From 21d3c4b1bc084dee0761b67f33607a74e1411c63 Mon Sep 17 00:00:00 2001 From: Sean O'Connor Date: Mon, 2 Dec 2024 08:33:42 -0500 Subject: [PATCH] Basic modeling, add .gitignore --- .gitignore | 190 ++++ project/DataPrep_EDA.ipynb | 1521 +++++++++++++---------------- project/Modeling.ipynb | 1840 +++++++++++++++++++++++++++++++++++- 3 files changed, 2677 insertions(+), 874 deletions(-) create mode 100644 .gitignore diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..a8f43c2 --- /dev/null +++ b/.gitignore @@ -0,0 +1,190 @@ +# Created by https://www.toptal.com/developers/gitignore/api/python,jupyternotebooks +# Edit at https://www.toptal.com/developers/gitignore?templates=python,jupyternotebooks + +### JupyterNotebooks ### +# gitignore template for Jupyter Notebooks +# website: http://jupyter.org/ + +.ipynb_checkpoints +*/.ipynb_checkpoints/* + +# IPython +profile_default/ +ipython_config.py + +# Remove previous ipynb_checkpoints +# git rm -r .ipynb_checkpoints/ + +### Python ### +# Byte-compiled / optimized / DLL files +__pycache__/ +*.py[cod] +*$py.class + +# C extensions +*.so + +# Distribution / packaging +.Python +build/ +develop-eggs/ +dist/ +downloads/ +eggs/ +.eggs/ +lib/ +lib64/ +parts/ +sdist/ +var/ +wheels/ +share/python-wheels/ +*.egg-info/ +.installed.cfg +*.egg +MANIFEST + +# PyInstaller +# Usually these files are written by a python script from a template +# before PyInstaller builds the exe, so as to inject date/other infos into it. +*.manifest +*.spec + +# Installer logs +pip-log.txt +pip-delete-this-directory.txt + +# Unit test / coverage reports +htmlcov/ +.tox/ +.nox/ +.coverage +.coverage.* +.cache +nosetests.xml +coverage.xml +*.cover +*.py,cover +.hypothesis/ +.pytest_cache/ +cover/ + +# Translations +*.mo +*.pot + +# Django stuff: +*.log +local_settings.py +db.sqlite3 +db.sqlite3-journal + +# Flask stuff: +instance/ +.webassets-cache + +# Scrapy stuff: +.scrapy + +# Sphinx documentation +docs/_build/ + +# PyBuilder +.pybuilder/ +target/ + +# Jupyter Notebook + +# IPython + +# pyenv +# For a library or package, you might want to ignore these files since the code is +# intended to run in multiple environments; otherwise, check them in: +# .python-version + +# pipenv +# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control. +# However, in case of collaboration, if having platform-specific dependencies or dependencies +# having no cross-platform support, pipenv may install dependencies that don't work, or not +# install all needed dependencies. +#Pipfile.lock + +# poetry +# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control. +# This is especially recommended for binary packages to ensure reproducibility, and is more +# commonly ignored for libraries. +# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control +#poetry.lock + +# pdm +# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control. +#pdm.lock +# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it +# in version control. +# https://pdm.fming.dev/#use-with-ide +.pdm.toml + +# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm +__pypackages__/ + +# Celery stuff +celerybeat-schedule +celerybeat.pid + +# SageMath parsed files +*.sage.py + +# Environments +.env +.venv +env/ +venv/ +ENV/ +env.bak/ +venv.bak/ + +# Spyder project settings +.spyderproject +.spyproject + +# Rope project settings +.ropeproject + +# mkdocs documentation +/site + +# mypy +.mypy_cache/ +.dmypy.json +dmypy.json + +# Pyre type checker +.pyre/ + +# pytype static type analyzer +.pytype/ + +# Cython debug symbols +cython_debug/ + +# PyCharm +# JetBrains specific template is maintained in a separate JetBrains.gitignore that can +# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore +# and can be added to the global gitignore or merged into this file. For a more nuclear +# option (not recommended) you can uncomment the following to ignore the entire idea folder. +#.idea/ + +### Python Patch ### +# Poetry local configuration file - https://python-poetry.org/docs/configuration/#local-configuration +poetry.toml + +# ruff +.ruff_cache/ + +# LSP config files +pyrightconfig.json + +# End of https://www.toptal.com/developers/gitignore/api/python,jupyternotebooks + +# FastF1 cache +data/cache/ \ No newline at end of file diff --git a/project/DataPrep_EDA.ipynb b/project/DataPrep_EDA.ipynb index 8436f12..0e013e1 100644 --- a/project/DataPrep_EDA.ipynb +++ b/project/DataPrep_EDA.ipynb @@ -37,12 +37,14 @@ }, { "cell_type": "code", + "execution_count": 1, "metadata": { "ExecuteTime": { "end_time": "2024-11-20T02:14:34.811557Z", "start_time": "2024-11-20T02:14:34.804489Z" } }, + "outputs": [], "source": [ "# Importing Libraries\n", "import pandas as pd\n", @@ -52,47 +54,23 @@ "import os\n", "\n", "from fastf1.ergast.structure import FastestLap" - ], - "outputs": [], - "execution_count": 9 + ] }, { "cell_type": "code", + "execution_count": 2, "metadata": { "ExecuteTime": { "end_time": "2024-11-20T02:14:38.532179Z", "start_time": "2024-11-20T02:14:36.799495Z" } }, - "source": [ - "# FastF1 Example\n", - "import fastf1\n", - "import fastf1.plotting\n", - "\n", - "fastf1.plotting.setup_mpl(misc_mpl_mods=False, color_scheme=None)\n", - "\n", - "session = fastf1.get_session(2019, 'Monza', 'Q')\n", - "\n", - "session.load()\n", - "fast_leclerc = session.laps.pick_drivers('LEC').pick_fastest()\n", - "lec_car_data = fast_leclerc.get_car_data()\n", - "t = lec_car_data['Time']\n", - "vCar = lec_car_data['Speed']\n", - "\n", - "# The rest is just plotting\n", - "fig, ax = plt.subplots()\n", - "ax.plot(t, vCar, label='Fast')\n", - "ax.set_xlabel('Time')\n", - "ax.set_ylabel('Speed [Km/h]')\n", - "ax.set_title('Leclerc is')\n", - "ax.legend()\n", - "plt.show()" - ], "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ + "req WARNING \tDEFAULT CACHE ENABLED! (188.1 MB) /Users/soconnor/Library/Caches/fastf1\n", "core INFO \tLoading data for Italian Grand Prix - Qualifying [v3.4.4]\n", "req INFO \tUsing cached data for session_info\n", "req INFO \tUsing cached data for driver_info\n", @@ -110,78 +88,49 @@ }, { "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHFCAYAAAAaD0bAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACLvUlEQVR4nO3dd3wUdf4/8Nf29N5JCKGXUJSOBZAieIAnd+Kp56FiVxTFs96dWLmvd1Y88HfKiR3b4VlAAWkioBBAegkkkN6zm8323fn9MTuTLGlbZndnZt/PxyOPB9lsdmdCsvue9+f9eb8VDMMwIIQQQgiJIMpwHwAhhBBCSKhRAEQIIYSQiEMBECGEEEIiDgVAhBBCCIk4FAARQgghJOJQAEQIIYSQiEMBECGEEEIiDgVAhBBCCIk4FAARQgghJOJQAEQIEcyaNWugUCiwb9++kD2nQqHAsmXLQvZ83SktLYVCocCaNWvCfSiEkB6ow30AhBAiF9nZ2di9ezf69esX7kMhhPSAAiBCCHFzOp1wOBzQ6XR+fb9Op8OECRMEPipCSDDQEhghJOROnz6NG264ARkZGdDpdBgyZAj+9a9/dbhfc3Mzli5dir59+0Kn0yEjIwNXXXUVTpw40e3jV1dX484770Rubi60Wi0KCgrw9NNPw+Fw8PfhlqtefPFFPPfccygoKIBOp8PWrVsBAD///DPmzp2L1NRUREVFoV+/fliyZEm3z9vZElhdXR3uuOMO5OXlQafTIT09HZdccgk2b97s/Q+MECI4ygARQkLq2LFjmDRpEnr37o2XXnoJWVlZ+P7773H//fejvr4eTz31FACgpaUFl156KUpLS/Hoo49i/PjxMBqN2LFjB6qqqjB48OBOH7+6uhrjxo2DUqnE3/72N/Tr1w+7d+/Gc889h9LSUrzzzjse93/99dcxcOBA/POf/0RCQgIGDBiA77//HnPnzsWQIUPw8ssvo3fv3igtLcXGjRt9Pt+bbroJ+/fvx/PPP4+BAweiubkZ+/fvR0NDg+8/PEKIYCgAIoSE1EMPPYT4+Hjs3LkTCQkJAIAZM2bAarXi73//O+6//34kJyfj1VdfxdGjR7Fp0yZMnz6d//758+d3+/jLli1DU1MTjh49it69ewMApk2bhujoaDz88MP485//jKFDh/L3j4qKwvfffw+NRsPfNn36dPTu3Rs///wzoqKi+NtvueUWn8/3p59+wm233Ybbb7+dv+3qq6/2+XEIIcKiJTBCSMhYLBb88MMPuOaaaxATEwOHw8F/XHXVVbBYLNizZw8AYMOGDRg4cKBH8OONb775BlOnTkVOTo7H48+ePRsAsH37do/7z5s3zyP4OXXqFM6cOYNFixZ5BD/+GjduHNasWYPnnnsOe/bsgd1uD/gxCSGBowCIEBIyDQ0NcDgcWLFiBTQajcfHVVddBQCor68HwNbO5Obm+vwcNTU1+Prrrzs8/rBhwzwen5Odne3xeV1dHQD49dyd+eSTT7Bw4UK8/fbbmDhxIlJSUvCnP/0J1dXVgjw+IcQ/tARGCAmZ5ORkqFQq3HTTTbj33ns7vU9BQQEAID09HeXl5T4/R1paGkaMGIHnn3++06/n5OR4fK5QKDw+T09PBwC/nrur43n11Vfx6quv4vz58/jqq6/w2GOPoba2Ft99950gz0EI8R0FQISQkImJicHUqVNx4MABjBgxAlqttsv7zp49G3/729+wZcsWXHHFFV4/x5w5c7B+/Xr069cPycnJPh/jwIED0a9fP/znP//BQw895PeW+M707t0b9913H3744Qf89NNPgj0uIcR3FAARQgS3ZcsWlJaWdrj9qquuwmuvvYZLL70Ul112Ge6++2706dMHLS0tKC4uxtdff40tW7YAAJYsWYJPPvkEV199NR577DGMGzcOZrMZ27dvx5w5czB16tROn/uZZ57Bpk2bMGnSJNx///0YNGgQLBYLSktLsX79erz55ps9Lm/961//wty5czFhwgQ8+OCD6N27N86fP4/vv/8eH374odc/B71ej6lTp+KGG27A4MGDER8fj7179+K7777rsZibEBJcFAARQgT36KOPdnp7SUkJhg4div379+PZZ5/FX/7yF9TW1iIpKQkDBgzg64AA8DvFli1bhn//+994+umnkZycjLFjx+KOO+7o8rmzs7Oxb98+PPvss/jHP/6B8vJyxMfHo6CgALNmzfIqK3TllVdix44deOaZZ3D//ffDYrEgNzcX8+bN8+nnEBUVhfHjx+P9999HaWkp7HY7evfujUcffRSPPPKIT49FCBGWgmEYJtwHQQghhBASSrQLjBBCCCERhwIgQgghhEQcCoAIIYQQEnEoACKEEEJIxKEAiBBCCCERhwIgQgghhEQc6gMEwOVyobKyEvHx8R3a4hNCCCFEnBiGQUtLC3JycqBU+pbToQAIQGVlJfLy8sJ9GIQQQgjxQ1lZmc8DjCkAAttxFmB/gAkJCWE+GkIIIYR4w2AwIC8vj38f9wUFQGibBp2QkEABECGEECIx/pSvUBE0IYQQQiIOBUCEEEIIiTgUABFCCCEk4lANECGEEBJiTqcTdrs93IchehqNBiqVKiiPTQEQIYQQEiIMw6C6uhrNzc3hPhTJSEpKQlZWluB9+igAIoQQQkKEC34yMjIQExNDzXe7wTAMTCYTamtrAQDZ2dmCPj4FQIQQQkgIOJ1OPvhJTU0N9+FIQnR0NACgtrYWGRkZgi6HURE0IYQQEgJczU9MTEyYj0RauJ+X0DVTFAARQgghIUTLXr4J1s+LAiBCCCGERBwKgAghhBAScSgAIoQQQki3br75ZigUig4fxcXFfj/mtm3boFAowtYSgHaBRSCTzYEYLf3XE0II8d6sWbPwzjvveNyWnp4epqMJHGWAIojJ5sAd7+1D4VPf44X1x2FzuMJ9SIQQQiRCp9MhKyvL4+O1117D8OHDERsbi7y8PNxzzz0wGo3895w7dw5z585FcnIyYmNjMWzYMKxfvx6lpaWYOnUqACA5ORkKhQI333xzSM8nrAHQqlWrMGLECCQkJCAhIQETJ07Ehg0b+K93lnKbMGGCx2NYrVYsXrwYaWlpiI2Nxbx581BeXh7qUxEVhmHw9o9nMfkfW/HurlKs3FaMMc9twkXPbMLGYzVwMcC/d5zFiKe/x9R/bsPPZxvCfciEEBKRGIaByeYI+QfDMIIcv1KpxOuvv44jR47g3XffxZYtW/DII4/wX7/33nthtVqxY8cOHD58GP/3f/+HuLg45OXl4YsvvgAAnDx5ElVVVXjttdcEOSZvhXUdJDc3F3//+9/Rv39/AMC7776Lq6++GgcOHMCwYcMAdEy5abVaj8dYsmQJvv76a6xduxapqalYunQp5syZg6KioqDNDxEzh9OFv/7vKD7+5TwA4Kmvjnp8PS1Oi9sv64uV285Ab7ajpL4Vt6zZi0/umIjhuYnhOGRCCIlYZrsTQ//2fcif99gzV/pcCvHNN98gLi6O/3z27Nn47LPP+M8LCgrw7LPP4u6778bKlSsBAOfPn8fvfvc7DB8+HADQt29f/v4pKSkAgIyMDCQlJfl7Kn4LawA0d+5cj8+ff/55rFq1Cnv27OEDIC7l1hm9Xo/Vq1fj/fffx/Tp0wEAH3zwAfLy8rB582ZceeWVwT0BEakxWPDurlLsLW3E3tImKBTANaN64etDlXAxwN/mDMXlA9ORnRiFKI0Kf5rYB5V6M57631HsLK7HY/89hK/uuxQqJfWnIIQQ0tHUqVOxatUq/vPY2Fhs3boVL7zwAo4dOwaDwQCHwwGLxYLW1lbExsbi/vvvx913342NGzdi+vTp+N3vfocRI0aE8SzaiKYS1ul04rPPPkNraysmTpzI375t2zY+Opw8eTKef/55ZGRkAACKiopgt9sxc+ZM/v45OTkoLCzErl27IiYAOlZpwK1r9qLaYAEARGtUeP36izBjaCYenDEQVocL/TPiPL4nWqtCv/Q4vPaHUZjyz204WmnAs98cw5RB6ZgyKCMcp0EIIREnWqPCsWdC/14VrfF9hSQ2NpZfsQHY+p6rrroKd911F5599lmkpKRg586dWLRoEd+1+bbbbsOVV16Jb7/9Fhs3bsTy5cvx0ksvYfHixYKdi7/CHgAdPnwYEydOhMViQVxcHNatW4ehQ4cCYNNr1157LfLz81FSUoK//vWvuOKKK1BUVASdTofq6mpotVokJyd7PGZmZiaqq6u7fE6r1Qqr1cp/bjAYgnNyIWCyOXDbu2zw0z8jDvNG5mB2YRYGZMYDAPJSum+5nhqnw5LpA/HsN8ewZlcp1uwqxTeLL0VhL1oOI0TuzjeYUGdkL5xitGoMzoqnLsUhplAoJLsrd9++fXA4HHjppZegVLIlxZ9++mmH++Xl5eGuu+7CXXfdhccffxxvvfUWFi9ezJe0OJ3OkB43J+w/9UGDBuHgwYNobm7GF198gYULF2L79u0YOnQorrvuOv5+hYWFGDNmDPLz8/Htt99i/vz5XT4mwzDd/hEvX74cTz/9tKDnEQ4WuxMrt55Bpd6CXknR+OLuSUiM1vj8OH+amI9qvRlv/VgCAChrNFEARIjMFZ1rwoL/txtOV1sx7JwR2Vg+fzhitWooaTmc9KBfv35wOBxYsWIF5s6di59++glvvvmmx32WLFmC2bNnY+DAgWhqasKWLVswZMgQAEB+fj4UCgW++eYbXHXVVYiOjvaoMQq2sG+D12q16N+/P8aMGYPly5dj5MiRXVaCZ2dnIz8/H6dPnwYAZGVlwWazoampyeN+tbW1yMzM7PI5H3/8cej1ev6jrKxMuBMKAaeLwfL1x1H41Pd4YyvbhOovvxniV/ADABqVEk/+ZiimD2GXvppMwg6cI4SIi8vF4Omvj8LpYpAaq0V+agzUSgW+OVSF4cs2YvI/t+KXksZwHyYRuVGjRuHll1/G//3f/6GwsBAffvghli9f7nEfp9OJe++9F0OGDMGsWbMwaNAgvkC6V69eePrpp/HYY48hMzMT9913X0iPP+wZoAsxDOOxPNVeQ0MDysrKkJ2dDQAYPXo0NBoNNm3ahAULFgAAqqqqcOTIEbz44otdPodOp4NOpxP+4EPAbHNiyScH8P3RGv62mUMzMauw80JxXyTFsOnIZrMt4McihIiPy8XgX1uLsWJLMWxOF+J0amxYchky4qPw/dFqPPL5IejNdpQ1mvGHf+/G//1uBK4dkxfuwyYisGbNmk5vf/DBB/Hggw963HbTTTfx/16xYkW3j/vXv/4Vf/3rXwM+Pn+ENQB64oknMHv2bOTl5aGlpQVr167Ftm3b8N1338FoNGLZsmX43e9+h+zsbJSWluKJJ55AWloarrnmGgBAYmIiFi1ahKVLlyI1NRUpKSl4+OGHMXz4cH5XmJy0WOz44+pf8GtZM7QqJf5x7QjMHJqFaK0w2/2T3BmkZsoAESI7FrsTD3/2K745VMXf9uCMgciIjwIAXDksC9MGZ6DF4sAz3xzDugMVeObrY5gyKAPp8dK8YCSkO2ENgGpqanDTTTehqqoKiYmJGDFiBL777jvMmDEDZrMZhw8fxnvvvYfm5mZkZ2dj6tSp+OSTTxAfH88/xiuvvAK1Wo0FCxbAbDZj2rRpWLNmjSx7AL2y6TR+LWtGcowG//7TGIztkyLo4yfHujNAJsoAESInzSYbFr27D0XnmqBRKfC3OUMxtiAFgzLjPe6nVimRHKvFS9eORHGtEYcr9Pjn9yfxf78Xx7ZlQoQU1gBo9erVXX4tOjoa33/fc3OoqKgorFixosc0m9QV17bgvd2lAIDXr79I8OAHAF9DRDVAhMgHwzB45PNDKDrXhIQoNd68aTQm9Uvr9nuUSgWWzRuK363ajU+LyrB4Wn/kJne/o5QQqQl7ETTpWWl9K25/rwgOF4MZQzNx2YDgDJ9LdtcA6SkAIkQWqvUWfLDnHDYeq4FGpcBHt0/oMfjhjM5PwcS+qWAY4POiyB4vROSJAiCRs9iduO7fu1FS34peSdF4au7QoD1XUgyXAaIlMEKkbt2BckxY/gP++j92HM4D0wb43N7iurFsAfRn+8rhcgkzO4pAsDlckSJYPy8KgERuw5Eq1BisyE6Mwrp7JwU1Dc0FQM1mygARImUGix3Pf3scABCnU2P6kEzcNbmfz48zqzALCVFqVDSbsZuGJgdMo2FfY00mU5iPRFq4nxf38xOK6LbBEzbafXdXKXafbcDhcj0A4A9je/O7NYKFWwJrNtl6bCZJCBGvFT+cRr3Rhr7psfjugcuhVft3rRulUeHSAWlYf7gap2pacEl/75bPSOdUKhWSkpJQW1sLAIiJiaHX2W4wDAOTyYTa2lokJSUJvrmJAiCRYRgGT6w7wk9z5/x+TG7Qn5vLANmdDEw2J2J19OtBiNScqTPinZ9KAbBDkP0NfjjcmAaL3RXooRGAH+7NBUGkZ0lJSV0ORQ8EvcOJzFe/VuLjX85DqQB6p8SgtMGEyQPT0SspOujPHa1RQatWwuZwoclkowCIEAl67ptjcLgYXDE4Q5DBxtzQTLM9PPOa5EahUCA7OxsZGRn8wFDSNY1GE7S2NvQOJyImmwPL158AADw4fSBuu6wvvj5UicuDtOvrQgqFAknRGtS2WNFssiM3uefvIYSIx9YTtdh6sg4alQJ/+c0QQR4zSsNmkKwUAPnF5WJwrtGEPqmey10qlUqW/eqkhIqgRWTVtjOoNliQlxKN2y/vi2itCgvG5CErMbi1P+211QHRlQkhUmJzuPDst8cAALdcUoC+6cIMlYxyZ4AsFAD5xO5klwz//PkhTP3nNiz99FfUtVj520n4UQZIJMoaTfh/O84CAJ68aij/ohNqibQVnhBJennTKZyta0VanBb3XdFfsMeNoiUwn723uxQvrD+O0fnJ+KmY3T333wMV+O+BCqTFabHi+osxsV9qmI+SUAZIBCx2J55Ydxg2hwuT+qXiymFdT7IPtmTaCk+I5Ly3uxRvbj8DAHjyN0OQECXcduG2DBBlLnridDF45utj+Nv/jsJid/HBz6R+qchwz1OrN9rwp//8jJ2n68N5qASUAQo7k82Bm1b/gqJzTdCqlHhq7rCwbotMinYvgbVSBogQKXA4XXhjSzEAYOmMgbjmImF3jHI1QLQE1j2ni8G9H+7Hd0erAQALJ+bjq18roVOrsOL6i5ASq4XF7sIDaw9g47EarNhyGpcOoLYC4UQBUJit3HrGY0bPoKz4nr8piJJiKQNEiJTsOF2H2hYrUmK1uGNyX8EfP0rtzgA5KAPUnU/3leG7o9XQqpV46dqRmDsyB0/8ZgjsTgZx7h210VoVnpo3DJuO1+DnkkaU1reiT1psmI88ctESWBiVNZrw7x/Zup8Xfz/S6xk9wcQNRKUiaEKk4ZO9ZQCAay7qBZ1a+NrBaK07ALJRBqgztQYL1h0oxz+/PwkAeHTWYMwdmQMA0KlVfPDD6ZUUzc9zfGnTKeyhDtthQxmgMHr+2+OwOVy4pH94637a43p+WBz0YidW5xtMMFodANjmlTkh6BFFxOndXaXYdKwGQNvcLqHxS2D0muChstmMM3VG3P/xATS5Lxj7pcfiTxPze/ze68bkYcepOnz9ayW+/rUS3yy+1Oc5bSRwFACFya7ienx3tBoqpQJ/mxPeup/2uIJH6vkhLgzDwOZ04cl1RzwmcysVwAe3jRdF9pCE1udF5XjqK3bQ6cKJ+RiYGZzlc34JjF4TeLuK63HD2z/zn+enxmBARhzunzYAGlXPCytXDsvEwon5eHf3OQBAca2RAqAwoAAoDKr0ZvzlyyMAgD+O7x32up/22goeab1fLCqbzfjdql2o0lsAsEFPapwOVrsTBosDy746ivX3Xwa1Fy+8RB4MFjv+voEddnr3lH545MpBQXsuHW2D7+CdXaUAgHidGuP7puCla0fxLUS8oVYp8fTVhWg22/G/g5WobbEE6UhJdygACrGjlXrcumYvagxWZMTr8OCMgeE+JA/c1Z6V0t2isXJbMR/8JMVo8Op1ozBlUAb0Jjum/HMrTtUYMfSp7/GX3wzBnyb2Ce/BkpB4Y0sxP+z0wekDg5pBjqZt8B5qWyzYcoKd4/XfeyZhQACZN25rfK3BKsixEd/QJWMI7Squx4I3d6PGYMWAjDh8cfckJLk7L4uFjjJAolLWaMKne9klr3duHotfnpjOz3dKjNHgkVmDAbBdgP++4QRfG0Tk62ydEe/8VAIA+KsAw057QtvgWXanC6u2ncE9H+yH08Xgot5JAQU/AJDuDoDqjBQAhQNlgELE7nThkS8OodXmxCX9U7HyxtH8jisxofV+8ThWacCid/fC5nRhXJ8UTBmU3uFK/w9j8zAsJwFX/+snmGxOfPNrJf4wrneYjpiEwvPfHofdyWDqoHRMFWDYaU/a6gIj86LoXEMrNhypxo5Tddh1pm3H1vVjA/87y4hnxxxRBig8KAAKkf8drER5kxlpcVq8/aex/NZSseHW+63U8yMsXC4GP5c04nxjK575+hhabU70S4/FSwtGdrrMoVAoMCI3CY/NGozlG07gk31lFADJ2IlqA344UQu1UoG/zBkakufkAiCb0wWni4FKKY4NG6FQ1mjCvDd+gt7dFy1ao8I9U/ohNyUaV4/sFfDj80tgVAMUFhQABZHTxWDH6TpM6peKFVtOAwBuv6yvaIMfgNLd4bZiSzFe2XyK/3xi31S8+cfRPRZYzr84F//4/iQOnG9GWaMJeSkxwT5UEgY/HGdrTyYPTEc/gYad9iS63VxCi92JWF1kvG1Y7E7c/WER9GY7+mfEYULfFNwwLh9DcxIEe46MBC4AogxQOETGb3KYvLD+OFbvLMHIvCScazAhPV6HP07ouUdEOOloCSxsyptMWLmNHWkwOCselw9Mx8MzB3lV45Eer0NGvA6VeguaTXbkpQT7aEk4bHUX304dHPylL46u3e9fpARAZpsTD6w9gCMVBiTHaPDurePQKwj9ttLdS2AtFgcsdmfYhmAHm9nmhNnuREqsuGpeqQg6SBiG4QcS/lrWDIDtECr2F4+2pme0BBZKDqcLf/3yCKwOFyb0TcGGBy7DE1cN8anAVaVilybsLvq/k6Nmkw37zzcBCG0ApFQq+N/DSHhdcLkYLPzPL9h4rAZalRKvX39RUIIfAEiIUvMBppzrgP7fjjOY8o+t+KJdDzMxoAAoSBQKBR6YPgCvXDcSOrUSl/ZPw/yLAl8zDjZ+vd/hAsMwYT6ayGBzuLD0s1+x9WQdNCqF3wNxNUr2z9npov83Odp4tAYuBhiUGR+0N+SucMtg5ggYh7HhSDV+KW1EnE6ND24bz4+tCAaFQsEvg9UZ5VkHVNFsxpvbz8BgcfC7jMVC3OkIGbjmolzMGpYNjUoBpQSKB9unu60Ol2xTsmKhN9tx9wdF2HWmAWqlAm/ccDGGZPtXY8AVp9qd8r9KjzRf/VqJJ788DAC4sjAr5M8fpVFCb5b/0jjDMHhjK7sMvejSAowrCP5acnqcDmWNZtlmgP6+4QQsdhfGFaTgN8Ozw304HigACgExFz1fKOqCgkcKgIKnrNGEW9bsRXGtEbFaFd644eKAlja4TtAOJ2WA5KS8yYQ/f/Yr7E4GVw3Pwj1T+oX8GPit8DJvkPrVr5U4XmVArFaFWy7pE5LnTItjM0D1rbaQPF8o/VLSiK9/rYRCATw1d6hoRj5xKAAiHjQqJVRKBZwuhpohBgHDMCiuNeJcgwmP/fcQ6o02ZCVEYfXNYzAsJ7BZQBp3DRAtgcnL8g0nYHW4ML4gBW9cf3FYMslcfzCzTb6vCSabA8vXnwDAjhcJVZNaXbuyAzlxuhg8/TU7q+4PY3sH/PoWDBQAkQ6i1Eq02pyyv9oLh8+LyvHnzw/xnw/JTsB/bh6D7MTAazpoCUx+jlTo8e2hKigVwLJ5w8K2jB6llffuULPNiSVrD6LaYEFucjRuu6xvyJ5b4/4/dcjk79blYmBxOPHC+uM4WmlAfJQaD88U18gnDgVApAOdRoVWm5MyQEHw7u5SAGza+/KBaXjm6kLECbQzkIqg5Wfj0WoAwJXDsvyuDRNCFL8LTH4BUF2LFbe9tw+/ljVDq1LihWuGh3Tpn5se75DB322D0Yp5b/yEimYzALiXvoYh1b3MJzYUAJEO+Bc7mV7thcvRSj2OVBigUSmw8cHLBe+JwWeAZPBCSlhbT9YBAKYNyQzrcUTJdCDq6ZoW3LJmL8qbzEiK0eDfN40JSeFze2qVfDK3/9x4kg9+EqLU+L/fjcBskRU+t0cBEOkgisZhCMrlYrBmVyme+eYYAGDm0KygNART8zVA9P8mB7UGCw5X6AGwnZ/DiesPZpbRRdH+801Y+J9f0GJxoE9qDP5z81j0DVF37fY0Mtm8cKRCj7V7ywAAH902HuMKUviNGWJFARDpQKeR93p/KFnsTjz82a/45lAVf9v1QZrVpeZrgKT9QkpY206x2Z8RuYn81PBwieYHosrjNYFhGPxl3RG0WBwYnZ+Mt/40JmxditUyqd17edMpMAwwd2QOJvVPC/fheIUCINKBjpbABNHYasPt7+1D0bkmaFQK3Du1P0bkJuLSAcF5caBt8PLy/RG2/mdKCCa+9yRKZhdFP56ux7EqA6I1Krz9pzFIDuOIBu7vVsoXLkcq9NhyohZKBfDQDHEWPHeGAiDSAY3DCEy90YrzjSY8+MlBnGswISFKjTdvGo1J/YJ7VcRdSdISmPTVGCzYepKd+zVvZE