ejouXrwIW1vbXOs4ODigQoUKmDt3bq4zFn7pGVwqKioAINN7laV3794ICAjA2rVr0ahRI5lj/Vz79u2hrKycr6GBnzt16hQGDx4Md3d3VKxYEaqqqnjx4kW+2qhQoQIiIiJk1n2+/CXFixeHtbU1TExMCtzTeObMGfj5+WHPnj3Q0dHBoEGDCtROYWFCRkREREQ/PUVFRURHRyM6OhqKioo5tmtra2PkyJEYNmwYgoKCcP/+fVy5cgVLly5FUFAQgE+9Z2vXrsXGjRvRuHFjjB49Gj169BBnTfzcmDFjcOHCBfTv3x/Xrl3DrVu3sHz5crx48QKampr4559/8L///Q8HDx5EVFQU+vTpg5SUFPTq1SvX9iQSCQICAnDnzh3Ur18f+/fvx4MHD3Dt2jVMnz4drVq1yrWeubk5JBIJ9u7di+fPn+P9+/fitm7duuHJkydYtWpVrhOdZFe6dGnMnTsXCxcuRI8ePXDs2DHExsbi8uXL4kQnuZ3b7KytrbF+/XpER0fj3Llz6Nat21d7EnPTr18/3L9/H8OHD8ft27exadOmQnuW3Le8e/cOnp6eGDRoEJo1a4ZNmzZh27Zt2L59+w/Zf26YkBERERHRL0FHR+erQ8umTp2KCRMmwNfXF7a2tnBzc8OePXtgaWmJ58+fo1evXpg0aRKqVq0KAJg4cSJMTEzQr1+/XNuzsbFBaGgorl69iho1asDJyQm7du0Sh/fNnDkT7dq1g6enJ6pWrYp79+7h0KFDX30IcY0aNXDx4kWUKVMGffr0ga2tLVq2bImbN29iwYIFudYpVaoUJk+ejNGjR6NkyZLi0M2sc9KuXTtoaWmhdevW3ziDn6Z4Dw0NxfPnz9G+fXtxlsSYmBgcPHhQnNDjS9auXYvXr1+jSpUq8PT0FKf9z4/SpUtjx44d2LNnDypXrgx/f3/MmDEjX20U1JAhQ6CpqSnur2LFipg1axb69euHJ0+e/JAYPicRvmcQp5wlJSVBV1cXb9++leu4zywWo/cVqF6sWtd817GzLNiDELf5ZhSoXphLzrHaeTHAv8G3CxEREf2GfqbrlNTUVMTExMDS0hJqampyjYUKX+PGjWFrayv2ctHPIa/fO07qQURERET0C3r16hVCQ0MRFhaGJUuWyDscKiAmZEREREREv6CqVavi9evXmDVrFsqVKyfvcKiAmJAREREREf2CYmNj5R0CFQJO6kFERERERCQnTMiIiIiIiIjkhAkZERERERGRnDAhIyIiIiIikhMmZERERERERHLChIyIiIiIiEhOmJARERER0W/PxcUFQ4cOLZK2LSwssGDBgiJpm74uMDAQenp6hd5ubGwsJBIJIiMjC73tz/E5ZERERER/KLsgux+6v+s9ruervIuLCxwcHHIkOyEhIWjTpg0EQchzW8HBwVBWVhaXLSwsMHTo0CJL0rJLTk7GlClTsH37djx9+hTa2tqoWLEiRo4ciRYtWnxXPF86R0Vhx44dWLp0Ka5cuYK0tDSYmZmhTp06GDRoEKpUqVLk+y8oiUQi/qylpYVy5cph7NixaNu27RfrmJmZIT4+HsWLFy/y+NhDRkRERES/PX19fWhra8tl3/369UNISAiWLFmCW7du4eDBg2jXrh1evnwpl3gKYtSoUejUqRMcHBywe/du3Lx5EytXrkSZMmUwduzYL9ZLT0//gVF+WUBAAOLj43HhwgVUrlwZHTp0wNmzZ3Mt+/HjRygqKsLIyAhKSkXff8WEjIiIiIh+aZMmTYKDgwPWr18PCwsL6OrqonPnznj37p1YJvuQRRcXFzx8+BDDhg2DRCKR6UE5c+YM6tevD3V1dZiZmWHw4MFITk4WtycmJsLDwwPq6uqwtLTExo0bvxnfnj17MHbsWLi7u8PCwgLVqlXDoEGD0KNHj6/G8/LlS3Tp0gWmpqbQ0NCAnZ0dNm/eLLbr5eWFEydOYOHChWK92NhYAEBUVBTc3d2hpaWFkiVLwtPTEy9evBDr/vfff7Czs4O6ujoMDAzQqFEjmePMLiIiAn5+fpg3bx7mzZuHevXqwdLSEs7Ozhg3bhz279+f471Yu3YtrKysoKqqCkEQcPDgQdStWxd6enowMDBAixYtcP/+fbFe1hDB4OBguLq6QkNDA5UrV86RNAUGBqJ06dLQ0NBAmzZt8pzU6unpwcjICOXLl4e/vz/U1NSwe/duAJ96J6dNmwYvLy/o6uqiT58+OYYsTpkyBSYmJjL7a9myJerXrw+pVJqnGL6ECRkRERER/fLu37+PkJAQ7N27F3v37sWJEycwc+bMXMsGBwfD1NQUU6ZMQXx8POLj4wEA169fh5ubG9q2bYtr165h69atCA8Px8CBA8W6Xl5eiI2NRVhYGP777z8sW7YMiYmJX43NyMgI+/fvl0kQ8xJPamoqqlWrhr179+LGjRvo27cvPD09ce7cOQDAwoUL4eTkhD59+oj1sobaOTs7w8HBARcvXsTBgwfx7NkzdOzYEQAQHx+PLl26wNvbG9HR0Th+/Djatm37xSGgmzdvhpaWFvr375/r9uwJLQDcu3cP27Ztw44dO8SEJjk5GcOHD8eFCxdw9OhRKCgooE2bNjmSmXHjxmHkyJGIjIyEjY0NunTpgoyMDADAuXPn4O3tjf79+yMyMhKurq6YNm3aV899bpSVlaGkpCTTezd79mxUqlQJly5dgo+PT44648aNg4WFBXr37g0A8Pf3x8mTJ7F+/XooKHxfSsV7yIiIiIjolyeVShEYGCgOS/T09MTRo0cxffr0HGX19fWhqKgIbW1tGBkZietnz56Nrl27ij1pZcuWxaJFi+Ds7Izly5cjLi4OBw4cQEREBGrWrAkAWLNmDWxtbb8a28qVK9GtWzcYGBigcuXKqFu3Ltq3b486dep8NZ5SpUph5MiR4vKgQYNw8OBBbN++HTVr1oSuri5UVFSgoaEhU2/58uWoWrUqZsyYIa5bu3YtzMzMcOfOHbx//x4ZGRlo27YtzM3NAQB2dl++n/DOnTuwsrKSGb43b948TJgwQVx+8uQJdHV1AXwa8rd+/XqUKFFC3N6uXTuZNtesWQNDQ0NERUWhUqVK4vqRI0eiefPmAIDJkyejYsWKuHfvHsqXL4+FCxfCzc0No0ePBgDY2NjgzJkzOHjw4Bdj/1xaWhpmz56NpKQkNGzYUFzfoEEDmXOd1dOYRVFRERs2bICDgwNGjx6NxYsXY+XKleL5+x7sISMiIiKiX56FhYXMPWLGxsbf7Ln63KVLlxAYGAgtLS3x5ebmBqlUipiYGERHR0NJSQmOjo5infLly39zlr/69evjwYMHOHr0KNq1a4ebN2+iXr16mDp16lfrZWZmYvr06bC3t4eBgQG0tLQQGhqKuLi4bx7HsWPHZI6jfPnyAD71JFauXBkNGzaEnZ0dOnTogFWrVuH169dfbfPzXjBvb29ERkZixYoVSE5OluldMzc3l0nGsvbbtWtXWFlZQUdHB5aWlgCQ41js7e3Fn42NjQFAfB+jo6Ph5OQkU/7z5S/p0qULtLS0oKGhgXnz5mHOnDlo1qyZuD37e/olVlZWmDNnDmbNmgUPDw9069YtT/v+FvaQEREREdFPSUdHB2/fvs2x/s2bN9DR0ZFZl30GReBTApHfe3ukUin+/vtvDB48OMe20qVL4/bt22Lb+aWsrIx69eqhXr16GD16NKZNm4YpU6Zg1KhRUFFRybXO3LlzMX/+fCxYsAB2dnbQ1NTE0KFD8fHjx28eh4eHB2bNmpVjm7GxMRQVFXH48GGcOXMGoaGhWLx4McaNG4dz586JiVJ2ZcuWRXh4ONLT08XzrKenBz09PTx+/DhHeU1NzRzrPDw8YGZmhlWrVsHExARSqRSVKlXKcSzZ38es85z1PuZnVs3PzZ8/H40aNYKOjg4MDQ3zFHNuTp48CUVFRcTGxiIjI6NQJv34aXrIfH19IZFIfsjUo0RERET08ytfvjwuXryYY/2FCxdQrly572pbRUUFmZmZMuuqVq2KmzdvwtraOsdLRUUFtra2yMjIkInp9u3bePPmTb73X6FCBWRkZCA1NfWL8Zw6dQqtWrXCX3/9hcqVK8PKygp3797N83FYWFjkOI6sxEMikaBOnTqYPHkyrly5AhUVFezcuTPXWLt06YL3799j2bJl+T5O4NPkJNHR0Rg/fjwaNmwIW1vbb/bI5aZChQqIiIiQWff58pcYGRnB2to612Qsr7Zu3Yrg4GAcP34cjx49+mYPZ179FAnZhQsXsHLlSpkuSiIiIiL6s/Xv3x/379/HgAEDcPXqVdy5cwdLly7FmjVr8L///e+72rawsMDJkyfx5MkTcfbBUaNG4ezZsxgwYAAiIyNx9+5d7N69G4MGDQIAlCtXDk2bNkWfPn1w7tw5XLp0Cb1794a6uvpX9+Xi4oIVK1bg0qVLiI2Nxf79+zF27Fi4urqKPX25xWNtbS32ZEVHR+Pvv/9GQkJCjuM4d+4cYmNj8eLFC0ilUgwYMACvXr1Cly5dcP78eTx48AChoaHw9vZGZmYmzp07hxkzZuDixYuIi4tDcHAwnj9//sV74ZycnDBixAiMGDECw4cPR3h4OB4+fIiIiAisWbMGEonkqxNbFCtWDAYGBli5ciXu3buHsLAwDB8+PG9vVDaDBw/GwYMH4efnhzt37mDJkiX5un/sezx+/Bj//PMPZs2ahbp16yIwMBC+vr55Tgi/Ru4J2fv379GtWzesWrUKxYoVk3c4RERERPSTsLCwwKlTp3D//n00adIE1atXR2BgIAIDA9GhQ4fvanvKlCmIjY1FmTJlxPud7O3tceLECdy9exf16tVDlSpV4OPjI97LBHx6npWZmRmcnZ3Rtm1b9O3b95u9Lm5ubggKCkKTJk1ga2uLQYMGwc3NDdu2bftqPD4+PqhatSrc3Nzg4uICIyMjtG7dWqbtkSNHQlFRERUqVECJEiUQFxcHExMTnD59GpmZmXBzc0OlSpUwZMgQ6OrqQkFBATo6Ojh58iTc3d1hY2OD8ePHY+7cuTL3VH1uzpw52LRpE65cuYIWLVqgbNmy6NChA6RSKc6ePZtjCGl2CgoK2LJlCy5duoRKlSph2LBhmD179lfPWW5q1aqF1atXY/HixXBwcEBoaCjGjx+f73bySxAEeHl5oUaNGuKMm40bN8bAgQPx119/4f3799/VvkT4nsGYhaBHjx7Q19fH/Pnz8/2k8aSkJOjq6uLt27df/RD8KBaj9xWoXqxa13zXsbMsXaB9bfPNKFC9MJelBao3wL9BgeoRERH96n6m65TU1FTExMTA0tISampqco2F6E+R1++dXCf12LJlCy5fvowLFy7kqXxaWhrS0tLE5aSkpKIKjYiIiIiIqMjJbcjio0ePMGTIEGzYsCHP/6nx9fWFrq6u+DIzMyviKImIiIiIiIqO3BKyS5cuITExEdWqVYOSkhKUlJRw4sQJLFq0CEpKSjlmiwGAMWPG4O3bt+Lr0aNHcoiciIiIiIiocMhtyGLDhg1x/fp1mXU9e/ZE+fLlMWrUKCgqKuaoo6qqClVV1R8VIhERERERUZGSW0Kmra2NSpUqyazT1NSEgYFBjvVERERERES/I7lPe09ERERERPSnkussi587fvy4vEMgIiIiIiL6YdhDRkREREREJCdMyIiIiIiIiOSECRkRERER/XYCAwOhp6f3zXISiQQhISF5ajM/ZX8FRXU8Li4uGDp0aKG3+7vK1z1kb9++xc6dO3Hq1CnExsYiJSUFJUqUQJUqVeDm5obatWsXVZxEREREVMiiy9v+0P3Z3orOV3kvLy8EBQWJy/r6+qhevTr8/Pxgb2//1bqdOnWCu7u7uDxp0iSEhIQgMjJSplx8fDyKFSuWr7jy6969e5gxYwaOHDmCZ8+eoXjx4ihfvjy8vb3RqVMnKCn9VNM6iLKffyUlJZiZmaFt27aYPHkyNDU1v1gvODgYysrKPyrMX16eesji4+PRp08fGBsbY8qUKUhOToaDgwMaNmwIU1NTHDt2DI0bN0aFChWwdevWoo6ZiIiIiP4QTZs2RXx8POLj43H06FEoKSmhRYsWX62Tnp4OdXV1GBoafrN9IyOjIn3O7fnz51G1alVER0dj6dKluHHjBvbu3Qtvb2/4+/vj5s2bX6ybnp5eZHHlVdb5f/DgAaZNm4Zly5Zh5MiRuZbNildfXx/a2to/MsxfWp4SssqVK0NXVxfnz5/HgwcPsGXLFsydO1d8U06ePIkXL17Ax8cH8+bNw5w5c4o6biIiIiL6A6iqqsLIyAhGRkZwcHDAqFGj8OjRIzx//hwAEBsbC4lEgm3btsHFxQVqamrYsGGDzJDFwMBATJ48GVevXoVEIoFEIkFgYCAA2WF7Hz9+xMCBA2FsbAw1NTVYWFjA19dXJp4XL16gTZs20NDQQNmyZbF79+4vxi4IAry8vGBjY4PTp0/Dw8MDZcuWRZUqVdCtWzecOnVK7On70nG8fPkSXbp0gampKTQ0NGBnZ4fNmzfL7MfFxQWDBw/Gv//+C319fRgZGWHSpEkyZe7evYv69etDTU0NFSpUwOHDh/N1/s3MzNC1a1d069ZNPF+TJk2Cg4MD1q5dCysrK6iqqkIQBJkhi7du3YKGhgY2bdokthkcHAw1NTVcv349TzH87vLUP3rz5k2UKFHiq2XU1dXRpUsXdOnSRfyCEBEREREVlvfv32Pjxo2wtraGgYGBzLZRo0Zh7ty5CAgIgKqqKkJDQ8VtnTp1wo0bN3Dw4EEcOXIEAKCrq5uj/UWLFmH37t3Ytm0bSpcujUePHuHRo0cyZSZPngw/Pz/Mnj0bixcvRrdu3fDw4UPo6+vnaC8yMhLR0dHYvHkzFBRy7weRSCRfPY7U1FRUq1YNo0aNgo6ODvbt2wdPT09YWVmhZs2aYr2goCAMHz4c586dw9mzZ+Hl5YU6deqgcePGkEqlaNu2LYoXL46IiAgkJSUV+B4vdXV1mZ67e/fuYdu2bdixYwcUFRVzlC9fvjzmzJmD/v37o06dOlBWVkafPn0wc+ZM2NnZFSiG302eErJvJWPfW56IiIiIKDd79+6FlpYWACA5ORnGxsbYu3dvjgRn6NChaNu2ba5tqKurQ0tLC0pKSjAyMvrivuLi4lC2bFnUrVsXEokE5ubmOcp4eXmhS5cuAIAZM2Zg8eLFOH/+PJo2bZqj7J07dwAA5cqVE9clJibCyspKXPbz80P//v2/ehzZhwgOGjQIBw8exPbt22USMnt7e0ycOBEAULZsWSxZsgRHjx5F48aNceTIEURHRyM2NhampqZi7M2aNfviucjN+fPnsWnTJjRs2FBc9/HjR6xfv/6r1//9+/fH/v374enpCRUVFVSrVg1DhgzJ175/Z/meZTEoKAj79u0Tl//991/o6emhdu3aePjwYaEGR0RERER/NldXV0RGRiIyMhLnzp1DkyZN0KxZsxzXnY6Ojt+9Ly8vL0RGRqJcuXIYPHiwTC9bluyTiWhqakJbWxuJiYlfbTd7L5iBgYF4PHp6evj48aNM2c+PIzMzE9OnT4e9vT0MDAygpaWF0NBQxMXFfTEuADA2Nhbjio6ORunSpcVkDACcnJy+GnOWrIRYTU0NTk5OqF+/PhYvXixuNzc3z1NnzNq1a3Ht2jVcvnwZgYGBOXoG/2T5TshmzJgBdXV1AMDZs2exZMkS+Pn5oXjx4hg2bFihB0hEREREfy5NTU1YW1vD2toaNWrUwJo1a5CcnIxVq1blKPe9qlatipiYGEydOhUfPnxAx44d0b59e5kyn88eKJFIIJVKc22vbNmyAD7dR5VFUVFRPJ7cZlf8/Djmzp2L+fPn499//0VYWBgiIyPh5uaWI5H7WlyCIOTYT14ToqyE+Pbt20hNTUVwcLDMZCl5Pe9Xr15FcnIykpOTkZCQkKc6f4p8z7H56NEjWFtbAwBCQkLQvn179O3bF3Xq1IGLi0thx0dEREREJJJIJFBQUMCHDx/yVU9FRQWZmZnfLKejo4NOnTqhU6dOaN++PZo2bYpXr17leo/Yt1SpUkW8h6pjx45fvI/sa06dOoVWrVrhr7/+AgBIpVLcvXsXtrZ5f2RBhQoVEBcXh6dPn8LExATAp46VvMhKiL/Hq1ev4OXlhXHjxiEhIQHdunXD5cuXxU6eP12+PxVaWlp4+fIlACA0NBSNGjUCAKipqeX7i0FERERE9DVpaWlISEhAQkICoqOjMWjQILx//x4eHh75asfCwgIxMTGIjIzEixcvkJaWlqPM/PnzsWXLFty6dQt37tzB9u3bYWRklKcHTOdGIpEgICAAt2/fRp06dbB7927cvXsXUVFR8Pf3x/Pnz3OdCCM7a2trHD58GGfOnEF0dDT+/vvvfPcwNWrUCOXKlUP37t1x9epVnDp1CuPGjSvQMRVEv379YGZmhvHjx2PevHkQBOGLU+f/ifLdQ9a4cWP07t0bVapUwZ07d9C8eXMAn2ZitLCwKOz4iIiIiOgPdvDgQRgbGwMAtLW1Ub58eWzfvj3fI7PatWuH4OBguLq64s2bNwgICICXl5dMGS0tLcyaNQt3796FoqIiqlevjv379xeoZytLrVq1cOnSJcyYMQMDBgxAQkICNDU1UblyZcyfPx/e3t5fre/j44OYmBi4ublBQ0MDffv2RevWrfH27ds8x6CgoICdO3eiV69eqFGjBiwsLLBo0aJcJyIpbOvWrcP+/ftx5coVKCkpQUlJCRs3bkTt2rXRvHlzmYd3/6kkQm6DSr/izZs3GD9+PB49eoR//vlHfCMnTpwIFRWVH5ptJyUlQVdXF2/fvoWOjs4P2++XWIze9+1CuYhV65rvOnaWpQu0r22+GQWqF+aytED1Bvg3KFA9IiKiX93PdJ2SmpqKmJgYWFpaQk1NTa6xEP0p8vq9y3cPmZ6eHpYsWZJj/eTJk/PbFBERERER0R8tTwnZtWvX8tzg51NuEhERERERUe7ylJA5ODhAIpFAEIRvTpGZl9lriIiIiIiIKI+zLMbExODBgweIiYnBjh07YGlpiWXLluHKlSu4cuUKli1bhjJlymDHjh1FHS8REREREdFvI089ZObm5uLPHTp0wKJFi2RmRLG3t4eZmRl8fHzQunXrQg+SiIiIiIjod5TvST2uX78OS0vLHOstLS0RFRVVKEERERFR3vzIGX4BzvJLRFTY8v1QBVtbW0ybNg2pqaniurS0NEybNi1fTwwnIiIiIiL60+W7h8zf3x8eHh4wMzND5cqVAQBXr16FRCLB3r17Cz1AIiIiIiKi31W+E7IaNWogJiYGGzZswK1btyAIAjp16oSuXbtCU1OzKGIkIiIiIiL6LeU7IQMADQ0N9O3bt7BjISIiIiLKlzdv3qBWrVrQ09PDtm3b0KRJE9y6dUveYX3T8ePH4erqitevX0NPT0/e4RQ6Ly8vvHnzBiEhIYXabmBgIIYOHYo3b94UarvyVKCE7M6dOzh+/DgSExMhlUpltk2YMKFQAiMiIiKiorW0X9gP3V9+J1tJTEyEj48PDhw4gGfPnqFYsWKoXLkyJk2aBCcnJwDAmTNn4OLiAicnJzRo0ACdOnX67jgDAwPRs2dPcdnIyAj16tXDrFmzcp3cTp4+fvyIhQsXYvPmzbh9+zaUlJRgYWEBDw8P9O/fHyYmJvIOMVdZCWmW4sWLw9HRETNnzhRvi8pNp06dZGZ7/x3kOyFbtWoV/vnnHxQvXhxGRkYyD4qWSCRMyIiIiIioULRr1w7p6ekICgqClZUVnj17hqNHj+LVq1diGXd3d/ECvUePHoW2bx0dHdy+fRuCIODWrVv4+++/0bJlS0RGRkJRUbHQ9vM90tLS0KRJE1y7dg2TJ09GnTp1oKuri/v37yMkJASLFy+Gr69vrnU/fvwIFRWVHxxxTrdv34aOjg7i4uIwePBgNG3aFLdu3YKurm6Osunp6VBXV4e6urocIi06+Z5lcdq0aZg+fToSEhIQGRkpPhz6ypUruHz5clHESERERER/mDdv3iA8PByzZs2Cq6srzM3NUaNGDYwZMwbNmzcXy82bNw92dnbQ1NSEmZkZ+vfvj/fv38u0tWPHDlSsWBGqqqqwsLDA3Llzv7l/iUQCIyMjGBsbw9XVFRMnTsSNGzdw7949XLhwAY0bN0bx4sWhq6sLZ2dnmevg2NhYSCQSREZGyhyPRCLB8ePHv7jP/MY5f/58hIeHIywsDIMHD0a1atVgbW0NNzc3LF++HDNmzBDLuri4YODAgRg+fDiKFy+Oxo0b5+n8BQYGQk9PD4cOHYKtrS20tLTQtGlTxMfHi2UyMzMxfPhw6OnpwcDAAP/++y8EQfjmOQYAQ0NDGBkZoUaNGpg7dy4SEhIQEREhnsNt27bBxcUFampq2LBhgxgPAAiCgEaNGqFp06bi/t68eYPSpUtj3Lhxedr/zyDfCdnr16/RoUOHooiFiIiIiAgAoKWlBS0tLYSEhCAtLe2L5RQUFLBo0SLcuHEDQUFBCAsLw7///ituv3TpEjp27IjOnTvj+vXrmDRpEnx8fBAYGJiveLJ6ZdLT0/Hu3Tv06NEDp06dQkREBMqWLQt3d3e8e/euQMda0Dg3b96Mxo0bo0qVKrluzz6SDQCCgoKgpKSE06dPY8WKFQC+ff4AICUlBXPmzMH69etx8uRJxMXFYeTIkeL2uXPnYu3atVizZg3Cw8Px6tUr7Ny5M9/nIPs5zjJq1CgMHjwY0dHRcHNzy3F8QUFBOH/+PBYtWgQA6NevH0qWLIlJkyble//yku8hix06dEBoaCj69etXFPEQEREREUFJSQmBgYHo06cP/P39UbVqVTg7O6Nz586wt7cXyw0dOlT82dLSElOnTsU///yDZcuWAfjUA9SwYUP4+PgAAGxsbBAVFYXZs2fDy8srT7E8fvwYs2fPhqmpKWxsbFCpUiWZ7StWrECxYsVw4sQJtGjRokDHW5A479y5AxcXF5l1bdq0weHDhwEA9vb2OHPmjLjN2toafn5+MuW/df6ATwmSv78/ypQpAwAYOHAgpkyZIm5fsGABxowZg3bt2gH49JisQ4cO5ev4X758icmTJ0NbWxs1atRASkqKGF/btm2/WK9UqVJYsWIFPD098ezZM+zZswdXrlyBsrJyvvYvT/lOyKytreHj44OIiAjY2dnlONjBgwcXWnBERERE9Odq164dmjdvjlOnTuHs2bM4ePAg/Pz8sHr1ajFJOXbsGGbMmIGoqCgkJSUhIyMDqampSE5OhqamJqKjo9GqVSuZduvUqYMFCxYgMzPzi/eDvX37FlpaWhAEASkpKahatSqCg4OhoqKCxMRETJgwAWFhYXj27BkyMzORkpKCuLi4Ah9rQeP8vBds2bJlSE5OxqJFi3Dy5EmZbY6Ojjnqf+v8AZ9mWM9KxgDA2NgYiYmJAD6dp/j4eHGSFeBTMu3o6JinYYumpqYAgOTkZJQtWxbbt2+HoaEhYmNjvxjz5zp06ICdO3fC19cXy5cvh42NzTfr/EzynZCtXLkSWlpaOHHiBE6cOCGzTSKRMCEjIiIiokKjpqaGxo0bo3HjxpgwYQJ69+6NiRMnwsvLCw8fPoS7uzv69euHqVOnQl9fH+Hh4ejVq5c47E0QhBxJS14SBW1tbVy+fBkKCgooWbKkzPN2vby88Pz5cyxYsADm5uZQVVWFk5MTPn78CODTMMDP95N9GF5uChJn2bJlc0zxb2xsDADQ19fPUf7zZwbn5fwByNEBI5FI8nyP2LecOnUKOjo6KFGiBHR0dL4Zc25SUlJw6dIlKCoq4u7du4US14+U74QsJiamKOIgIiIiIvqmChUqiM+2unjxIjIyMjB37lwxCdq2bVuO8uHh4TLrzpw5Axsbm6/OlqigoABra+tct506dQrLli0TZ3d89OgRXrx4IW4vUaIEACA+Pl68vyv7BB9fOq78xtmlSxeMHz8eV65c+eJ9ZF+Tl/P3Lbq6ujA2NkZERATq168PAMjIyMClS5dQtWrVb9a3tLT87uewjRgxAgoKCjhw4ADc3d3RvHlzNGiQv0csyFOBnkOWJSsz/jybJyIiIiL6Hi9fvkSHDh3g7e0Ne3t7aGtr4+LFi/Dz8xOH9pUpUwYZGRlYvHgxPDw8cPr0afj7+8u0M2LECFSvXh1Tp05Fp06dcPbsWSxZskTmHqn8sra2xvr16+Ho6IikpCT873//k5mKXV1dHbVq1cLMmTNhYWGBFy9eYPz48V9tsyBxDhs2DPv27UODBg0wadIk1KtXD8WKFcOdO3dw4MCBb07Pn5fzlxdDhgzBzJkzUbZsWdja2mLevHk/7MHN+/btw9q1a3H27FlUrVoVo0ePRo8ePXDt2jUUK1bsh8TwvfI9yyIArFu3DnZ2duJzAOzt7bF+/frCjo2IiIiI/lBaWlqoWbMm5s+fj/r166NSpUrw8fFBnz59sGTJEgCAg4MD5s2bh1mzZqFSpUrYuHFjjuduVa1aFdu2bcOWLVtQqVIlTJgwAVOmTMnzhB65Wbt2LV6/fo0qVarA09MTgwcPhqGhYY4y6enpcHR0xJAhQzBt2rSvtlmQONXU1HD06FGMHj0aAQEBqFu3LmxtbTF06FDUqVNH7En8krycv7wYMWIEunfvDi8vLzg5OUFbWxtt2rTJdzv59fz5c/Tq1QuTJk0Se+MmTpwIExOTX2oCQomQzwGg8+bNg4+PDwYOHIg6depAEAScPn0aS5cuxbRp0zBs2LCiijWHpKQk6Orq4u3bt7mOOf3RLEbvK1C9WLWu+a5jZ1m6QPva5ptRoHphLksLVG+A/6/TXUxE9Cv6kX97AP79yY+f6TolNTUVMTExsLS0hJqamlxjIfpT5PV7l+8hi4sXL8by5cvRvXt3cV2rVq1QsWJFTJo06YcmZERERERERL+yfA9ZjI+PR+3atXOsr127tswTu4mIiIiIiOjr8p2QWVtb5zr7ytatW1G2bNlCCYqIiIiIiOhPkO8hi5MnT0anTp1w8uRJ1KlTBxKJBOHh4Th69Gi+p8kkIiIiIiL6k+W7h6xdu3Y4d+4cihcvjpCQEAQHB6N48eI4f/78D5lNhYiIiIgKprAe5ktE35bX71uBnkNWrVo1bNiwoSBViYiIiOgHU1ZWBgCkpKTIPC+LiIpOSkoKgP///n1JvhOy/fv3Q1FREW5ubjLrDx06BKlUimbNmuW3SSIiIiIqQoqKitDT00NiYiIAQENDAxKJRM5REf2eBEFASkoKEhMToaen980HdOc7IRs9ejRmzpyZ645Hjx7NhIyIiIjoJ2RkZAQAYlJGREVLT09P/N59Tb4Tsrt376JChQo51pcvXx737t3LV1vLly/H8uXLERsbCwCoWLEiJkyYwKSOiIiIqJBJJBIYGxvD0NAQ6enp8g6H6LemrKz8zZ6xLPlOyHR1dfHgwQNYWFjIrL937x40NTXz1ZapqSlmzpwJa2trAEBQUBBatWqFK1euoGLFivkNjYiIiIi+QVFRMc8XikRU9PI9y2LLli0xdOhQ3L9/X1x37949jBgxAi1btsxXWx4eHnB3d4eNjQ1sbGwwffp0aGlpISIiIr9hERERERER/XLynZDNnj0bmpqaKF++PCwtLWFpaQlbW1sYGBhgzpw5BQ4kMzMTW7ZsQXJyMpycnHItk5aWhqSkJJkXERERERHRr6pAQxbPnDmDw4cP4+rVq1BXV4e9vT3q169foACuX78OJycnpKamQktLCzt37sz1HjUA8PX1xeTJkwu0HyIiIiIiop9NgZ5DJpFI0KRJE9SvXx+qqqrfNW1quXLlEBkZiTdv3mDHjh3o0aMHTpw4kWtSNmbMGAwfPlxcTkpKgpmZWYH3TUREREREJE/5HrIolUoxdepUlCpVClpaWoiJiQEA+Pj4YM2aNfkOQEVFBdbW1nB0dISvry8qV66MhQsX5lpWVVUVOjo6Mi8iIiIiIqJfVb4TsmnTpiEwMBB+fn5QUVER19vZ2WH16tXfHZAgCEhLS/vudoiIiIiIiH52+U7I1q1bh5UrV6Jbt24yU6ba29vj1q1b+Wpr7NixOHXqFGJjY3H9+nWMGzcOx48fR7du3fIbFhERERER0S8n3/eQPXnyRHxuWHZSqTTfDxl89uwZPD09ER8fD11dXdjb2+PgwYNo3LhxfsMiIiIiIiL65eQ7IatYsSJOnToFc3NzmfXbt29HlSpV8tVWQe45IyIiIiIi+l3kOyGbOHEiPD098eTJE0ilUgQHB+P27dtYt24d9u7dWxQxEhERERER/ZbyfQ+Zh4cHtm7div3790MikWDChAmIjo7Gnj17ONSQiIiIiIgoHwr0HDI3Nze4ubkVdixERERERER/lHz3kD169AiPHz8Wl8+fP4+hQ4di5cqVhRoYERERERHR7y7fCVnXrl1x7NgxAEBCQgIaNWqE8+fPY+zYsZgyZUqhB0hERERERPS7yndCduPGDdSoUQMAsG3bNtjZ2eHMmTPYtGkTAgMDCzs+IiIiIiKi31a+E7L09HSoqqoCAI4cOYKWLVsCAMqXL4/4+PjCjY6IiIiIiOg3lu+ErGLFivD398epU6dw+PBhNG3aFADw9OlTGBgYFHqAREREREREv6t8J2SzZs3CihUr4OLigi5duqBy5coAgN27d4tDGYmIiIiIiOjb8j3tvYuLC168eIGkpCQUK1ZMXN+3b19oaGgUanBERERERES/swI9h0xRUVEmGQMACwuLwoiHiIiIiIjoj5GnIYtNmzbFmTNnvlnu3bt3mDVrFpYuXfrdgREREREREf3u8tRD1qFDB3Ts2BHa2tpo2bIlHB0dYWJiAjU1Nbx+/RpRUVEIDw/H/v370aJFC8yePbuo4yYiIiIiIvrl5Skh69WrFzw9PfHff/9h69atWLVqFd68eQMAkEgkqFChAtzc3HDp0iWUK1euKOMlIiIiIiL6beT5HjIVFRV07doVXbt2BQC8ffsWHz58gIGBAZSVlYssQKLfjcXofQWqF6vWtUD17CxLF6jeNt+MAtULcynYkOUB/g0KVI+IiIjoV1agST0AQFdXF7q6uoUZCxERERER0R8l388hIyIiIiIiosLBhIyIiIiIiEhOCjxkkYiIitaPvN+Q9xoSERHJB3vIiIiIiIiI5CTPCdn58+eRmZkpLguCILM9LS0N27ZtK7zIiIiIiIiIfnN5TsicnJzw8uVLcVlXVxcPHjwQl9+8eYMuXboUbnRERERERES/sTwnZJ/3iH2+/KV1RERERERElLtCvYdMIpEUZnNERERERES/NU7qQUREREREJCf5mvY+KioKCQkJAD4NT7x16xbev38PAHjx4kXhR0dERERERPQby1dC1rBhQ5n7xFq0aAHg01BFQRA4ZJGIiIiIiCgf8pyQxcTEFGUcREREREREf5w8J2Tm5uZFGQcREREREdEfJ8+Terx69QqPHz+WWXfz5k307NkTHTt2xKZNmwo9OCIiIiIiot9ZnhOyAQMGYN68eeJyYmIi6tWrhwsXLiAtLQ1eXl5Yv359kQRJRERERET0O8pzQhYREYGWLVuKy+vWrYO+vj4iIyOxa9cuzJgxA0uXLi2SIImIiIiIiH5HeU7IEhISYGlpKS6HhYWhTZs2UFL6dBtay5Ytcffu3cKPkIiIiIiI6