6Yj0Z+NUCrtp0BAPxhXF5Ygx+grX2FQ8J/ty9vYgc4zx2Zg4K02DAfjfcoACIdRMks3R1KW0/U4pY1e/nPc5OjseaWseifER/055bDlSRhfV5UDhcDjMlPRv+M0NelXEgnoxqgX8uasfss23k9lNvdu6KR+N/ttpO12HKiFmqlAvdPGxDuw/EJBUCkA67pGWWAfPede9lCq1ZiQt9UvHTtyJDVb2iU1AhRDpwuBp/tY4tJF4zNC/PRsKJltAT25nY2+zNvZE7IZ6p1htu8IMU+QC4Xg+e+PQ4AuHlSH/QLQxF5ICgAIh1wV3uUAfLd3nONAIBVN14c8q3LbdvgpfdCStp8c6gSpe6lU7HMTpLLEtjZOiO+c/dWunNy6EeKdIbr3yXFPkDHqw0orjUiWqPCYollfwCaBk86wWeAKADySYPRirN1rQCA0fnJIX9+bgnMKdFUOmGzAK+46ynunNwPsQI1yQyUXHqD/X3DCTAMMG1wBgZlBX9Z2htcBsgmwQzQztP1AIAJfVOQGK0J89H4Thx/XURUuCJo6gPkvR9P1+FQOduzZUBGXMjmCLWnpkaIkvff/RUobTAhJVaLmyf1Cffh8KJlMApj5+l6bDxWA5VSgcdmDw734fDadm9K7/V2ZzEbAF02ILx9qvxFARDpgPoA+aa4tgU3rf6F/3xMn9BnfwBp1xIQ1ls/ngUA3DNFPNkfoN0SmIRHYby06SQA4KYJ+RiQKY7sDwBo+b9baV24WOxO/FzCLvlfFqTWHsFGS2Ckg7Z0N72RemP3mQaPz8fkh7aVPkdNRdCSVtZowulaI1RKBa4dI47iZ46OnwYvzQDoVE0LDpxvhkqpwD1TxVH7w1G7a4CklLllGAY7TtXB5nAhM0Enip2K/hDPJQYRDR0/CkOaL3ahtre0CQCgVLCp4BnDwjO3ibbBSxvX92d0frLo6im4jRFS/d36xD2i4YrBGciIjwrz0XiSWuaWYRj8/s3dKDrHvu5d2j8dCoUizEflHwqASAdy2fERKtwLwXu3jg9al2dvaKgRoqRtPcEGQFcMDn/n5wtp3cG1TYJ1gdV6C9YdqAAAXCeyzBrQvg+QNH62lXoL/5oXo1Xh2jG5YT4i/1EARDqgURjeq2w2o6LZDJVSgVG9k8J6LCoJptIJy2J3Ypd7KXWqCEZfXEhqb9KcskYTrn1zNxpbbeidEoMpg8RXrCu1GX5H3AN6B2fFY/39l0GplGb2B6AaINKJtoJHab3YhcM+95XQkOx4xIW5aJWfBi+RF1LS5lC5HlZ3PcXATPHVU2jdF0VS26q9emcJqg0W9EuPxYe3jRfldHKNmusDJI2f7dFKAwCgsFeipIMfgAIg0okoaoTote0n2Ynd4Sp8bk9NjRAl63RtCwBgSHaCKOspuHlVUlsC47ZpPzxzEPJSYsJ8NJ3jGyFK5MLlWCWbASrMSQjzkQSOAiDSAY3C8E6LxY71h6sAAHNGhL9jL02Dl67TNUYAwEARbc9uTyvBJbAqvRnFtUYoFQj6IOJAcJlbqfxsuQzQsF6JYT6SwFEARDqgURje+eZQFcx2J/qmx4al8/OFaBu8dHEZILFuJ5biwM4f3V2Kh+cmITFGXLvq2tOopFMD1GC0okpvgULBZiulLqwB0KpVqzBixAgkJCQgISEBEydOxIYNG/ivMwyDZcuWIScnB9HR0ZgyZQqOHj3q8RhWqxWLFy9GWloaYmNjMW/ePJSXl4f6VGQlihohdunjX85j4F82oODxb/H4fw8DABaMyRPFsoXUriRJm1NizwCppbcLjBvTcLnIm/SpldLpBM1lf/qkxoa95lEIYQ2AcnNz8fe//x379u3Dvn37cMUVV+Dqq6/mg5wXX3wRL7/8Mt544w3s3bsXWVlZmDFjBlpaWvjHWLJkCdatW4e1a9di586dMBqNmDNnDpxOevP2F7cERqMwOnpv9znYHC4w7ou1tDgtfj9aHNtAKQMkTc0mG+parADEnwGyOV1gGPH/frlcDH5y1/9c2l/cARCfXZPA3y23U3FUXlJ4D0QgYQ3h5s6d6/H5888/j1WrVmHPnj0YOnQoXn31VTz55JOYP38+AODdd99FZmYmPvroI9x5553Q6/VYvXo13n//fUyfPh0A8MEHHyAvLw+bN2/GlVdeGfJzkgOuCJoyQJ7qWqw4XsVeAW1+6HIkRmuREK3mu+SGmxQ7yhLgdC2b/emVFC3aq2ptu91TDhfDL9uI1Z6zDWhotSFep8ZFvcO/PN0djYQaIW5zN+sUYzsBf4imBsjpdGLt2rVobW3FxIkTUVJSgurqasycOZO/j06nw+TJk7Fr1y4AQFFREex2u8d9cnJyUFhYyN+H+E6npkaIndl1hr2iHJqdgP4Z8UiP14km+AHabYOnXWCSUa238EupYs3+AG1LYIA0llg/2cd2fp43Ksfj2MVIKpsXKprNOFHdAqUCmDxQHgFQ2C83Dh8+jIkTJ8JisSAuLg7r1q3D0KFD+QAmM9NzrEBmZibOnTsHAKiuroZWq0VycnKH+1RXV3f5nFarFVarlf/cYDAIdTqywGeAHE4wDCOK+hYx2HHKPfl4oDhT6nwGSOQvpKTN018fRbE7AzQ4S5z1PwA8Mj42hwsx2jAeTA/0Jjs2HGFf/68bK77Ozxfilq7F3mOJy/5c3DsZSWL+BfBB2EPjQYMG4eDBg9izZw/uvvtuLFy4EMeOHeO/fuGbrzdvyD3dZ/ny5UhMTOQ/8vLE/0cSStFaNqvBMFQHxGEYBjuL2Z4/l/UX59WP1GYKEbYBIsAGP7dcUhDmo+maSqkA95Iq9jfqj345D5vDhcFZ8Rguga3aXA2QQ8RL15uO1eC1zacBAFNFOKrFX2EPgLRaLfr3748xY8Zg+fLlGDlyJF577TVkZWUBQIdMTm1tLZ8VysrKgs1mQ1NTU5f36czjjz8OvV7Pf5SVlQl8VtIWo21LDJokOv1ZaEcrDagxWKFTKzGmjzhrCqgIWlparQ5UNJsBAB/fPgFZieIa0tmeQqFo1wtIvL9fdS1W/GtrMQDgtsv6SiJ7rVG1/d2KscB83YFy3P7ePtS2WNE3LVYSWTVvhT0AuhDDMLBarSgoKEBWVhY2bdrEf81ms2H79u2YNGkSAGD06NHQaDQe96mqqsKRI0f4+3RGp9PxW++5D9JGpVTw6+YmmyPMRxN+DMNg+YbjAIAZQzP5NgFiQ9PgpeVMHbv0lRanRXKs+JcUpDAQ9eVNp2C0OjAiNxHzL+oV7sPxSvvxHGL82/3yQCUA4HcX52L9A5chLU4X5iMSTlhrgJ544gnMnj0beXl5aGlpwdq1a7Ft2zZ89913UCgUWLJkCV544QUMGDAAAwYMwAsvvICYmBjccMMNAIDExEQsWrQIS5cuRWpqKlJSUvDwww9j+PDh/K4w4p8YrQo2hwtmygBh47Ea/FTcAK1aiUdnDQ734XSJMkDSwvX+GZAh3tqf9jRqJWAVbxG03mTHF/vZHnB/+c1Qycypal9f5XC5oBVRXsLlYrD/PLvCcsslfUR78eevsAZANTU1uOmmm1BVVYXExESMGDEC3333HWbMmAEAeOSRR2A2m3HPPfegqakJ48ePx8aNGxEf3/aC8corr0CtVmPBggUwm82YNm0a1qxZA5VKXv9RoRajUaEZ9ohfAnO5GLy88RQA4PbLCkQ7TwigWWBSw3V/HiDC4aedEXsG6H+/VvC1P2NFukzdGW7zAgDYHQwgomTgqdoWtFgciNGqRF2k76+wBkCrV6/u9usKhQLLli3DsmXLurxPVFQUVqxYgRUrVgh8dJGNK4SO9ABo0/EanKxpQbxOjTsu7xfuw+kWl0qnDJA0FPMZIGkEQBq1uHcrrf2FreW8bqw4OrN7q30GSGwXL/tK2ezPRb2TPJbq5EJ+Z0QEwRVCm+2RXQP0n50lAICFk/ogMVq884SAtgyQ2PuJENYpPgMkjStrvmOxCDNAxbVGHKsyQKtS4rejpFH7w1EoFKL92y06xwZAo/NTwnwkwUEBEOkUZYDYmoJ97hcAKex8oFlg0mG0OlDexO4Ak0oGSMy7wA6VNwNgRzRIoaD8QmL822UYBr+UNAIAxohg2HMwUABEOhVDARB+LK6D08VgQEacqGt/OFwtAS2Bid+u4nowDJCXEo1Uieyq4QeiinDO4pEKtpnt0Bxp7ujVKMXXC2jP2UZUNJsRp1OLtvVHoCgAIp3iAqBI3gW29QTb+FAqjb/EeBVJOrf1JPu7dcUgafxuAe0GojrE8ybNOVrJNpQslEDjw86I8W/3U/c4kbkjsz16w8kJBUCkU9Ea9hc+UjNALheD7aekNfiPtsFLA8MwbUMlJRJcA+2XwMTzJg2wf6vHKtkM0DCJZoDUIvvZ6s12rD9cBQBYMEb8y//+ogCIdKotAxSZRdBHKvWoN9rY9K9ECgD5F1EKgETtZE0LqvQWRGmUmNg3NdyH4zWNWpzb4MuaTGixOqBVK0U9ULY7WpENRP3+aDWsDhcGZMRhVF5SuA8naCgAIp2K9Bogbvnr0v5pop8mzaEMkDRwv1uT+qVJqrGcVoTLNEBb/c/grHh+mU5q+Dl+ItkG/517mOzckTmSaingK2n+tpCg43eB2SM0AHIvUUwdLI3lL8AzABLjTCHC2nrC/bslkaVVjkZkyzQA0Nhqw9s7zwIAhuVIs/4HaNfEVAQZoBaLHTtP1wMAZhVmhflogosCINKpSC6CbjBa8at7W+0UCRWptm9UJqbdJKSN3mRHkXu0gJR+t4C2XWBWES2B3f1BEQ6cb0a8To2bJuSH+3D8phHREtiWE7WwOV3omx4rmRYN/qIAiHQqWssVQUdeDdAn+8rAMMDQ7ARkJoh3QveF1O1mH4nhhZR0JLXWCu1pRNYHyGxz4pdStk/Nx3dMkOwWeEBcu8C2uDOUVw7LkvXyF0ABEOlCjCYya4De/vEsXvzuJADgGolMk+aoRdxSn7Ck1lqhPbEtgZ2pM4JhgJRYrWS3v3O4Hl7h/tk6XQy2n3K3aJDg76ivKAAinYrEJTCXi8GKLcUAgHum9MNtlxWE+Yh8036oolMkV+nE088lDQCAywdIq/4HAHQi2wV2qoYdJSLVnV/t8bvAwrx0fbCsGc0mOxKi1LhIxru/OBQAkU5F4iiMs/VG6M12RGtUeHDGQMmlf1VKBbhDpgyQ+OhNdn78xfBc6WUsNCJapgGA07XsMNmBmdIPgMSyBMb1p7p8YLosh59eSP5nSPzSNgw1cgIgbvDfiNxE6W6npa3wosV1K85LiRb9YN3O8J2gxRIAuTNAAzKkMUy2O2oRFEF/uq8Mb//IDn+eKrECfX/Js781CVhbH6DIKYJum3ws3bk3aqUSdqeTiqBF6Ki7W3GhRLdrc7vAwp2l4HAZoAEyyABplOHNAG0/VYdHPj8EALhsQBrmjMwOy3GEGgVApFORuAQmiwBIpQDs4a8lIB0dcWeApDquoW0WWPgDIIvdifONJgByyQC5A6Aw/d3+6C58/s3wbKy4/iIoldJa/veXNPP8JOgirQi62WTDmbpWAMBFvSUcALlfuBwiuUonbbgM0DCJ7ljSimgb/OkadgdYcowGaXHacB9OwNr6AIXn75b73Zw8MD1igh+AAiDShRj3MFSHixHFFV+wHTjfDADomxaLlFjpvqCqRfQmRdqYbA6cqWOXbKSaAeKWwMRQA7Ta3f15VF6S5DYrdCacjRAZhuHr04b1kubvpr8oACKd4pbAgMjIAm06XgMAGNNHutkfgIqgxep4VQsYBsiI1yEjXjrNNdsTyxJY0blGfHmwEgoFsHTmoLAei1D4URhh2L1Z3mSGweKARqWQxXKiLygAIp3SqpX8H6XJLu9CaLPNia8PVgIAfjtKWs0PL9RWSxD+q3TS5lgVu8Qg5W7FYtkGv2bXOQDAgtF5km+AyOEzt47QX7hw2Z9BWfGSGfwslMg6W+KTSCmEXn+4Ci1WB/JSojGhb2q4DycgXDNEygCJC7dle1CWdK+wxbIL7GQ1G0zOHi6fQZ2aME6DP1Lhrk3Llkcw6QsKgEiXIqUQ+r8HygGwV5RSLwBUh3k7LencKRn0rNGKYAnM7nShpJ7drDAgU7o/ywuFc87a4Qo2A1QYYfU/AAVApBsx/EBU+QZAThfDF0DPKpT+FaWKaoBEqVgGXYvbGiGG73frXEMr7E4GsVoVchKlWUvVGW7pOtS7wCx2J34pYQfKXizh9h/+ogCIdClaI/9miCX1rTDZnIjWqNA3XbpvTpxw7iYhnWtstaHeaAMA9JPw7xi/BBbGDNCpGjaQ7J8ZL4vdXxyNMjyzwH4paYTZ7kRmgg5DsykDRAgvEpbAuALAIdnxfPZEysQyU0jsmk02/OP7E/zW9GDi6n9yk6MRq5Nu71kxjMI47Q6ABshgAGp73N9tqH+2W92zv6YOypBVQOktCoBIl7giaDnPA+Ob00l0PMGFpLoNfs/ZBhTXtoTs+f76v6P419YzeO6bY0F/Ln5kg8TftLXq8AfXp92/I1JeSuxMuBohbj3BBkBTImT214UoACJdauv8Kt9swlGJjye4ELcLLFwt9f1xuFyP69/agzveKwrJ8/1S0oivf2XbHuw60xD0DCeXARoo8aJdvlA3TEtg5xpa8c2hKgDSLibvDL8LLIRL1yX1rShtMEGjUuDSAWkhe14xoQCIdEksjc+ChWEYfguofPqJcBkg6fyffbz3PBgGONdoAsME9w3gZHULHvzkIP+51eHCnrMNQX3OE9VsANRf8hmg8C2BVTabMeOVHfznUv9ZXigcFy5c9mdcQQriJLw0GwgKgEiXNOrw7/oIpopmM/RmO9RKhSwmSgPtt8FL4/+sfRNKp4uBwRK8gvsWix1/+PduVDSb0TctFle5+8hwdRDBYLE7caCsGYC0Z8wB4b0g2ny8hn/emybkIzc5OuTHEEyaMOwCa1//E6koACJdEkvn12Dhsj8DM+OhU6t6uLc0qCTWCJFrQsnRm+xBe65TNS1oMtmRGqvFF3dPwvyLcgEENwD6paQRNocL2YlR6JceG7TnCYVwDkPlshWPzR6MZ39bKLuCXXWIyw1arQ78fJbd/h6p9T8ABUCkGzoRbHsNpmMyq/8BwnMlGYhP95V5fN5ksgXtubit6LkpMUiO1WK0u+9JWaMZliAV+u8srgcAXNo/TfJv2uFaArPYndh1hl2mlGu2ItSZ211nGmBzutA7JUbygXkgKAAiXdLIvAj6YDnXAVUe9T+AtKbBl9a34ueSRigVQHq8DgDQbA5eBqixlQ2AUmO1AIC4qLa6h2AVQv942h0AyaDIlHs9cLqYkGYYd59tgNXhQk5ilOx2f3G44DJUozB+cgfmkwemSz4wDwQFQKRL3AueVYYBkNPFYP+5JgDSnwDfnpS2wXPZn8sHpqO/u0FgcxAzQBcGQBqVkl/WMQUhA1TXYsVx9xDUS/rLIQBqe6MM5UXRh3vY4adTBsu3Vw1fBB2iC5d959jlr3EFKSF5PrGiAIh0SRPGCcXBdrzKAKPVgXidGoOz5LMExqfSRb4LjGEYrDtQAQBYMCYPybEaAEBzEGuAGtxLYClxWv42fuCvVfjia+4qe2h2AtLidII/fqi1nxQeqgBox6k6bD5eC7VSgVsvKQjJc4YDF1yGosDcaHXgmLv/mZwu/vxBARDpklbGRdB7S9vm38ihAzSH3wYv8iWw41UtqNJbEK1R4YrBGUiKYYOSYNYANbZaAbRlgAAglguAgrAExhVXTx6ULvhjhwM3rgEI3U6wlzadAgAsnNRHdlvf20uIZi8ADJbgXQBwDp5vhosBeiVFIztRXrvpfEUBEOkSP/tHxgGQ3FLAUmmEyAUHl/RPRZRGhaToEGSA3EtgKbFt2ZjoIAVATheD7afqAABXDJZH4a5SqQhpsa7D6cJR96TyWy7pE/TnC6cUd1De1Bq8CwAO99o3NsKzPwAFQKQbYpj9EwwMw+CXErb+Z2wfeQVAbdPgxf1/dmEL/mR3BiiYNUDcElhquyWwGC1bCC30wN+DZc1oNtmREKXGRXlJgj52OIXyoqi8yQyHi0GURokcmWcqkmLcFwBme9Dr94rctY+jZfba5w8KgEiX5NoJ+lyDCfVGK7QqJUbkymcHGBCelvq+amq1Yf959kV4qjs7kuh+A2gKYgbowiJooG3gr9AZIC7Au3xgOr8zTw641hjBahvQXklDKwCgT2oslDJapu4MdwHAMIAhiDshG4xW/FzCthSY2JcCIPn8ZRLBaWS6BPaLOwU8IjcRURp5NEDkcFfoYh5gu7e0ES6GHQ7aK4m9suczQEF68WcYhg+AUjoJgITeBs8tM1w+UB71P5y2jFnwf79K69sCILnTqJSId7dlaAxiFnTdgQrYnQxG5Caiv8zmqfmDAiDSpbYiaPFmE/yxt8S9Bi6z+h8A/G6jeqM1zEfStSPuHSgj2y0N8UsAQXrxN1od/FJuarsaoBj3DKRWgZfAzjWYAEh/AOqFuIBR6J9XZ0q4AChN/gEQEPw6IIZh+NYTC8bkBeU5pIYCINIluRZB7zvH1f/IrwgwIz4KAFBrEG8AxHXgLmzXgTs5JrhF0Fz9T4xWxRc+A0CMRvglMLPNiWqDBQDQJzVGsMcVAy5gNFlDsATmDoAK0uT1M+wKlwVtDFIAdLyqBadqjNCplZg3KicozyE1FACRLsmxBqiuxYqS+lYoFMDofPllgDIS2OxGbYt4AyBuBtuwdh24E6PZF3+DJThFoA2dLH8BwVkCO9/IZn8SotT89n65iA1hBqi0IXKWwIC2i4BgtYI46B7KO64gBQlRmqA8h9RQAES6JMdRGCeq2TffgtRYJEbL70Ugwz1Soq7FCoYR39JlvdGKaoMFCgUwJLstA8QtgQWrCLSzAmggOEtg59xv3PkyfOMOVQ2QzeFCRZMZAFAQIUtgydwSWJCyoEf42Yfy2vgRCAqASJe0MtwGf7rGCAAYINOZQtxMLbPdCWMQuhsH6qi7/qcgLRZxurZZXBqVEvHuz4NxBcw3QbygIzO3BCZkBoir/8mX2fIXAMTq3BmgIP5uFZ1rwpR/bIWLYTNO3O+03KXEBLcGiPvbK+wln873gaIAiHRJjqMwTte2AJBfcSonRqvmAwsxLoMdqej6KjSxXS8UIW09UYtHvzgMoOMSWDAaIZ5r5DJA8guAQpEBenP7GVTq2RqqEblJsp3/dSEuAxSMGiCH04UT7rl0lAFqQwEQ6ZIci6C5DJCc2+pzy2BiLIQ+XN6xAJoTjGaIdS1W3P1hEf85t+2eE6sTvhFiWwZIfks3oagB4ro/Pz57MFbeeHHQnkds+F1gQciAnqlrhdXhQpxOjfwU+QXm/lL3fBcSqfgBfTIJgBiGwelaNgCSawYIYJfBzta3ok5kW+EZhuGnUF+c33EHHlcH1NQqXAbo7Z1nYbG7MCAjDteOycV1Y3p7fF3oRogMw/BBthzfaLiaKaH7JnEaW2189ueG8b0RH0HFulwRdDAyQFzmdWh2guybSvqCAiDSJbkVQde1WKE326FUyLuwMiOB2wpvCfOReGI7cNugVSkxvFfHNHySwM0QLXYnPth9DgDw+FWDccXgzA73iRZ4G/zpWiOqDRZo1UqMyE0S5DHFhM8ABWkb/FF3oW5BWmxEBT9A+wyo8EXQh7mlZ6r/8RDWJbDly5dj7NixiI+PR0ZGBn7729/i5MmTHve5+eaboVAoPD4mTJjgcR+r1YrFixcjLS0NsbGxmDdvHsrLy0N5KrLELYHJZRs8l/3pkxoruw7Q7aXHte0EExOu/9LwLjpwtw1EFeYK+FyDCa02J+Kj1Jg6qPOBpEIvgXEjMCb2TfXoNyQXbRmz4CyBcS0ShnayRCp33BJYMDpBH3CPnhkpw6A8EGENgLZv3457770Xe/bswaZNm+BwODBz5ky0trZ63G/WrFmoqqriP9avX+/x9SVLlmDdunVYu3Ytdu7cCaPRiDlz5sDpFO84ACloywDJowj6VA1bAC3n+h9AvL2A9rnHQ4zpZPkLEL4ZYlsjvdguC2mFLoLe4g6A5DIB/kJcEXRrkJbADlc0AwAKI7BQlyuC1pvtcAiYdTfZHPwOsDEybP4aiLAugX333Xcen7/zzjvIyMhAUVERLr/8cv52nU6HrKysTh9Dr9dj9erVeP/99zF9+nQAwAcffIC8vDxs3rwZV155ZfBOQOb4DJBMlsC4N8R+cg+A4sWdARrTxRTqxBhhi0C9aaQnZCNEg8XOn2NXGSep47bBm4KwDf5snRGbjtUAkGeX9p5wGVCGYYOgC1s2+OtgWTMcLgZZCVEdNgFEOlHtAtPr2XXKlBTPF8ht27YhIyMDAwcOxO23347a2lr+a0VFRbDb7Zg5cyZ/W05ODgoLC7Fr167QHLhMafhZYC5RNtXzVZm7Q29vGRantsePw2gRTw2Qxe5EsXsJ8qLeSZ3eh8sA6QWqASr1YpZUrFa4RoiHyvRwuhjkp8agtwy3wAPBzQA99+1x2J0MpgxK7zJIljO1SslvBKg3CrcMVlTKXXgkR0xLAW+JJgBiGAYPPfQQLr30UhQWFvK3z549Gx9++CG2bNmCl156CXv37sUVV1wBq5W9uq2uroZWq0VysucVQ2ZmJqqrqzt9LqvVCoPB4PFBOuIaITIMgjKeINTK3J1l85Ll+ebESYtnMylCvogGqsq9sydGq+rQjZmTJPAoAG9mSXFLYBa7C64Af8e5ERj90uWbYeQzQALXAJU1mrDlRC1USgX+OmeooI8tJVnuDQyVerNgj8lnXrtYeo5kXi2BzZ8/3+cHfvPNN5GR4X0a+L777sOhQ4ewc+dOj9uvu+46/t+FhYUYM2YM8vPz8e2333Z7XAzDdBntLl++HE8//bTXxxapuBoggK0DUku4ppNhGJQ3sW9QeSnyTgNzjRCD2a3XV5XN7At6TlJ0l3+XSQLvgvFlCQxgu2fH6vyvCijjfr+S5fv7xWeABN4Fxi9Pp8fKOoDsSa+kaJyobkFVszDZW6eLwf7z3S89RzKvMkBffvkltFotEhMTvfr49ttvYTQavT6IxYsX46uvvsLWrVuRm5vb7X2zs7ORn5+P06dPAwCysrJgs9nQ1NTkcb/a2lpkZnbc9goAjz/+OPR6Pf9RVlbm9bFGkvYBkNR3gtUZrbDYXVAqgOxE+b5BAW1vUlaHSzSZuwp3AJSdGNXlfYTcBmyyOVDjbgTZXQAUpVaBi8cCXQbjlljzZLzEyi0ZmoXOAPHBo3x/dt7IcdfocBcMgTpV04IWiwMxWhUGZ8m395m/vL7cef31173O6Hz++ede3Y9hGCxevBjr1q3Dtm3bUFBQ0OP3NDQ0oKysDNnZ2QCA0aNHQ6PRYNOmTViwYAEAoKqqCkeOHMGLL77Y6WPodDrodJExXyYQXA0QIP1C6LJG9gUlKyGKL+6Wq2iNZ1YjLoCshlC4K9ruijC5GiCj1QGrwwldACnH0nr2DTUxWsPvrumMUqlAtEYFk80ZcCE0t8SaK+M38RhuCczuhMvFCNZUj/v7lHPw6I3sJPcSmEABELf8dXHvZKhV8n7d84dXP5GtW7d2KEzuzoYNG9CrV68e73fvvffigw8+wEcffYT4+HhUV1ejuroaZjP7n280GvHwww9j9+7dKC0txbZt2zB37lykpaXhmmuuAQAkJiZi0aJFWLp0KX744QccOHAAf/zjHzF8+HB+Vxjxj0Kh4OuApN4MkVv+yo2AF9gojZLPagSrX4uv2i+BdSUhSgOV+w010CwQN5G9uwJojlDdoMsb5b/EymWAGAawOIRbBuMyQLkyXj70BneBIFQNUJG79cRoqv/plFeXhpMnT/bpQS+99FKv7rdq1SoAwJQpUzxuf+edd3DzzTdDpVLh8OHDeO+999Dc3Izs7GxMnToVn3zyCeLj29J5r7zyCtRqNRYsWACz2Yxp06ZhzZo1UKkkXLQiEhqVAjan9AMgfnlCxlfnHIVCuKyGULgX9O6WwJRKBZJjNKg32tBgtCEzoev79uS4e/Bjv3RvAiA1AFtAwWKr1YEG9wgDOWcxuOCaYdg6IG65NVDlEbB86I22JTBhaoDaWk9QANQZv357XS4XiouLUVtbC5fL842xff+envS0tTo6Ohrff/99j48TFRWFFStWYMWKFV4/N/GORq0EbE4ZBEBcij0yrjBjtO4AyC6SAMidAeqpD0lKrBb1RlvAO8H2urf+enPlK0QGqNy9/JUYrUGCjEc4KBQKxGhUaLU53QGjMKUEbcuHkfH32RXuAqFKbw54ibFab0F5kxlKBXBRbwqAOuNzALRnzx7ccMMNOHfuXIcARqFQUPdlmeEKoa0SL4KOtCJLoTscB4JhGP6KtrslMKCtELohgIGQdqcLB8uaAQBjvdj5IsTPqiwClr84MTo1Wm1OwXaCtVod/ADQSM8AZSZEQalgd93WG638XD9/cOMvBmcliKIOUIx8roq66667MGbMGBw5cgSNjY1oamriPxobG4NxjCSMtDIYh8EwDM7WsTUhkfICG6MJ7tRuXzSb7HwmKqubJTAASI1zd4MOIAA6VmmA2e5EQpQa/b3YUs3VtQSyBBZJAXaswPPAuJ+d3LNn3tColPzSb6U+sGWwUzXsTuxhEThXzVs+h4WnT5/G559/jv79+wfjeIjIcDumpLwE9nNJI6oNFsRqVSiMkGnIUSLKAHFb4NPitD0OoRUiA9R+5IY3SwjCZIAiZxeT0N2gI215uifZiVGo0ltQ2WzGqLwkvx/nVC07+3BAZuT2VeqJzxmg8ePHo7i4OBjHQkSIH4ch4SWwT/exfZ7mjswRrGhT7GI0wZ3a7QuuC3RPy18A+C7RgWSAis75tvNFiHlg1Yaei7zlQuh5YJG0QcEbQvUCKnZngAZkUv+frnj1bnDo0CH+34sXL8bSpUtRXV2N4cOHQ6PxTFmOGDFC2CMkYcXVAEm1D1CLxY71h6sAAAvG5oX5aEInhh/xEP4M0Jk69oXYm+wI17OnMYAA6NcydqbgxV4WfgrR3ZgbPMvNYZOzGH7JUJjfLW7HXl8vduxFAi6Irg5gCczudOFsvTsAkvnw50B4FQCNGjUKCoXCo+j51ltv5f/NfY2KoOVHI/EaoKJzTbDYXeidEoOLAkgnS42YiqCPVLABiTe1CCkBBkBNrTZ+yW2Yl8ud/C4wu/8ZjVouAEqQf4NVoeeBFZ3zfsdeJEhzT4EPZBn4XIMJdieDGK0KOTLvfB8IrwKgkpKSYB8HESmuCFqqozC43UcDMuIiahKyUM39hHCskr3CH5aT2ON9Aw2AjrqfKz81xuuC2tgAl8AYhkGte+xGepz8AyAha4AajFacdc8B8zZjJ3ep7t+heqPVr++vMViw9pfzANjXPaG6dcuRVwFQfn4+nnjiCfz2t7/FuHHjgn1MRESkXgTNraNzLeYjBTcOI9y7wIxWB/8G51MGyM8+QEcrvc82caIDXNJpbddvKSIyQO6AUYhhu1zB+oCMOH4YbqRLc++E5JZVfXXn+0V8G4j+GVT/0x2vi6CrqqowZ84cZGdn44477sC3334Lq9W//yAiHVwRtFRrgLgOxN4U4MpJoG/qQuHqO7ISovjUfndS2hVB99QotTNHfMg2cWIC3NZda2CzjHE6dUQU2ce6e8q0WAIPgIqoU3EHaXwGyPeLALPNyQc/ANCf6n+65XUA9M4776CmpgaffvopkpKSsHTpUqSlpWH+/PlYs2YN6uvrg3mcJEw0Ep8F5m0HYrnhdzYFUNciBK7+x9v2A9w2eIeLgcGPN1h/MkCBLhdy9T/p8fLP/gBAvHtpUYgAaB8/q8r7WZNyx/0eNbZa4XT5dhFwotrA/7uwVwLmjMgW9Njkxqdt8AqFApdddhlefPFFnDhxAr/88gsmTJiAt956C7169cLll1+Of/7zn6ioqAjW8ZIQ03BLYBKtAeK2YGdHWCGgEFu7hcDV5Az1MiMTpVHxSyy+1gG1Wh0o4ZfbfMkABZYtq4u4AIjLAAU2sNblYnC8iu1VMyrP+/8vueOyoC4GPo+E4TKgkwem45vFl0VEX6pA+NwHqL0hQ4bgkUcewU8//YSysjIsXLgQP/74Iz7++GOhjo+EmVbC2+BdLgZV/AiGCKsBEkkRNJ8B8iEjkxLnXyH0mTojGIZdQvAlGAl4CYzfAh9ZAZAxwBqgimYzzHYnNCoF+qTSFniORqVEcgybZWvwcRnsmB8Z0Egm2IJ1RkYGFi1ahEWLFgn1kEQEpDwKo77VCpvTBYUCAU0Wl6K2JbDwBUAWuxPFte52/L28v8JPidGirNHsczNErqNwbx87Cge6BBZpGaAEgZbATrs7FfdNi4NaFdC1uOykxunQZLKj3mjFIHhfyHzUjxq4SOZzAGSxWLBixQps3bq102nw+/fvF+zgSPhp1O4iaAkugXHZn8z4KL6WKVJEa8KfATpV0wKHi0FyjAY5PnRI9ncrPD+Py8e0P7cE5u9yYW0L+3sWCU0QAeGWwE7znYqpUPdCaXFaFNf6thXe7nThhHtJMVJG/gTK5wDo1ltvxaZNm/D73/8e48aNi6jeKpFIykXQXAF0pC1/AeLYBdb+atSX14lkP7fC+ztSITrAbd2RlgGKixJmFxg3rHMAbdXugNsJ5stW+NM1RticLsTr1DRWxEs+B0Dffvst1q9fj0suuSQYx0NERivlAIgrgI6wHWBA+yLo8O0C43dk+Xg1mup3Bsi/oZpcZ2N/lwvrIq4GSJglsGL3EthAygB14M9W+P3n2ZYCI/ISqfmhl3xeF+jVqxfi4ylijxRSHoURqVvggXaNEMNYA3Skwr96BH/ngZX7mQGK0bDXgXYn4/NSL8MwqHb3AYqEJohA2xKYzenye9acy8XgdC0tgXWFyyb6sgS2nx8pQi0FvOVzAPTSSy/h0Ucfxblz54JxPERkuE7QVinWALmbIGZFWAE0EP5RGA6ni+9J4ssOMMC/DJDLxaCczwD5twQG+F4H9OXBCjSb7IjRqiJm2SFOqwa3oulvFqhSb4bJxu4Ay6cdYB1w3aAbfAiA9tFMNZ/5vAQ2ZswYWCwW9O3bFzExMR2mwTc2Ngp2cCT8pFwDxE1TzvKhAFcuAi3sDVRlswUWuws6tdLnLc5cM0RfAqDaFnbHn0qp4Kdpe0urVkKjUsDuZGCyO5AI72aItVod+PuGEwCA+67oz3dIljulUoE4rRotVgeMVodftU8HzjcDAPqlx0XcBgVvpMb6tgRW22LB+UYTFArgot5JQTwyefH5L/b6669HRUUFXnjhBWRmZlIRtMxxozCkGADVuAdURtoWeKBtCczhYpd1uExeqPA7oxJ0PtcjpPrRB4jbAZadGOXXlupojQp2p8OnjNnm4zWoMViRmxyNWy8p8Pk5pSw+ig2A/N0JtvVELQC2YR/piAsqub+jnnDLX4My470eAkz8CIB27dqF3bt3Y+TIkcE4HiIyUh2G6nIxqDFEbgbowmWd0AdAXGGw7z97LgPkSx8gf3eAcWK0ahgsDpis3gdAp2rYIt7LB6YjSqPq4d7yEhelBvT+LYG5XAy2naoDAEwZlCH0ockCN7uwtsXq1QVMES1/+cXnV8XBgwfDbDYH41iICHHpaZtDWkXQDa02OFwMFIrI2Z3TnlathNqdeTGFYR4YNyDUn589l/5vsTpgdXgXkHBbqn3dAcaJ0fneDZrvYxOBAyfbdoL5ngE6VKFHY6sN8To1DUHtQlqcFjq1EgzTVsvYHar/8Y/PAdDf//53LF26FNu2bUNDQwMMBoPHB5EXjURHYXDZn9RYXcTWGESHcR5YndH/reHxUWqo3MFbs6nnN9hWqwOf7D0PALh0gH9LKnzRuA+7morr2AAoEiduczvB/BlYyy1/XTYwLWL/NnuiUCj43asVTd0HQBa7kx85M4Z2gPnE5yWwWbNmAQCmTZvmcTvDMFAoFHA6wzt7iAhLK9FhqG0F0JGX/eHEaFVosfhW1yKUWoP/zQGVSgWSY7SoN1rRYLT1WMP10c/n0WSyoyAtFr8Z7t/0a24rvLdLYDaHC+ca2GW3yAyA/O8FdKCsGQAwqV+akIckO72So3G2vhXlzd0HQIcr9LA7GaTF6fzOgEYqnwOgrVu3BuM4iEhpJVoEzfVmyUqI3BeEcPYCCqQGCABSYjWoN1q9moa97RSbUbh5Uh8+c+QrX5fAShta4XQxiNOpI7LNgr/jMBiGwVF3tmK4D/PhIpG3GaB9pezy15j8ZNqU5COvAyCDwYCEhARMnjy5y/ts2bJFkIMi4iHVbfBtBdCRmwEK5zgMLgBK97M5IDcPrMGLQmiu/mdkXpJfzwX4PjyWG/LaLyMuIt90+InwPmaAqg0WNLTaoFIqMCiLGup2hw+AesgAUQG0/7xegJ0zZw4slq635G3duhXz5s0T5KCIeLTVAEmrCJpfAovAq3NOOMdhBDoegguAetoJ1myy8c8VyFJUtHsJrNXLJbCz7vqffumR2cQvXuffPLCj7u7gAzLiIm7nnK96JfecAWIYhh+BcTEFQD7zOgBqbGzEtdde22mNz/bt2zF37lzcdtttgh4cCT+pZoC4JbBI7AHECVc3aIfThYbWQJfAvMsAcZmYnMQoxAXQiDDWxyUwbs5cbgSOWQHa1QBZfVsCO8LNh/NxPEokynW3dOguA3SmzojGVhu0aiVNgPeD1wHQxo0bcezYMSxcuNDj9h07dmDOnDm45ZZb8Oqrrwp9fCTMuCJoX2ckhVsk9wDihKsGqKHVBoYBlIq2QMZXKV72AuInimcGtpzCHafXnXe5ADtCf7/i/ZwI/