DeV54RMR0cHb968EZfPnz+PWrVqicsSiQRpaWmFGhwREREREdHvLM8JWY0aNbBo0SJIpVL8999/ePfuHRo0aCBuv3PnDszMzIokSCIiIiIiot9Rnqe9nzp1Kho1aoQNGzYgIyMDY8eORbFixcTtW7ZsgbOzc5EESURERERE9DvKc0Lm4OCA6OhonDlzBkZGRqhZs6bM9s6dO6NChQqFHiAREREREdHvKs8JGQCUKFECrVq1ynVb8+bNCyUgIiIiIiKiP0WeE7J169blqVz37t0LHAwREREREdGfJM8JmZeXF7S0tKCkpARBEHItI5FImJARERERERHlUZ4TMltbWzx79gx//fUXvL29YW9vX5RxERERERER/fbyPO39zZs3sW/fPnz48AH169eHo6Mjli9fjqSkpKKMj4iIiIiI6LeV54QMAGrWrIkVK1YgPj4egwcPxrZt22BsbIxu3boV6KHQvr6+qF69OrS1tWFoaIjWrVvj9u3b+W6HiIiIiIjoV5SvhCyLuro6unfvjsmTJ6NGjRrYsmULUlJS8t3OiRMnMGDAAERERODw4cPIyMhAkyZNkJycXJCwiIiIiIiIfin5mvYeAJ48eYKgoCAEBAQgOTkZf/31F5YvXy7zkOi8OnjwoMxyQEAADA0NcenSJdSvXz/f7REREREREf1K8pyQbdu2DQEBAThx4gTc3Nwwd+5cNG/eHIqKioUWzNu3bwEA+vr6uW5PS0uTGRrJ+9eIiIiIiOhXlueErHPnzihdujSGDRuGkiVLIjY2FkuXLs1RbvDgwQUKRBAEDB8+HHXr1kWlSpVyLePr64vJkycXqH0iIiIiIqKfTZ4TstKlS0MikWDTpk1fLCORSAqckA0cOBDXrl1DeHj4F8uMGTMGw4cPF5eTkpJgZmZWoP0RERERERHJW54TstjY2CILYtCgQdi9ezdOnjwJU1PTL5ZTVVWFqqpqkcVBRERERET0IxVolsUvefLkSb7KC4KAgQMHIjg4GGFhYbC0tCzMcIiIiIiIiH5qhZKQJSQkYNCgQbC2ts5XvQEDBmDDhg3YtGkTtLW1kZCQgISEBHz48KEwwiIiIiIiIvqp5Tkhe/PmDbp164YSJUrAxMQEixYtglQqxYQJE2BlZYWIiAisXbs2Xztfvnw53r59CxcXFxgbG4uvrVu35vtAiIiIiIiIfjV5vods7NixOHnyJHr06IGDBw9i2LBhOHjwIFJTU3HgwAE4Ozvne+eCIOS7DhERERER0e8izwnZvn37EBAQgEaNGqF///6wtraGjY0NFixYUIThERERERER/b7yPGTx6dOnqFChAgDAysoKampq6N27d5EFRkRERERE9LvLc0ImlUqhrKwsLisqKkJTU7NIgiIiIiIiIvoT5HnIoiAI8PLyEp8Dlpqain79+uVIyoKDgws3QiIiIiIiot9UnhOyHj16yCz/9ddfhR4MERERERHRnyTPCVlAQEBRxkFERERERPTHKZQHQxMREREREVH+MSEjIiIiIiKSEyZkREREREREcsKEjIiIiIiISE6YkBEREREREckJEzIiIiIiIiI5YUJGREREREQkJ0zIiIiIiIiI5IQJGRERERERkZwwISMiIiIiIpITJmRERERERERywoSMiIiIiIhITpiQERERERERyQkTMiIiIiIiIjlhQkZERERERCQnTMiIiIiIiIjkhAkZERERERGRnDAhIyIiIiIikhMmZERERERERHLChIyIiIiIiEhOmJARERERERHJCRMyIiIiIiIiOWFCRkREREREJCdMyIiIiIiIiOSECRkREREREZGcMCEjIiIiIiKSEyZkREREREREcsKEjIiIiIiISE6YkBEREREREckJEzIiIiIiIiI5YUJGREREREQkJ0zIiIiIiIiI5IQJGRERERERkZwwISMiIiIiIpITJmRERERERERywoSMiIiIiIhITuSakJ08eRIeHh4wMTGBRCJBSEiIPMMhIiIiIiL6oeSakCUnJ6Ny5cpYsmSJPMMgIiIiIiKSCyV57rxZs2Zo1qyZPEMgIiIiIiKSG95DRkREREREJCdy7SHLr7S0NKSlpYnLSUlJcoyGiIiIiIjo+/xSPWS+vr7Q1dUVX2ZmZvIOiYiIiIiIqMB+qYRszJgxePv2rfh69OiRvEMiIiIiIiIqsF9qyKKqqipUVVXlHQYREREREVGhkGtC9v79e9y7d09cjomJQWRkJPT19VG6dGk5RkZERERERFT05JqQXbx4Ea6uruLy8OHDAQA9evRAYGCgnKIiIiIiIiL6MeSakLm4uEAQBHmGQEREREREJDe/1KQeREREREREvxMmZERERERERHLChIyIiIiIiEhOmJARERERERHJCRMyIiIiIiIiOWFCRkREREREJCdMyIiIiIiIiOSECRkREREREZGcMCEjIiIiIiKSEyZkREREREREcsKEjIiIiIiISE6YkBEREREREckJEzIiIiIiIiI5YUJGREREREQkJ0zIiIiIiIiI5IQJGRERERERkZwwISMiIiIiIpITJmRERERERERywoSMiIiIiIhITpiQERERERERyQkTMiIiIiIiIjlhQkZERERERCQnTMiIiIiIiIjkhAkZERERERGRnDAhIyIiIiIikhMmZERERERERHLChIyIiIiIiEhOmJARERERERHJCRMyIiIiIiIiOWFCRkREREREJCdMyIiIiIiIiOSECRkREREREZGcMCEjIiIiIiKSEyZkREREREREcsKEjIiIiIiISE6YkBEREREREckJEzIiIiIiIiI5YUJGREREREQkJ0zIiIiIiIiI5IQJGRERERERkZwwISMiIiIiIpITJmRERERERERyIveEbNmyZbC0tISamhqqVauGU6dOyTskIiIiIiKiH0KuCdnWrVsxdOhQjBs3DleuXEG9evXQrFkzxMXFyTMsIiIiIiKiH0KuCdm8efPQq1cv9O7dG7a2tliwYAHMzMywfPlyeYZFRERERET0Q8gtIfv48SMuXbqEJk2ayKxv0qQJzpw5I6eoiIiIiIiIfhwlee34xYsXyMzMRMmSJWXWlyxZEgkJCbnWSUtLQ1pamrj89u1bAEBSUlLRBZoP0rSUAtVLkgj5rpP5IbNA+3qfWbB6Hz4mF6jez/Le/Ex+5OcE4GflV8bfKTnxc5ITf6fk7mf4rGTFIAgFO9dE9GeQCHL6LfH06VOUKlUKZ86cgZOTk7h++vTpWL9+PW7dupWjzqRJkzB58uQfGSYRERHRd3n06BFMTU3lHQYR/aTk1kNWvHhxKCoq5ugNS0xMzNFrlmXMmDEYPny4uCyVSvHq1SsYGBhAIpEUaby/iqSkJJiZmeHRo0fQ0dGRdzj0E+NnhfKCnxPKK35WchIEAe/evYOJiYm8QyGin5jcEjIVFRVUq1YNhw8fRps2bcT1hw8fRqtWrXKto6qqClVVVZl1enp6RRnmL0tHR4d/EClP+FmhvODnhPKKnxVZurq68g6BiH5yckvIAGD48OHw9PSEo6MjnJycsHLlSsTFxaFfv37yDIuIiIiIiOiHkGtC1qlTJ7x8+RJTpkxBfHw8KlWqhP3798Pc3FyeYREREREREf0Qck3IAKB///7o37+/vMP4baiqqmLixIk5hnYSfY6fFcoLfk4or/hZISIqGLnNskhERERERPSnk9uDoYmIiIiIiP50TMiIiIiIiIjkhAkZERERERGRnDAhIyK54O2rREREREzIiOgHkkql4s8SiQQA8OzZM2RkZMgrJPoBMjMz5R0C/cGy/94hIvoZMSGjH4K9IQQACgoKiI2Nxf/+9z8AwI4dO9CpUyckJibKOTIqCu/evQMAKCoq4uLFi0hLS5NzRPQnUlD4dKkTERGBp0+fyjkaIqKcmJBRkZNKpWJvyLt375CSkiLniEhepFIp9u/fj+DgYLRo0QIdOnRAr169YGJiIu/QqJA9fvwYXl5eCA0NxY4dO1CjRg1cvnxZ3mHRHyR7z1hYWBjc3d2xbt06PH/+XI5RERHlJPcHQ9PvL+u/k1OmTMHJkycRHx+P8ePHo1mzZtDT05NvcPRDKSgooF+/frh8+TLWrl2Lhg0bwtPTE8CnYW2KiopyjpAKS0pKCl69eoVRo0YhOjoaQUFBcHJyglQqFX8nEBUVQRDEz9nixYvx4cMHpKWlwc/PDwDQq1cvlChRQp4hEhGJ+FeRikz2/04uWrQIS5YsQcOGDeHo6AgvLy8sWLAACQkJcoyQfqTsw1ZNTEzQrVs3vHjxAv379wfwaVgb7yX7PQiCABsbG/Tq1QvXr1+HlZUVDAwMAHxKynlPDxW1rFEZU6ZMgY+PD2xsbLBlyxZ07NgRfn5+WLt2LV68eCHnKImIPmEPGRWZrP9O3rp1C0+fPkVQUBCaNWsGAKhRowbGjh0LQRDwzz//wMjISJ6hUhETBAESiQQRERFQUFDA6NGjoaioiKVLlyIwMBD9+/fHsmXLoKT06VfS/fv3YW5uLi7TryPrvc7MzISFhQX8/f0REhKC+fPnIzk5GR06dBCTMvaUUVF6+/Ytdu3aBR8fH7Ru3RoA4OHhAV1dXUyePBmCIMDb2xuGhobyDZSI/nj8a0hFRhAEHDt2DBUqVMDKlSuRnp4ubhswYAB8fX2xYMECrFixAk+ePJFjpFSUsi7Qg4OD0bx5c+zcuROvX7+GqqoqvL290bNnT4SHh6Nfv36QSqWYOHEi/v77b3z48EHeoVM+Zb3XoaGhGDx4MCpWrIjevXtjzpw5UFRUxIoVK7Bjxw4An/5hs2/fPk70QUUia8hiZmammPinpqYCAGbNmgUXFxcsWbIE69evx5s3b+QYKREREzIqQhKJBK6urpg+fTrevHmDixcvirOuAUD//v0xc+ZMTJ48GQcPHpRjpFSUJBIJDh8+jO7du2POnDkYN24cSpUqBQDQ09ND37598c8//+DgwYMoU6YM/P39MWPGDGhra8s5csoviUQizpyprq6Ou3fvAgDKly+PefPmQUlJCf7+/pg7dy4mTZoEDw8PzrBJheLzYbASiQTa2tooV64cVq1aBQBQU1MT/zFobm6OEiVKYM6cOTh16hQAzgZMRPIjEfgbiArJ14YgjRs3DrNmzcKSJUvg6ekJTU1NcVtwcDBatmzJ4Wm/KUEQMHz4cLx//x6rVq1CcnKyOMlDyZIl0bRpUzg6OiIqKgqXL19GnTp1YGlpKe+wqQCuXLmCJk2aYPr06ejbt6+4/tWrV9DX10dMTAzGjx+P27dvIyUlBRs2bEDVqlXlGDH9DrL/7Tl37hxUVVWhp6cHCwsLPHr0CA0bNkTJkiVx5MgRKCkpQVFRER07dsS///6LOXPm4MaNG7hx44acj4KI/mS8AqZCkf0P4vr163Hz5k2oqKjA3t4e7du3x/Tp05GZmYmBAwcCgExS1rZtWwBARkYGk7LfjCAIEAQBcXFxSExMxJUrVzB//nzEx8fjxYsXkEgkuHr1KgIDA1GhQgVUqFBB3iHTd4iKikL58uXRt29fvH79GgcPHsSGDRtw9epVDBw4EKNHj8bSpUuRmpoKJSUlFC9eXN4h0y8u+2yK//vf/7B161a8efMGderUQdeuXeHp6YmAgAD06dMHVlZWqFSpEuLj45GSkgJHR0c4OTnh3r17vKeRiOSKV79UKLL/QQwICECjRo1w8+ZN/Pfff9i9ezfWrVuHmTNnQkFBAUOHDkVycjIGDBgANTU1sQ0mY7+HrPuIgE/DhiQSCaZMmYKmTZuicePGaNiwIfr37482bdogICAAixcv5lChX1j299vY2BinT5/G+PHjcfz4cejr66N06dKoU6cOxo4dCzc3N1SpUkXOEdPvIOv5llmfvfDwcOzduxdbtmzBixcvEBwcjPnz5+Pjx4/o1asXLl26BD8/P7x//x41atTAhAkTAABXr16FiYkJ0tPToaKiIrZHRPQj8QqYvkv2/yqGhYVh8+bN2LVrF+rUqYP3799j27ZtmDNnDvr16yfeG/T+/Xvs2rULw4cPl3P0VNiyLs6PHz+OQ4cOISYmBm5ubujatSuioqIQGxsLOzs7MQGLiopCiRIlmJD9grLe648fP0JVVRVSqRQNGjTAnDlzsG7dOtSvXx9eXl5iAhYSEiJOqkD0vbL3Zu3YsQP79+9Hx44dUbt2bQBAuXLlsHDhQixZsgTp6eno168fJk6cKNZ59uwZZsyYgV27duHkyZNQVVX94cdARJSFCRkVSKdOnbB48WKZ6YIfP34MFRUVVK5cGQCgpaWF9u3b4/Xr19iyZQvu3bsHa2trLFq0SLyYy/7fdfr1SSQS7Ny5E97e3mjRogVKly6Nvn374ujRo1iwYAHs7OwAABEREdi1axdWrlyJkydPcgKPX0zW9/bgwYPYuHEj4uPjYW9vj549e2L48OHo06ePzHs6duxYvHr1ivcG0nfz8vKCqakppk2bBqlUiidPnmDlypW4cOEC2rVrJ5YrV64chgwZAgBYs2YN3r17h//9738AgCdPniA4OBhnzpzB0aNHUbFiRbkcCxFRFg6YpnyLioqCjo4OihUrJrPezMwMioqKuH79urhOR0cHzZo1w5UrV/DgwQNxPZOx31NsbCzGjh2LmTNnYv369fDz84OqqipMTU3F+4ViY2OxfPlyhIaG4tSpU2ICT78OiUSC3bt3o3Xr1jA0NISJiQmioqJQp04dHD9+XEzGQkND4e3tjVWrVmH79u183iB9l9TUVLi7u4s9XQoKCjAzM8OkSZPg4uKC0NBQ/Pfff2L5cuXKYejQoShbtiyioqLEnvhSpUqhffv2OHToEBwcHORxKEREMjjLIn2XZcuWiT0h9+7dg4eHB5ycnODj4yP+N/zRo0fw8PDA4sWLUa9ePTlHTIUte2J97949dO3aFefPn8e9e/fg4uICd3d3rFy5EgBw48YNVKpUCffv34empiYv0H9RSUlJ8PDwQKNGjeDj4wPg0/d86tSp2LZtG06ePImyZctiw4YNOHr0KHx8fNgLQd/l83/grVixAvv370dISIj40Pk5c+bg5cuXGDx4MNq0aSOWffToEUqVKsUHkhPRT4u/lShfsj/r5enTp1i1ahWcnZ3x6NEjcThiSEgIxowZA39/f5w8eRK9e/eGkpKSOLaffi9ZwxRDQ0ORlpaGR48e4cSJE2jatCnc3d2xfPlyAMClS5cwYcIEREdHo0yZMkzGfmFpaWm4f/8+TE1NxXWmpqYYO3YsHB0dsXPnTqirq6Njx45Ys2YNkzH6bp//7zg9PR0PHjxAz549IQgCatWqhaFDh8LAwAALFy5ESEiIWNbMzIzJGBH91PibifIs+x+z9PR0mJiYYOXKlbC2tkaDBg0QFxeHxo0bY8eOHXj//j2mTZuGQYMGQSqV4uzZs1BUVERmZqacj4IK2+XLl9GpUyfcvXsX1tbWqFevHho1aoQqVapg5cqVUFRUBPDpeXMJCQnQ19eXc8RUUFkXxSVKlICDgwNOnz6N9+/fA/iUmFtYWEBDQwPXrl0DAOjq6so8c5CoIM6cOYMnT54AAIYPH44VK1agd+/eGDBgAK5du4bu3btDEATUrVsXw4YNg6GhIcaNG4eTJ0/KtMNkjIh+VpzUg/IkezK2YMECZGRkwNPTE9WrV8e0adMwZswYNGzYEEePHoWrqyuqVKmCjx8/IiUlBebm5pBIJHzO2G8oOjoahw4dwrhx4zBgwAAAQMeOHfH48WMkJibi9OnTSE5ORmhoKFatWoVTp06hZMmSco6a8iNrqJhUKoUgCGKC7ezsjHXr1mHLli3o2rUrNDQ0AEC8vzQzMxMKCgq8T5QKTCqV4vXr16hbty46dOgAbW1t/Pfffzh58iTU1NTERGzVqlXo3r071q1bhzp16iAtLQ1hYWGoU6eOvA+BiChPeA8Z5cu///6LdevWYerUqfDw8BCHnV24cAEjR45EfHw8wsLCZIYyAeBQkd/Qw4cP4eXlhZs3b6J///6YNGmSuG379u3YvHkz9u3bBxsbG+jp6WHJkiWcwOMXk5WMHTp0COvXr8eTJ09QpUoV9OnTB7a2thgwYABOnjyJSpUqoXr16rh16xa2bNmCiIgIPuSbCk1cXBzKly8PQRCwc+dONG3aVPxspqSkICgoCKtXr4adnR0CAgJk/gmQmZkp/hOBiOhnxStkyrO1a9ciKCgIhw8fRp8+fWBkZIQPHz7g3bt3qF69OpYuXQpTU1NUrFgRz58/l6nLZOz3Y25ujhYtWqBYsWLYvXs3EhMTxW0dOnRAcHAwrl69ipMnT2Lv3r1Mxn5BWbMptmzZEmpqaqhSpQp27tyJvn37Yv/+/Vi6dCn69OmDjIwMrF27FvHx8QgPD2cyRt8t637ljIwMJCUlic8JW79+PWJiYsSkS0NDA927d0efPn1w6NAhTJs2DcD/D69lMkZEvwL2kFGeTZ48Gffu3cP69etx9+5dHD16FAsXLoSxsTGaNGmC0aNH4/Tp09i6dSvmz5/PP4S/mS89pmD58uVYtWoV7O3tMXPmTBgZGbFH9DcgCAJev36N5s2bo3Xr1hg1ahSATw/U7d27N968eYOgoCBYWVkBAN69ewcVFRU+YJe+W/bfH5cvX0bVqlUBALdv30bVqlXRvHlz+Pn5wcLCQqbe3r170axZM/7tIaJfDq+YKFfZZ1PM+vnDhw84cuQIxo4di44dO+Lw4cNo1aoVypUrh23btuHFixeoU6cOFi1axAk8fjNZydipU6fg4+ODMWPGICgoCADwzz//wNvbG3fu3MGYMWPw7NkzcUYz+nVJJBKoqanh/fv34jMH09PTUbJkSaxevRoPHjxAQECAWF5bW5vJGH237MnY+PHjMXDgQGzcuBHJyckoV64cwsPDsW/fPowZMwb37t0DALRq1QpBQUFo0aIF//YQ0S+JMyxQDtn/IC5cuBASiQT9+/fHzJkz8eLFC1y6dAm9evVCw4YNYWtri+PHj+PChQtIS0uTaYf/pfw9ZCVjwcHB8PT0RP369ZGamorZs2fj4MGDWLZsGQYOHIjMzEwEBwdjwIABWLZsGQwNDeUdOuXDu3fv8ObNG5QoUQJqamoAPg0Xk0qluHv3LoBP3+mspKxx48a4ffu2PEOm31DW355x48Zh5cqV2Lx5MxwdHaGpqQlBEFClShWcOHECjRo1QkxMDD58+ICPHz+ia9euYhv820NEvxr2kFEOWX8Q//33X8yaNQvAp2FKALB69Wrs3LkTAwcOhK2tLT5+/IjZs2fD2NgYJiYmcouZCk9Wz1bWaGaJRIK4uDiMHDkSfn5+OHDgAI4dO4bTp08jNDQUgwYNAgAMGTIEzZo1w/v37/kf6l/MzZs30bx5czRp0gTVqlXD4cOHAXyaMXHs2LGYN28e1q5dCwUFBSgrKwMAXr9+zRkzqUhERkYiODgYISEhaNSoEYBPM7ouXrwYFy9ehKOjI8LDw+Hm5ob27dvj+vXrUFZWRkZGhpwjJyIqGN5DRrlatWoVxo0bhyNHjsDe3h7Ap4fBCoIANTU1SKVSLFiwAEeOHMGTJ09w8eJFKCsr896hX1zW+3f9+nWcO3cO3bt3h4qKCu7cuYNmzZphx44dcHBwEGcuO3PmDJydnbFx40Z07NgRwKcL9awhbvTzu3r1KurVq4fu3bujRYsWmDNnDp48eYKoqChxFjtfX19Mnz4d/fv3h5mZGR4/fozAwECcO3eOE3hQobt37x6aNGmChQsXwtzcHP7+/jh69CgEQcC9e/cQERGBGjVqyPy94WNViOhXxitnytWDBw/Qrl072Nvb486dO1i1ahWqV6+ONm3aYNmyZcjMzMTLly9RsmRJXLp0SfzvJJOxX1fWxc3Vq1dRuXJlPHnyBCoqKgAAdXV1PH78GHfu3AEA8R6xqlWrwt7eHnFxcWI7TMZ+HdevX0ft2rUxfPhwLFmyBE2bNsWSJUtgaGiIixcv4vr160hPT8fUqVOxadMmnD9/Hrt27cLdu3dx+vRpJmP03XK711RFRQVVqlTBqFGjULNmTUgkEsyYMQMXL14UhywCsrP3Mhkjol8Zf4ORzOx5WT+/e/cOGzZsgKWlJbZu3QpTU1M0b94cd+7cQVBQEHr27Inp06eL5TMzM/kH8ReWlYxFRkaidu3aGDNmDCZOnChuNzMzQ/fu3TFnzhyUKFECrq6u4qQP6urqTMR/QUlJSejVqxcMDAxkniG3du1anD9/Hh07dkRKSgqsra2xbt06dO7cGS1btoS6ujo+fPggPgiaqKCy93BFRkbi1atXsLW1RenSpeHv74/Lly9DQ0MDderUgYKCAtLS0qCoqIgSJUrIOXIiosLFq6g/nFQqFZOx5ORkvHr1CgCwZMkSdOrUCTt27EC3bt0wffp0+Pr6YtCgQZBKpXj9+jWAT/cXCYLAm6h/cQoKCrhz5w6qV6+OCRMmiMk2AGzcuBGJiYno06cPSpcujREjRiAwMBDHjh3Dv//+i6ioKLRs2VLOR0AF0bNnT0ilUvTr1w8AMHfuXKxcuRIBAQE4efIkpk6diqdPn2LRokVIS0uDqqoqJBIJ1NXV5Rw5/eoEQRCTsdGjR6NVq1bo1KkTqlWrhs6dOyM+Ph5ubm6oV68e0tLScP/+fbRt2xZSqRR//fWXnKMnIipc7NL4g2X/gzhz5kyEhoYiLi4O9vb2GDNmDFavXo2UlBTxP+Hp6emYNWsWSpUqBWNjY7Gd3J5NRb+W9PR0rF69GoqKiihTpgyAT++rr68vZs2ahbCwMNSoUQPDhw/H1q1bMWDAAJibm0NZWRlHjx6FtbW1nI+A8ktHRwddu3aFmpoaRo0ahYiICDx9+hS7du2Cs7MzAKBv377YsGEDYmJiZKa053eevlfWZ2jZsmVYs2YNtmzZgooVK2Lfvn0IDg7GsGHDsHDhQlSqVAnr1q3Dnj178PbtW5w9exZKSkrifaxERL8DJmR/sKw/iBMmTMCqVaswbdo01KhRA66urnjx4gU2b96MUqVKITk5GRs3bsTOnTvx9OlTXLx4ERKJhBN4/EaUlZXh6emJDx8+wMfHBxoaGoiNjcWcOXOwZcsW8cGstWvXRu3atTF27FgIggBVVVXeM/YLefz4MU6cOIHo6GiMGjUKurq66NixIyQSCaZOnQoHBwcxGcvqEStVqhRKlCiBjIwMKCoqMhmjQiEIAqRSKU6fPo1u3bqhYcOGAIBevXrB2NgYvr6+2Lp1KypVqoSaNWtCT08P7du3h6KiIifwIKLfDn+j/cEEQcCDBw+wZ88eBAQEoGnTpggPD8eHDx/QvXt3lCpVCsCnB0I/fvwYhoaG2LNnD5SUlPgH8TdkZ2eHf/75B5mZmfj777+RkJCAs2fPonr16jLJt1Qq5XTnv6AbN27Ay8sLDg4OMDIygra2NgBAU1MTrVq1AvBp6Fjfvn2xcuVKqKqqwsfHB4cPH0Z4eDi/71SoJBKJmOA/ffpU5l5md3d3HD58GNu2bcPEiRPh4OAABwcHAOD9ykT0W+JvtT9M9gvrrD+IHz58QNOmTbF7925069YNc+fORe/evfH+/Xvs378frVu3xvjx46GsrMwJPH5zFSpUwMCBAwEABw4cwP3791G9enVxVkUFBQX2iv6CoqKiUL9+ffTt2xcDBgyAmZkZAGDTpk1wdHSEjY0N2rRpA+BTUqaurg4TExPMmTMHp0+fRvny5eUZPv0GvjSiomzZsli9ejWuXLki9sQDQLVq1XDhwgWkpKRAR0dHXM9hikT0O+JzyP5QQ4YMQYkSJTBgwADUqFEDzZo1Q1BQEPz8/PD3338DAK5du4ZBgwZh+vTpqFu3LgDZGRnp9xUVFYUlS5YgLCwM48aNg6enJwC+/7+i169fo1WrVihfvjxWrlwprp85cybGjh0LfX19hIeHo3z58nj79i127dqF/v37IyUlBRcuXEC1atXkGD39DrInYxcuXIAgCMjMzISTkxMAwNnZGfHx8Vi1ahVsbGygpaWF1q1bQ1dXF8HBwfIMnYjoh2A3xx8i+4X0sWPHsH//fvj7+0NLSwtt2rTBihUr0L59ezEZS01Nxbhx46CtrY3atWuL7fBi/M+QvafMz88Pqamp6NOnD9//X1BcXBxevXqFLl26iOt27NiBmTNnYt26ddi+fTucnZ1x/Phx2NrawsPDA8rKyqhRo4Y4wQvR98hKxkaNGoVt27bh48ePSE1NRZMmTeDv748jR46gWbNm6N69OzIyMv6vvTuPqrJq+zj+PYfxOFuIswkO5VCibypYmZpmOZQTzqiZ85SZioiKQ84EZpaRoZimlIoDiFOp5QBKCg6llnOkCComIgoceP9wcV7Jnt7qUY8cf5+1Wivu4XjdSzz7vva+9t6ULl0as9nM5s2bAXUEiYjt0wjZY2bt2rVERUVRtmxZ3n//feDO/i8zZszg4MGDvPbaaxQrVozY2FhSUlI4ePAgDg4OWsDjMXXs2DFmzpzJiRMn2Lp1K8WKFdOLUQGRlZWFg4MD4eHhDBgwgKNHj1KpUiUAdu/eTfHixXn22We5dOkS/fr149tvv+X06dOUKVNGL8By33300UdMmTKFyMhITCaTpZPAw8ODLVu2ABAVFcWVK1dwcHCgS5cuWsBDRB4b+pazcXkvVnkLeMyfP5/4+Hh69OhhucbDw4PJkyfz7bffsmTJEtzd3fHw8GDOnDlawMPG5P0+/PTTTyQmJvLss8/i4uKCg4PDn76E16hRA39/f4oXL07x4sWtFLX8UydPnmTZsmVMmTKFIkWKcOPGDc6fP29JyPJKkAFKly5Nt27dSExMxGw2AxoJl/svPj6erl27WsoUAWJiYvDw8GDUqFEEBQXRpk2bfPdovrKIPC40QmbD/uwF+5tvviEwMJAjR46waNEiWrVqle/8H/d20V4vticiIoL+/fvj6OiIs7MzI0aMoGfPnpQqVUojIzZi4sSJrFixglOnTpGamkqLFi3Iyclh3bp1VKpUiczMTBwdHS0j3++++y7nz59n6dKlFClSxNrhiw3Jzs7GYDDQrFkzypcvz4oVK4D/21Zh7ty5fPXVV2zbto1ixYqpvRGRx5Jq0GxUTk6O5cV62bJllkUZmjdvjq+vL3Xr1iUoKIht27ZZ7snOzr6nLFGNo+3IyckhNTWVjz76iNmzZ3PgwAHeeOMNli1bxocffkhKSoplNFUKpry/uxdeeAEnJydu3bpFyZIl8fHxITk5mX79+pGYmIijoyNwZ8EPPz8/li5dytSpU5WMyX9t586dLFy4kKlTp1pGuOzs7OjTpw/fffcdGzZsALBsNO7s7IydnR0mk0ntjYg8tlQLYIPunu/1/fffs2PHDlatWkX58uWZNWsWTZs2JSsriwULFjBnzhwMBgPNmzdXaYiNyhv1yszMpGjRolSpUoU2bdpQpkwZPvzwQyZOnMjGjRuB/1t9UyNlBVPe35mbmxtnz55l165dtGjRgnfeeYdr164RGhpK7dq16du3L8nJyVy/fp0DBw7w7bffUqtWLStHLwXd559/zoQJE6hevTpHjhwhKiqK/fv3A+Dp6UmTJk344IMPMJvNtG/fnsuXL7Np0yYqV65sSdBERB5HegO3QXnJ2OjRo9mzZw/Vq1enSpUqhIWFcePGDRYsWMCrr74KwCeffMLo0aNZtGgR9evXt2bY8oAYDAY2bNhAYGAgN2/eJDs7O19P9LRp0wDYunUr6enp+Pv74+LiYq1w5V84e/YsO3bsoEmTJphMJipXrky1atXIyMiwXBMQEECDBg1Yt24d33//PSaTiWbNmhEUFETVqlWtGL3YgpCQEIYOHcqqVato1qwZ586do0WLFiQkJODh4UGNGjV47733mD9/Pj179qRs2bI4Ojri6OhIXFycZXReHUEi8jjSHDIbFRkZSe/evYmOjsbT05Pff/+defPm8dVXX9G8eXPmz59vuW737t3MnDlTqyjamLyXm4SEBBo2bMjIkSP5+eef2bdvHy+//DLBwcGUKVPGcv2oUaM4ePAgq1atolSpUlaMXP6JzMxMOnbsSHx8PEajkYyMDF599VVWrlzJm2++ydy5czEajbi7u1vuyVuBUS/Acj9ERETQqVMnNm7cyOuvvw7A77//TsOGDWndujXHjh3D29ubTp064eDgwJEjR9i3bx+urq507NhRqymKyGNP3342KjExERcXFzw8PAAoXrw4Q4YM4erVqyxevBiTycTs2bNp27YtrVq1wmg0agEPG2MwGIiPj2f//v1MnjwZPz8/AD788ENWr17N+PHjmTVrFq6urgAEBQWRkpKiZKyAcXR0ZMWKFRQtWpT4+HiOHz9OYmIiCQkJrF+/noMHD5KVlUWtWrUoW7YsDRo0wMvLSxs+y32RkZHBhg0bcHd358KFC5bjb731FteuXSM7O5sbN24waNAgfvvtN8aOHUv9+vXzVWRoNUURedxphMzG5PV4b9q0iZEjR7J06VI8PT0t548cOULTpk0pUaIE7dq1IzAwMN99YjsuXrxI9+7diYuL491337WUJgLMmzePVatWUatWLaZOnZpvpEwKnj/79zt37lwSEhIYM2YMV65cYefOnRw4cIDU1FS++OILqlWrZqVoxdacPn2aOXPmcPjwYfr27cu2bds4ceIEERERlpHZdu3acfjwYeLj47WFhojIH6hGrYDLycnJ93PePkK1a9fGaDTyySefcPr0act5Ozs7mjZtSrdu3fj+++9JSEgAtO+QLSpdujS9e/emRo0aREREcO3aNcu5kSNH0rVrV/bs2cP06dPv+T2SguXP/v26ubkRHR2Ni4sLr7zyCtOmTSM6OppvvvlGyZjcN7m5ubi7u+Pr60utWrWYNm0a27dvZ8uWLbi7u3Pz5k0AmjZtSunSpcnOzrZyxCIijx4lZAXY3aspzp8/n/79++Pl5cWSJUsoWrQoX375JVFRUYwfP57Q0FD279/Pu+++S7FixejXrx8JCQmWhEwKvj8OdhuNRnr16oWvry+FChWie/fuXLlyxXJ++PDhDB8+nPfee0/zB21Mbm4utWvXpkiRIty6dQv4v86aQoUKWTM0sTF5i3G4ubkxYcIEWrZsyVNPPUVERARw5/ctOzubyMhIqlatyhNPPGHliEVEHj0qWbQB48aNIywsjOHDh2M2m/nggw9o164dS5cuZe/evUybNo2jR4/i6OiIq6srO3bswMHBAU9PTwICAmjTpo21H0H+S3klazt37mTjxo2kpqbSoEEDevfujZOTE6tWrSI4OJgSJUqwfPlyvRQ9Jp555hlGjx5Nv379rB2K2Ii7OwLvlvcddPbsWaZPn87Ro0fp1asXgwcPpm3btpw+fZpDhw5hb2+vEnkRkT9Qt3gBt3fvXiIiIoiKisLf359WrVqRlpZGixYtAGjUqBGrV69m3759REdHExMTg7OzM/7+/ly6dIk6depY+QnkfjAYDERERNCqVStOnDjBpUuXGDZsGD179uTEiRN4e3szYsQIbt68Sdu2bbl69aq1Q5YHKK+fzWQycebMGStHI7YkLxlLS0vLdzxvpKxy5cqMHz+eZ599li+//JIKFSrw888/k5CQgL29PdnZ2UrGRET+QAlZAXf79m1cXFx4/vnnCQ8Pp2nTpnz88cf07NmTtLQ0du/ejb29PeXKlePpp58mLi