6u7AHqYj+NRIhGXAarSm+Ho4gJ020m2n9K4PinQqSmj5iuvA6CcnBxs3LgRW7Zswf333w8A2LlzJ37zm9/gpptuwooVK4J2kCR8pDoNnpbA2i+BhTYA4naApcXp/C5KbssAdT8L6bR7onigvXi43Wp1XnbebSuyj8zfLy4D5Ms2+AajFTuL6wEAk/qnBuW45CQ7IQrxUWrYnQyOV7V0eh8uAJoyiDpq+8OnnHG/fv3w3XffYcqUKTAYDFi3bh1uuOEGrFy5MljHR8JMo5beLrBmk41/Yc6J0CUKoK0PUKiXwOqMgU9H75vOBjS7zzTA6nB2eXVbLNBEcW6pjqsn6km1PnLHrAD+7QJbd6ACdieDEbmJGJxFGaCeKJUKjO2Tgi0navFzSQOG53ouG7ZaHfi5pAEAMHUwddT2h9cZIK7RYZ8+ffDhhx9i7dq1mD17Nl588UVqhChjbZ2gpRMAta8LiZQBlZ3hCntDHQBxGSB/638AYFK/VGQm6NBksmPzsdou78eNowh0CSyDn73UcwBkb1fjFKlLrNy8KYPZuwwQwzD4ZG8ZAGDBmLygHZfcjO3DNjb8paTjkPGfiuthdzLonRKDvmmRWYwfKK8DoKSkJCQnJyM5ORlz5syBzWbDp59+ipSUFCQnJ/NfJ/LC7dSw2F1gGGnsBDvtDoD6B/imKHXRWvbP2xLiGiCuQDiQESRqlRK/H50LAPhkX1mn99Gb7fzA20CbEXLZqroWK1yu7n/Pa1usYBh2UDBXqxRpkmLYAEhvtnn1unCmzojTtUZo1UrMG5UT7MOTjXEFbAC0t7Sxw89560n2wuCKwRkR2YpBCF5fHlMDxMiU6q7FsDldMJgdSIwR/6RhLgPUPz3yOvS2F80Hr6ENgM7wW8QD+/kvGJOHf209gx9P16Gi2cz3ReFw/89ZCVEBT8Dm5o85XAyaTDakxnUdvFXzAV6Uz5Pu5YIbWGt3Mmi1OXvcgbfX3azvorwkmlbug+G9EhGlUaLJZEdxrZHPdDIMg60nqP4nUF4HQN01QCTyFaVRISGKnZRdZ7RIKwCKwBEF7UWFaRdYcY0wP//81FhM6JuCPWcb8fm+cjwwfYDH10/zy1+B/z9r1UqkxGrR2GpDndHabQDE7TDMjtDlLwCI0iihVSthc7jQbLL1GABx3Yq5JR3iHa1aiYvykrH7bAN+LmnkA6AT1S2oNlgQpVFiQl8qKPeXV0tgvtb2tLR0XrFOpInbIcPVdoidUIWxUheOYagOpwsl9a0AhAlArxvL1ot8VlTWYWmKW+ockCHMUmeGl7/nXAYoUrfAA+ywzmT3xZA3A2v3nWNrWEbT9HeftV8G43DLX5f0S6OGkgHwKgBKTk5GbW3XhYgX6tWrF86ePev3QRFx4YpZvSkQDbdWq4NvHEZLYKHPAJ1vNMHmdCFao+qwZOWP2YXZiI9So7zJjI3Hajy+xgVAAwUKdNO9LISuifAt8JykaHYZrKcAqK7FinMNJigUwMW9KQDy1Xh3APTz2bY6oG3c8hft/gqIV0tgDMPg7bffRlycdy80drtv3UGJuHEForVe9kgJJ24uTlZCFJL9bMInF+GoAeKyb33TYwWpj4nSqLBgTB5W7yzBg58cRK+kifx2YCGXwID2AVD3v+eR3gOIwxVC9zSwtsid/RmUGY/EaPEvoYvNRb2ToVYqUG2woLzJjJykaBwsbwYAXNKPlr8C4VUA1Lt3b7z11lteP2hWVhY0GvpFl4uM+LYdMmK35QSbqaTCQCDKxwGfQiiu45alhMu+PTJrEE5UG/BTcQPe3V2Kf147Ei0WO6rcS1H9BVsC864XEC2BsbgAqNnc/QUv18RvZG5SsA9JlqK1KhT2SsTBsmbsP98EF8PA5nBBp1YiP5W2vwfCqwCotLQ0yIdBxMzbpQEx2HaSC4AoNcwvgYWwBuhsHVv/E+gOsPZ0ahWuG9sbPxU38PVFXKYpM0EnWFbB215AZY0mAJFdBA207QRr7mFcCZchCqQxZqQb7g6AjlYaEKtl37b7psf53WmdsCK3SxzxGl8DJPIi6LN1RpQ2mKBRKXDpgLRwH07Yte/hFCpc8CB0g0Cu0VupOwDadYbtgCtUATTQbhxGN7/nVXozKvUWqJQKDM2O7G7GifwSWPcZoEZ3gJQcoT2ThMANOj1SoefHxAiZZY1UFACRHmV4WRsRbjtOuQcDFqQENBlcLsJRA8QNCc0QuD6mjzsAami14WydEau2nQEAQZvqefN7zm3nHpIdH9FdxoF2GSCzdxkgfwfjEmBYDlv3drTSgOxEdnNBpLf5EILXnaBJ5EqXSA3Q+UZ291dhr8Qe7hkZwrELjPsdCaQLdGfidGqkuXvzLPnkIIxWB0bkJuL3F+cK9hzcG0uV3tJld+N97q3IY/Kpn01StHfb4Btb2a9H+qaEQAzIjINGpYDebMf2U+wyP2WAAkcBEOkRtwRmsDhC3lXYF/VG9s03vZsmdpEkyj0Kw2x3hmSMid3pQqP7aj9d4AAIAArSYgAAh8r1AIBHZw0WtBNzZqIOCgVgdbi6XNbZ595lOIb62SCJywD1sAuM+3qyBJqoipVOreKXe+uN7M+TMkCBowCI9CghWg2tmv1VEXMWiAuA0igAAtCWAWIY9k092BqMNjAMoFYGZ0ZWn3Y7XhKjNXx/FKHo1Cr+d6fS3UuqPaPVgeNVbFNYygDBq0aIDMNQDZBAhuW01ZylxWlpB5gAvFrEPnTokNcPOGLECL8PhoiTQqFARrwO5U1m1LZYkJcSE+5D6hQFQJ7ad4i12J1B7xjL1c6kxemCMiOrT7uJ15cPTIdaJfz1W05SNOparKhoNndYSj1eZYCLAXISoyJ2Cnx7fAaom23wZruTD76pBigwo/OT8VlROaI0SqxeOJa/KCX+8yoAGjVqFBQKBRiG6XHqrNMp3iUS4r+0ODYAqmvpPt0dTlxqOC2eXmgBQKNSQqNSwO5kYLY7kRTk5+Oyg8FY/gLadoIBwNQg9XnqlRSFX8s6zwBVNLG30ZU3qy0DZIPLxXQa9HLZH61aiRgtjWwIxPyLcxGtVWFC31RkRngTTqF4FUKWlJTg7NmzKCkpwRdffIGCggKsXLkSBw4cwIEDB7By5Ur069cPX3zxRbCPl4RJrI598bI6xBngOpwufrcJN9mbtBuIGoJeQLVBKoDmtM88Xj4wOAFQ+0LoC1Xq2QAoO4nefIC2bfAuBmixOjq9T5O7ADolRtvjxTPpnlatxNWjelHwIyCvAqD8/Hz+44UXXsDrr7+OO++8EyNGjMCIESNw55134tVXX8Wzzz7r05MvX74cY8eORXx8PDIyMvDb3/4WJ0+e9LgPwzBYtmwZcnJyEB0djSlTpuDo0aMe97FarVi8eDHS0tIQGxuLefPmoby83KdjId3TqUO/pdoXja1s/YlSQan29kK5E4zrExWshnfDchJw86Q+eGz24KAtc+a455dVdJIB4rJCQsw4kwOdWsVndboqhOYuSpKoAJqIkM+LiIcPH0ZBQUGH2wsKCnDs2DGfHmv79u249957sWfPHmzatAkOhwMzZ85Ea2srf58XX3wRL7/8Mt544w3s3bsXWVlZmDFjhsfE+SVLlmDdunVYu3Ytdu7cCaPRiDlz5tBynIB07vXmUBTT+qPOXf+TEqul7qjtRIWwF1Cdkc2aBGsXnkKhwLJ5w3DX5H5BeXyAXQIDOl8Cq2xmzy+HAiAetxW+q11z1AOIiJnPAdCQIUPw3HPPwWJpSxFbrVY899xzGDJkiE+P9d133+Hmm2/GsGHDMHLkSLzzzjs4f/48ioqKALDZn1dffRVPPvkk5s+fj8LCQrz77rswmUz46KOPAAB6vR6rV6/GSy+9hOnTp+Oiiy7CBx98gMOHD2Pz5s2+nh7pAvdGag1hV2Ff8PU/VADtITqE3aC5DFC6hFP0XHDTeQBk9rgPaWt42dnPC2jXBZoCICJCPgdAb775JjZv3oy8vDxMnz4d06dPR25uLjZt2oQ333wzoIPR69n+Hikp7BbTkpISVFdXY+bMmfx9dDodJk+ejF27dgEAioqKYLfbPe6Tk5ODwsJC/j4XslqtMBgMHh+ke20ZIHFm1RpoB1in+IGoMqgBCgWuBqi2xQq70zNo5AMg2gHG45rxna4xdvr1JncAFIy2CIQEyude7uPGjUNJSQk++OADnDhxAgzD4LrrrsMNN9yA2Fj/d0cwDIOHHnoIl156KQoLCwEA1dXVAIDMzEyP+2ZmZuLcuXP8fbRaLZKTkzvch/v+Cy1fvhxPP/2038caicS+BNa2BZ5eaNuL1rQ1Qwy2YO8CC4XUWC20aiVsDheq9W0tH1osdhgsbKFvNmWAeAMy2QDoVG1Lp19vpCaIRMT8GmYTExODO+64Q9ADue+++3Do0CHs3Lmzw9cu3D3gzXb87u7z+OOP46GHHuI/NxgMyMvL8+OoI4eOWwITbQBES2CdCVURtMvFBG0MRigplQrkJEahtMGEimYzHwBxu8ISozU0Z64drjtxcVcZIBONwSDi5Vcnpffffx+XXnopcnJy+EzMK6+8gv/9739+HcTixYvx1VdfYevWrcjNbZvtk5WVBQAdMjm1tbV8VigrKws2mw1NTU1d3udCOp0OCQkJHh+ke3wGSKS7wOrdb75pEn7zDYZobWiKoKsMFticLmhUCmRJuAYIaNtuf66hbTMGt/yVTctfHrgM0Nl6Y4clQ6DdEhgFQESEfA6AVq1ahYceegizZ89GU1MTv9MqOTkZr776qk+PxTAM7rvvPvz3v//Fli1bOuwuKygoQFZWFjZt2sTfZrPZsH37dkyaNAkAMHr0aGg0Go/7VFVV4ciRI/x9SODEvgTG7QJLpRdaD6HqA1RazwYLeSkxQenQHEpcw8WSehN/G7cDjLbAe8pJjEaMVgW7k8G5BlOHr9MYDCJmPr9SrVixAm+99RaefPJJqNVtqeAxY8bg8OHDPj3Wvffeiw8++AAfffQR4uPjUV1djerqapjN7NWWQqHAkiVL8MILL2DdunU4cuQIbr75ZsTExOCGG24AACQmJmLRokVYunQpfvjhBxw4cAB//OMfMXz4cEyfPt3X0yNd4PoAiTUAausCTRmg9kK1BFbiDoAKZNAlmRu5wQV1AO0A64pSqWhXCO1ZB8QwDMrd3bNpdAgRI58Xs0tKSnDRRRd1uF2n03n07/HGqlWrAABTpkzxuP2dd97BzTffDAB45JFHYDabcc8996CpqQnjx4/Hxo0bER8fz9//lVdegVqtxoIFC2A2mzFt2jSsWbMGKhW1XheKTiPuXWBcqp0yQJ5CFQBxwUL7eV1SxQdA7ZbAztazNS55KRQAXah/Rjx+LdfjdK0Rs9vdXqW3wGh1QK1UeAyyJUQsfA6ACgoKcPDgQeTn53vcvmHDBgwdOtSnx2IYpsf7KBQKLFu2DMuWLevyPlFRUVixYgVWrFjh0/MT77XVAIkzA9RsdnecjaYAqD2+BijYS2AN8gmAuCxWaUMrP+PqaCXbKmNYTmJ33xqRBrrrgE5Ue7YTOV3LBo190mJpcCcRJZ8DoD//+c+49957YbFYwDAMfvnlF3z88cdYvnw53n777