6Odu3aERYWxvr166lYsaK1H0H+hbw5X3kv3r/99ht+fn7MnTuXDRs2EBkZSUxMDPv372fSpEnk5ubi7e1N7969KVasGOnp6dYMXx6wvBfeAQMG0K1bNytHI7Zg+/bthIeHA3fKnWfNmmUpg81zd/ni+PHjKVeuHDVr1uTo0aM4ODhoaXsRkf9AJYsFSEpKCrdv36ZEiRIUKVIEgNWrVzN69GgCAwPp168fM2bMYMiQIQBs3LiRFStWMHPmTCpVqgTcSeA++OADOnTowDPPPGO1Z5F/LzQ0FEdHR7p06YKjoyMAv/76K02aNGHx4sW8/PLLlhefH374wTKvsGfPnuTk5HDjxg2KFStm5aeQh0GlYXI/XL16lf79+5OUlESpUqXYtm0bsbGxPPvss396fd7v3aVLlyhVqhRGo1HJmIjIX9AIWQGxcuVKOnbsyP/8z//QuXNn1qxZA8Cbb75JlSpV6Ny5MxMnTrQkY7du3eLTTz/FbDZToUIF4E4j6eTkxPjx45WMFVC5ubmEhYUxZ84cNmzYQGZmpuV4cnIyv/76q+Vas9nM888/j5eXFz/++CNwp9xIydjjQ8mY3A9PPPEEs2bN4urVq2zYsIGAgABLMvZnfbp5v3elS5fGaDSSk5OjZExE5C8oISsAQkJC6N+/P23btmXGjBkcOXKEWbNmkZiYiL29PUOGDKFhw4Z8+eWXREdHExoaSrt27Thz5gzLly+3NIh6OSvY8nqdt2/fjru7OzNmzGDt2rVkZGRQqVIlBgwYgJ+fHzt27MDe3t6yybfBYFASJiL/Sl7CZTQaqV69Oi1atGDTpk2sWLECuPP98sfSxT/SKq4iIn9NJYuPuNDQUIYOHcqqVato27YtAIGBgYwdO5YdO3bw8ssvk5WVRUxMDIGBgezbt4+qVavi7u7O4sWLcXBwwGw2W17OpWDLzMzE0dGRK1eu0K5dO3JzcxkxYgQdO3bk7NmzBAQEsH37diZPnoyrqysxMTF89tln7Nu3j+rVq1s7fBEpIP7TaoqHDx9mxowZ/PbbbwwZMiTfHMXU1FRKliz5MMMUEbEJSsgeUbm5uVy+fJnSpUvz4osvEh0dbZk31qZNG6KjowkJCaFw4cI0bNiQKlWqAHdWvnJwcMDJyQmDwaC6fRuSN0IWHh7O2rVrSUpKIi4ujlKlShEcHEyHDh04c+YMn332GYsWLaJMmTKYTCYWLVqEh4eHtcMXkQLi7rmHYWFh/PbbbxQtWpQBAwbg7OzM/v37CQoK4tKlS/Tt2xcfHx9atmxJkyZN8PPzs3L0IiIFjxKyR1xUVBSdOnVi0KBBTJ8+nd69exMfH0/Lli1xc3MjODgYV1dXnJ2dadasGYMGDbIs4KEJ/bZn3759vPLKKyxYsAAvLy8KFy5Mt27dSE5OZubMmbz55pvY2dmRlJSEk5MTRqOR4sWLWztsESkg7h4ZGzNmDEuWLMHNzY3U1FSKFy/Orl27KFSoEPv37+fjjz9mx44dmEwmAMtqiiIi8s8oIXuE5TWMUVFRvPnmm7i6ulKqVCk2bdpE+fLlAbh06RIXL17k/fffx9HRkWXLlqk80YaFhYUxe/ZsYmNjLYlWTk4OL730EomJiQQGBtK6dWsKFSpk5UhFpCC7cuUK77zzDr6+vlStWpX4+HiGDh3KzZs3iY+Pp1ChQpw4cYJTp05x5swZBg4caNlnTFUZIiL/jGbaPsLyFuNo06YNW7ZsITk5meeee87SGwl3VrHy8PBg9erVfPnll9jZ2Vn2qBLbkddvkpmZya1bt3BycgLg5s2bGI1GFi9ezOXLl5k8eTKbN2+2ZqgiUsB99tln1KtXj+TkZMqWLYvJZMLLy4vQ0FAKFSpEvXr1yMjI4Omnn6ZVq1YMHToUe3t7zGazkjERkX9BCdkjLi8pa968OZGRkaxcuZKJEydy6dIlyzV5K1zlbcqpFa1sw92D13mlp23atCE1NRVfX18Ay0hYeno6jRs3pkqVKtStW/fhBysiNiEnJwcXFxdcXV05cuSIZYVWg8FA3bp1CQ0NpUiRIpQrV47bt2/nu1fVGSIi/466sh4Rd9ftp6WlUbRoUcu5vKSsVatWbNiwwTJPyM/Pj7Jly+ZrBDVnzDbkzf/bt28fsbGxuLu7U7NmTapUqcKCBQsYOHAgOTk5TJ48GbPZzLp16yhVqhQhISH5RlBFRP7KH1dTNBqNtG7dmsKFC9O/f39effVVdu7cCdxpX+rVq8fHH3/Mp59+qtEwEZH7RHPIHjHvvvsuxYoVY8yYMZZVFfPkNZzR0dG0adOGwMBARo0aZaVI5UFbt24dPXv2xM3NjatXr/L8888zYcIE6tevz4oVKxg+fDgmkwlHR0euX7/O1q1bqVevnrXDFpEC4u5kbNu2bSQlJVGkSBEaNGhA+fLl2bp1KyNGjKBChQp88803f/oZ2lZFROS/p4TMyu5eCfHQoUO0adOGr7/+Gi8vrz+9Pq8B3bt3Lw0aNFAPpY26cOECAQEBeHp68vbbb7N27VqWLFlCamoqgYGBNGzYkOTkZHbs2IGDgwP16tWjcuXK1g5bRAogX19fVqxYQbVq1bh48SIuLi74+fnx+uuvs2nTJkaPHk2FChXYunWrtUMVEbFJSsgeEYGBgaSlpXH79m1mzZr1l9fencRpRSvbc/DgQaZMmcKNGzf47LPPLHvMbdu2jY8++ojU1FSmT59O48aNrRypiBREf9xnzN/fnzVr1uDp6UlQUBD+/v58/fXXtG3bluzsbL755hu6d++Oj48PH374oZWjFxGxPVr94RGQkZFBXFwc06ZN4/jx4//v9XfPE1MyZnuOHj3K+fPnOXjwIGlpaZbjLVq0YPjw4bi6ujJ06FBiY2OtGKWIFDSRkZFA/jbk6NGjtG/fHk9PT9asWcOUKVMIDg6mbdu2pKenc/nyZV599VU2btxIUFCQtUIXEbFpSsis4I+DkiaTieDgYIYNG8bmzZstZSEavHw89erVC39/f9zd3fHz8+Po0aOWcy1atKBv374899xzlClTxopRikhB4u/vT0RERL52JTc3l+TkZGrWrMnevXvp06cPs2fPZtCgQeTk5BAeHs7GjRsxGo14eXlhZ2dnWdVXRETuH5UsPmR3T6LOyckhKyvLsqdUcnIyY8aMYfXq1WzZsoUXX3wxX2mJ2J68v9/U1FTgzohn3gqby5YtY8mSJZQoUYL333+fmjVrWu67efOmNn8Wkb8tJSWFEiVK4ODgQEJCAh4eHgAEBQUxevRo7O3tWbZsGV26dAHurPbboUMHPD09mTZtmhUjFxGxfRohe4juTsYWLFhA586deeONNwgMDATA1dWVoKAgOnbsyGuvvcaePXsse4uJ7clLxiIjI/H29sbDw4PBgwezZMkSAHx8fOjTpw/Xrl1j8uTJHD582HKvkjER+TsCAwM5cuQIpUqVwsHBgdWrV9OzZ09CQkIAGDlyJD4+Pjg6OuLu7k5ycjKnT5/G29ub1NRUAgICrPwEIiK2TwnZQ5SXjPn5+TFz5kzc3d1p0aIFY8eOxdfXl/T0dJ588kmCg4Px9vbmpZde4vDhwxohs1EGg4GoqCi6dOlC8+bNmTdvHvb29gQEBFgmzvfq1Yu+ffty8uRJAgMDyczMtHLUIlJQ7Ny5k7CwMN5//31++eUXALy8vKhWrRorV64kNDQUo9HIhAkTaNWqFS+++CINGjSgU6dO3Lhxg5iYGOzt7VWmKCLygKlk8SFbvXo148aNY/ny5Xh6erJ161Zat25Nbm4uvXr1YsGCBRQqVIiUlBRCQkIYN26cFu6wUadPn6Zz5868/fbbDB48mN9//50aNWpQpkwZfv/9d0aMGME777wDQHh4OF5eXjz11FNWjlpECpIvvviCxYsXU6pUKSZPnkytWrVISkpi2LBhXLx4kf79+9OnTx/gzkquGRkZFC9enJdeegmj0aiVfEVEHgIlZA+R2Wxm5cqVXLt2jWHDhhEdHU2PHj0IDAzE1dWVdu3aMWrUKAICAvJtCq0GsWC7u1T1bmlpaUydOpXhw4djZ2dH06ZNad68OaNHj+att97i2LFjvPvuu/j5+VkhahEpyDIzM3F0dATgk08+ISIigieeeILp06db9hsbPnw4SUlJ9OnTh379+t3zGf/pu0tERO4vJWQPUN4cobsX5rhy5QrXr1+naNGivP7663h7ezN27FhOnTrFCy+8QHJyMlOnTmXChAlWjl7uh7wXmuTkZM6dO0d6ejpNmjSxnM/IyMBkMuHr68uZM2dYtGgRxYsXZ+TIkURGRlK2bFnWrVvHk08+qdJVEflb7m5zgoKCOHz4MLt27eLs2bN07NiRKVOmUKNGDS5evMiIESNISUmhffv2lhF5ERF5uNT19YDk5ORYGsTExESSk5NJSUnhySefxM3NjeTkZG7cuEHz5s0BcHZ2pmPHjuzZs0cjIjYiLxk7cuQILVu2pGvXrnTq1InXXnvNco3JZALu7AXk5ORE8eLFgTujqUOHDiUyMhIXFxclYyLyt+V9XwQGBjJ58mQ6d+7M2rVrCQgI4MyZM0yaNIkTJ05QtmxZPvroI4xGIydOnNACUiIiVqI6uAcgNzfXUuYxbdo0oqKiSE9Px2w2ExwczGuvvYbJZOLkyZOsX7+ejIwMpk+fTmZmJp6enhgMBpUpFnB5ydihQ4d44YUXGDp0KN7e3nz33XeMGTPGsrCL2WzGYDBQv359Nm7cyNSpU7ly5Qrh4eHExcVRsmRJaz+KiBQwubm5ZGZmsn37dgYPHkyrVq0ALPsXzpo1i4CAAKZNm0a1atVYtWoVJUuWvKeiQ0REHg698T8AeY3Z5MmTWbBgAUuXLqVatWoMHjyYbt26cfDgQdzc3AgJCWHQoEGEh4dTsmRJdu3aZWkQlYwVbEajkZMnT+Lp6cno0aMt+/hUrlyZmTNn8ttvvwFgZ2cHwBtvvMGFCxcIDw+naNGibNu2jcqVK1srfBEpwAwGA05OThQqVIgLFy7kOzdgwABiY2NZtWoVly9fZtGiRbi5uQGaMyYiYi16639Arl27xq5du1i8eDGtW7dm/fr1xMfHM2PGDNzc3MjNzaVv3740a9aM9PR0atSooRWtbEhOTg6LFy+maNGiPPnkk5bjoaGhXL16lePHjzN58mQMBgMDBw6kXr16fPbZZ6Snp5OVlUWJEiWsF7yIFCh/HNXK+7l69eqEh4dz+PBhnnvuOcv56tWrU6dOHRo2bJhv5VYlYyIi1qFFPR6Qc+fOUbduXQ4dOsTx48fp0KEDc+fOZdCgQdy8eZOgoCD69OlDhQoVLPeod9K2XLhwgTlz5hAbG0vv3r1JS0tj9uzZjB49mjp16rBlyxb27dtHYmIihQsXZuzYsbz99tvWDltECpC7243ExETs7e1xdna2dOrUr1+fmzdvsmjRIqpXr07RokXp2rUrzZo1Y9iwYRgMBrU9IiJWpoTsPvizmvvMzEy6detG0aJFWb16NfPmzbMsK3z27FkGDhzIkCFDePPNN60RsjwkSUlJTJ8+nW3btnHq1Cm2bNlCs2bN8l0TERHBvn378PHxoXbt2laKVEQKmrsTqSlTprBlyxZOnjzJq6++yhtvvEHnzp25desWzZs3t5QuFipUiMzMTH766Sfs7e01Z0xE5BGghOy/dHeDePXqVXJycnBxcQHA19eX4OBgunXrxtKlS4E7e0916dKFzMxMtmzZYplDJLbr0qVLzJgxg507d9KrVy/ee+89AG7fvo2TkxPw50m9iMjfMWnSJD755BM+//xzTCYT8+bN4/jx4wQEBFg2fV61ahUpKSnk5OQwaNAg7O3tMZvNaoNERB4BSsjuk0mTJrFx40ZSU1Pp0aOHZREHHx8fDhw4QIUKFXjqqaf46aefuHHjBj/88AMODg4qFXlM5I2UxcXF0b59e3x9fQH0QiQi/9jdHTg7d+5k6NChLFq0iEaNGrF9+3batGlDgwYNSExMJCAgAB8fn3s+Q989IiKPDmUC/5LZbLb8/8KFCwkNDaV379706dOHoKAgunXrxu3bt1m2bBmjRo2iUqVKZGVl0apVKw4cOICDgwPZ2dlKxh4TZcqUwd/fn/r16xMZGUlAQACAXohE5B+5e4/LixcvUqdOHdq3b0+DBg3YsmULXbt25aOPPiIkJAR7e3vGjx/PwoUL7/kcffeIiDw6NEL2D/2xtCw2NpbY2FgqVKhAp06dANi7dy8tW7akdevWfP755xQpUuSez1Hv5OMpKSkJPz8/EhMTCQ8Pz7cCo4jI3zVu3DguXLhASEgIAM7Oznh7e/PMM88wdepUjEYjHTp04NSpU9SpU4elS5eqLFpE5BGl4Zl/oHPnzhw6dMjy848//kijRo0YNWoU169fB+4kbI0aNWLr1q1ER0czePBgkpKS7vksJWOPp7xNWZcvX65kTET+trv7TmNiYoiKimLYsGGYTCZMJhPp6ekcPXoUJycnjEYj169fx9HREX9/f0sypv5XEZFHkza8+gccHR2pWbMmcKdxrFWrFmvWrKF3797ExMTQvXt3nJ2dyc3NxcvLi61bt9KoUSOqVavGpEmTrBy9PCpKly5t7RBEpIDJG90KDg7m/PnzvPzyyzRo0AC40x7Z2dnRpEkTNm7cSFZWFnv27OHGjRt06tRJS9uLiDzilJD9DXnlhcuXLwfg448/pmbNmjRu3Jj27duTmZlJz549efLJJ5k2bRoODg7k5ubi6enJ4cOHeeaZZ6z8BCIiYgsOHz7M0qVLqV+/PteuXaNEiRIYDAZMJhM9evTAbDazadMmKlWqxObNmzEajUrGREQecZpD9g/kzR97+umnuXXrFitWrMDT0xM7OzvCw8Px8fHhvffe4/33379nf5fs7Gzs7ZX/iojI37Nr1y7i4uIA6N69O2XKlAHAz8+P2bNn8+mnn+Lj44PJZLLck5WVhdlsxsnJCYPBoLZHRKQAUJfZv3DixAkqVqxoKVU0m8107dqVZcuWMW/ePIYPH47ZbM43gVoNooiI/F3Lli2jX79+nDt3jsKFC1uSMYCZM2cycOBA3nnnHdasWcOtW7cs5+zs7HB2drbMGVPbIyLy6NM39d+QV+5xd2/j7t278fT0pE+fPoSFheHl5UXXrl3JyMggLCxM5SEiIvKvLFu2jIEDBxISEkL79u0tK/XOmzeP8uXL4+3tzcKFC8nNzWXgwIEYDAY6dOiAyWTK1/ZoVUURkYJBJYv/wbfffktMTAwTJkwAyFeDf3cJiKenJ1euXCEsLMxSvpjnj0vki4iI/JVjx47RpUsXhg0bxoABAyzHO3fuzOrVq2nZsiUDBgygffv2AAwZMoRPP/2UTZs20bJlS2uFLSIi/wUN4/yJ27dv8/XXX/P1118zd+5cAMvEaLhTfpiVlQXc2YesdOnStGjRgh9//DHf5ygZExGRf+LXX38lLS2Nxo0bW9qcoUOHEh8fT1RUFNnZ2YSGhrJ69WoAPvnkE+bOncsrr7xizbBFROS/oBGy/+DChQvMmTOH2NhY2rdvj6+vL5B/pOzu/x8xYgTBwcHaX0xERP616dOnExwczOXLly3HLl68iNlspkKFChw7doz+/fuTm5vL8uXLcXNzs1ynBTxERAomjZD9B+XKlWPcuHHUr1+ftWvXMnv2bCD/SFlKSgqdO3dm/fr1zJ8/Hzs7O8xmszXDFhGRAqxq1apkZGSwbds2y7GyZctSoUIFcnJyqFGjBm+88QYlSpTA1dU1371KxkRECiYlZH+hTJky+Pv7W5KyWbNmAXeSsosXL9KxY0cSEhJo3bq15R6NkImIyL9Vv3597O3tCQkJ4fz58/nOGY1G0tLS2LVrF08//TSFCxe2UpQiInI/qWTxb0hKSmL69OnExcXRsWNH+vbti7e3N5cuXSIhIQEHBwfL5tEiIiL/jZUrV/LWW2/RqVMnRo8ejYeHBwDnzp2jf//+JCcn88MPP9yz36WIiBRMSsj+pqSkJGbMmMH+/fs5fvw45cqV49ChQzg4OKhuX0RE7huz2cySJUsYMmQIpUuXpnbt2mRnZ5OWlgbc2TBaHYEiIrZDCdk/kJSUhK+vLykpKaxfv17JmIiIPDAJCQl8/vnn/Pzzz1SqVIl69eoxcOBA7Ozs1PaIiNgQJWT/UGpqKsWLF8doNKpBFBGRh04jYyIitkUJ2b9095L3IiIiD4LmiImI2D4lZCIiIiIiIlaiIR4RERERERErUUImIiIiIiJiJUrIRERERERErEQJmYiIiIiIiJUoIRMREREREbESJWQiIiIiIiJWooRMRERERETESpSQiYj8P3bu3InBYODatWt/+57KlSszb968BxaTiIiI2AYlZCJS4PXp0weDwcCgQYPuOTdkyBAMBgN9+vR5+IGJiIiI/D+UkImITahYsSLh4eFkZGRYjt26dYuVK1dSqVIlK0YmIiIi8p8pIRMRm1CvXj0qVapERESE5VhERAQVK1akbt26lmO3b99mxIgRuLq64uzszIsvvkhcXFy+z4qOjqZ69eqYTCaaNm3K2bNn7/nz9u7dS+PGjTGZTFSsWJERI0aQnp7+wJ5PREREbJMSMhGxGW+99RZLliyx/Lx48WL69u2b75qxY8eyZs0ali5dysGDB6latSotW7bk6tWrAPz666906NCBVq1akZCQQL9+/Rg3bly+zzhy5AgtW7akQ4cOHD58mK+++ordu3czbNiwB/+QIiIiYlOUkImIzfDx8WH37t2cPXuWc+fOsWfPHnr27Gk5n56ezsKFC5k7dy6vv/46NWvWZNGiRZhMJkJDQwFYuHAh7u7uBAcH8/TTT9OjR4975p/NnTuX7t27M3LkSKpVq0ajRo2YP38+X3zxBbdu3XqYjywiIiIFnL21AxARuV9cXFxo3bo1S5cuJTc3l9atW+Pi4mI5f+rUKbKysnjhhRcsxxwcHGjQoAHHjh0D4NixY3h6emIwGCzXeHl55ftzDhw4wMmTJ/nyyy8tx3Jzc8nJyeHMmTPUqFHjQT2iiIiI2BglZCJiU/r27WspHfz444/zncvNzQXIl2zlHc87lnfNX8nJyWHgwIGMGDHinnNaQERERET+CZUsiohNee2118jMzCQzM5OWLVvmO1e1alUcHR3ZvXu35VhWVhY//PCDZVSrZs2axMbG5rvvjz/Xq1ePH3/8kapVq97zn6Oj4wN6MhEREbFFSshExKbY2dlx7Ngxjh07hp2dXb5zhQsXZvDgwYwZM4bNmzfz008/0b9/f27evMnbb78NwKBBgzh16hSjRo3ixIkTrFixgrCwsHyf4+vrS0xMDEOHDiUhIYFffvmFDRs2MHz48If1mCIiImIjlJCJiM0pVqwYxYoV+9Nzs2bNomPHjvj4+FCvXj1OnjzJli1bKFmyJHCn5HDNmjVERkZSp04dPv30U2bMmJHvM5577jm+++47fvnlF1566SXq1q3LxIkTKVu27AN/NhEREbEthty/M2FCRERERERE7juNkImIiIiIiFiJEjIRERERERErUUImIiIiIiJiJUrIRERERERErEQJmYiIiIiIiJUoIRMREREREbESJWQiIiIiIiJWooRMRERERETESpSQiYiIiIiIWIkSMhEREREREStRQiYiIiIiImIlSshERERERESs5H8Bn66TD9aJp54AAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Compare performance across events\n",
"comparison_df = pd.DataFrame({\n",
" event: {model: results[model]['RMSE'] \n",
" for model in event_results[event].keys()}\n",
" for event in event_results.keys()\n",
"})\n",
"\n",
"# Visualize performance comparison\n",
"plt.figure(figsize=(12, 6))\n",
"comparison_df.plot(kind='bar')\n",
"plt.title('Model Performance Comparison Across Events')\n",
"plt.xlabel('Model')\n",
"plt.ylabel('RMSE (seconds)')\n",
"plt.xticks(rotation=45)\n",
"plt.legend(title='Event', bbox_to_anchor=(1.05, 1))\n",
"plt.tight_layout()\n",
"plt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "csci349",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
}
},
"nbformat": 4,
"nbformat_minor": 2
}