WAcIxEBMS+BWR1OvtFfIm239RAVokaIZ2W0BJabHA21UgGL3YVqgwVxUWq+vmVYDm2YuBAXFHJBIodbEuOWyAgRG58DoFtuuQUOhwOPPPIITCYTbrjhBvTq1QuvvfYa/vCHPwTjGIkIiLkRot7MbrVVKIB42qLsISoES2AOpwtljWyA0Cctpod7i59apUReSgxK6ltRWt/KTznvlRSNJCrm7YALCs81mGCw2JEQxV6EFLszQBQAEbHy693i9ttvx+233476+nq4XC5kZGQIfVxEZNpqgMSXAdK7e40kRGn4NyvCCkUNUGWzBXYnA61aiZxEedTI9EllA6CShlZ+Bx1lfzqXHKtFr6RoVDSbcazSgAl9UwG0LYENyIzv7tsJCRu/FmYdDgc2b96ML774AtHR7tk5lZUwGjtvhkWkj18CE2ENEJcBoonTHUVr2T/xYPYBKnHX/+SnxMgmAC1IY7MWJXWtOOZe2insRfU/XRnqDg65ZTCGYXCKWwLLpAwQESefM0Dnzp3DrFmzcP78eVitVsyYMQPx8fF48cUXYbFYAp4HRsRJCktgidEUAF0oOgR9gLjlr/xU6S9/cYZks1mLXWca4HCxQT9lgLpWmJOITcdqcLSCnedY22JFi8UBpQIokEFhPJEnnzNADzzwAMaMGYOmpiY++wMA11xzDX744QdBD46IR6iKaf3RbKIAqCuhqAGSY4+caUMyoVIqcKzKgFM1RqiUCozITQr3YYnWsAsyQGfcy1/5qbF89pgQsfE5A7Rz50789NNP0Go9iwHz8/NRUVEh2IERcZFCBiiBAqAOQlEDxM3JklMAlBKrxfiCFOw60wAAuHF8b0kPeQ02bnmwuM4Ii93ZtiuQsj9ExHzOALlcLn78RXvl5eUezQmJvIh5GzxfA0QBUAdcH6BgLoFVyDADBACzC9lZhInRGjw4fWCYj0bcMhN0SI3VwulicKK6pa0xpgzaIhD58jkAmjFjhsfML4VCAaPRiKeeegpXXXWVkMdGRETUu8CoBqhLse62AEaLI2jPwS+ByWzcwbVj8nD7ZQVY9ceLaZp5DxQKBYa5s0BHKvR8Y8wCGbRFIPLl8xLYK6+8gqlTp2Lo0KGwWCy44YYbcPr0aaSlpeHjjz8OxjESEeCWwJwuBg6nS1QDLykA6lp8lDsAsjn4rsZCcroY1BjktwQGsPVTT/7Gt+72kWxYTgJ2nKrD0UoDPxtODp3BiXz5HADl5OTg4MGD+Pjjj7F//364XC4sWrQIN954o0dRNJGX9oWMVoc4AyDaBt8R15SOYYBWmwPxUcL+jOqNVtidDFRKBTKoRiaiFbo7Qh8qb0ZZI5sVpCUwImZ+NUKMjo7GrbfeiltvvVXo4yEi1X6Wj9XhQqyI3usoA9Q1nVoJjUoBu5NBi0X4AIir/8lKiBJVUExC78KdYFq1UnZZQSIvfgVAJ0+exIoVK3D8+HEoFAoMHjwY9913HwYPHiz08RGRUCkV/Bup2HaCNZvYQai0C6wjhUKB+CgNGlttaAlCHRBX/5Mts/of4rveKTGI16nRYmV/z/JTYqCSSWNMIk8+X7J9/vnnKCwsRFFREUaOHIkRI0Zg//79GD58OD777LNgHCMRCbF2g9ab2RdcmgTfuTh3IXSLxS74Y1c1y7P+h/hOqVRgeG5bt2z6nSBi53MG6JFHHsHjjz+OZ555xuP2p556Co8++iiuvfZawQ6OiItOrYTRKq6dYAzDwMAtgVENUKe4QuhgZIDkugWe+GfpzEHYtWoXAGBQFrVFIeLmcwaouroaf/rTnzrc/sc//hHV1dWCHBQRJzE2QzTbnbA52YCMaoA6xwVAhiBkgNq6QNMSGAFG5yfj87smYt7IHNw4vne4D4eQbvmcAZoyZQp+/PFH9O/f3+P2nTt34rLLLhPswIj46DTia4bIFUCrlArEaqnlfme4wmejVfgMULV7C3y2TKbAk8CN6ZOCMX1Swn0YhPTI5wBo3rx5ePTRR1FUVIQJEyYAAPbs2YPPPvsMTz/9NL766iuP+xL54DNAIqoBat8FWqGggsvOBHMJrNo9BiMrgTJAhBBp8TkAuueeewAAK1euxMqVKzv9GsDuPulsZAaRLjEugdEg1J5xvYCELoJ2OF2oN1oBAJmJIuqLQAghXvA5AHK5xHP1T0JLzEtgtAW+a8HKANUZrXAx7PJjmpgaQxFCiBeocxnxGpcBsgRxsrivqAt0z9q2wQsbAHHLXxnxOsFHbBBCSLB5HQD9/PPP2LBhg8dt7733HgoKCpCRkYE77rgDVqtV8AMk4iHGifB6WgLrUXyQlsC4GWCZVP9DCJEgrwOgZcuW4dChQ/znhw8fxqJFizB9+nQ89thj+Prrr7F8+fKgHCQRB34ivIgyQFwNSiotwXSpbRt8cDJAVABNCJEirwOggwcPYtq0afzna9euxfjx4/HWW2/hoYcewuuvv45PP/00KAdJxKGtCFo8GaDaFjYAykigAKgr/ER4oQMgA/uzz6IxGIQQCfI6AGpqakJmZib/+fbt2zFr1iz+87Fjx6KsrEzYoyOiIsYlsDouAKJJ5F3il8CstARGCCEcrwOgzMxMlJSUAABsNhv279+PiRMn8l9vaWmBRkN1GHImxm3wtS3sm3A6BUBdSgjSLjB+CYy2wBNCJMjrAGjWrFl47LHH8OOPP+Lxxx9HTEyMR+fnQ4cOoV+/fkE5SCIObTVA4skA8Utg8ZSF6EpcuwCIYRjBHpcyQIQQKfO6D9Bzzz2H+fPnY/LkyYiLi8O7774LrbZt+vZ//vMfzJw5MygHScRBbEtgVoeTb4RIS2Bd45bAnC4GZrsTMVqf2391wDAMPwaDiqAJIVLk9Stheno6fvzxR+j1esTFxUGl8py79NlnnyEuLk7wAyTiIbYlsHqjDQCgUSmoD1A3YrUqKBWAi2GzQEIEQC1WB0w29veAiqAJIVLkcyPExMTEDsEPAKSkpHhkhIj8iG0XWK07A5Eep6M5YN1QKBSCN0NsamWDz2iNSpCAihBCQo06QROv8aMwRFIDxNX/pNMSTI+EbobILT1S5o0QIlUUABGviW0JrJa2wHtN6Hlg3AgS6sBNCJEqCoCI18S2BEY9gLwX614CM9mECYCaaQYbIUTiKAAiXhPbLrA66gHkNS4AMlqFyd7pTWwNEGWACCFSRQEQ8VqURmRLYAbqAeStOB0bvLZahV0CS4qmjQ+EEGmiAIh4jc8AiawImpbAehar5TJAAi2BURE0IUTiKAAiXuM6QVtEkgGqo0GoXuOWwITKAHE1QIkUABFCJIoCIOI1vghaBBkgl4tBvdG9DZ4yQD2KEzoAMtESGCFE2igAIl6LcvcBMtvDnwFqNNngcDFQKIC0OAqAehLjrgESqgjaQNvgCSESRwEQ8RrXS8ZodcDlEm6opj+4AuiUGC00Kvo17ongGSAzuwuMaoAIIVJF7xzEawnubsIMA7QK1E/GX3W0/OUTrghaqP83bgmMMkCEEKmiAIh4TadWQqNiZ24ZBOoo7C9uDlgGjcHwSlsfIGqESAghAAVAxAcKhYLPAgk1U8pf/Bwwqv/xCrcEZhKgBshid8LmboZJGSBCiFRRAER8IvRMKX/RFnjfxPJF0IH/v3HLXypl25R5QgiRGgqAiE+EniruL5oD5hu+CFqAGiC+ADpaA4VCEfDjEUJIOFAARHwilgxQrXsOGI3B8I6QjRCr9ezPPiWWegARQqSLAiDiE64GiOsDEy58DRBlgLzCBUB2JxPwLLejlQYAwODshICPixBCwoUCIOITLgMUzl1gDMO0G4RKAZA3YrUq/t+tARZCH63UAwAKcygAIoRIV1gDoB07dmDu3LnIycmBQqHAl19+6fH1m2++GQqFwuNjwoQJHvexWq1YvHgx0tLSEBsbi3nz5qG8vDyEZxFZ2mqAwhcAtdqcfDdqKoL2jlqlRJR7llugy2BcBmhYTmLAx0UIIeES1gCotbUVI0eOxBtvvNHlfWbNmoWqqir+Y/369R5fX7JkCdatW4e1a9di586dMBqNmDNnDpzO8I9rkKO2GqDwLYFxPYDidGrEaGkXkreEmAhvsNhxrsEEABhGGSBCiISF9d1j9uzZmD17drf30el0yMrK6vRrer0eq1evxvvvv4/p06cDAD744APk5eVh8+bNuPLKKwU/5kiX4O77Es4lMKr/8U+sTo2GVltAGaBj7uxPr6RoJFMRNCFEwkRfA7Rt2zZkZGRg4MCBuP3221FbW8t/raioCHa7HTNnzuRvy8nJQWFhIXbt2tXlY1qtVhgMBo8P4h1RZIAoAPKLEN2gj1Sw9T+U/SGESJ2oA6DZs2fjww8/xJYtW/DSSy9h7969uOKKK2C1sm+A1dXV0Gq1SE5O9vi+zMxMVFdXd/m4y5cvR2JiIv+Rl5cX1POQkwQRbIPnx2BQAOSTOHczRJPN/+XhM3VGALQDjBAifaIuoLjuuuv4fxcWFmLMmDHIz8/Ht99+i/nz53f5fQzDdNug7fHHH8dDDz3Ef24wGCgI8pIYGiFyg1CpB5BvhMgANbWy/+/pcbT8RQiRNlFngC6UnZ2N/Px8nD59GgCQlZUFm82GpqYmj/vV1tYiMzOzy8fR6XRISEjw+CDeEUMjxDoDjcHwhxDNEPXu/k8JNAOMECJxkgqAGhoaUFZWhuzsbADA6NGjodFosGnTJv4+VVVVOHLkCCZNmhSuw5Q1MTRCpEGo/onTBh4AtU2BpwwQIUTawroEZjQaUVxczH9eUlKCgwcPIiUlBSkpKVi2bBl+97vfITs7G6WlpXjiiSeQlpaGa665BgCQmJiIRYsWYenSpUhNTUVKSgoefvhhDB8+nN8VRoTFZYBabU44XQxUytDPguLHYFAGyCdtS2D+1wBxgS9NgSeESF1YA6B9+/Zh6tSp/OdcXc7ChQuxatUqHD58GO+99x6am5uRnZ2NqVOn4pNPPkF8fDz/Pa+88grUajUWLFgAs9mMadOmYc2aNVCpVB2ejwSOqwECAKPFgcSY0L8Rtg1CpRogX3BF0AFlgEzsIFQKgAghUhfWAGjKlClgGKbLr3///fc9PkZUVBRWrFiBFStWCHlopAtatRI6tRJWhwsGiz3kAZDN4UKTic1C0C4w33DLVlwGzVd2pwut7h1kSRQAEUIkTlI1QEQc2pohhr4OiNsBplEpkBSG7JOUDc5mM6fHqvzre6VvV/dFRdCEEKmjAIj4LJw7wbgeQOlxum5bHZCOhmWzs7vKGs3Qm3wPXrkAKD5KHZbaL0IIERIFQMRn4RyIytX/pCdQ/Y+vEmM0yEuJBgAcrdL7/P3NJiqAJoTIBwVAxGcJYRyHUW9ki3BpC7x/uCzQ0Qrfl8EM/BZ4CoAIIdJHARDxWUIYM0AN7hqgNOpE7JfCXmzTzyOVfmSAzLQDjBAiHxQAEZ9xNUDhaIbY0Mq+CadSAOSXYTnuDFCl7xkgrm4oKZp+9oQQ6aMAiPiML4IOoJ+Mv+rdGaDUWFoC88cQ9xDTs3VGOJwun763mcZgEEJkhAIg4rNwDkTlAyDKAPklPV4HlVIBF9OWTfOWnmqACCEyQgEQ8Rm/BBaWGiAqgg6ESqlAaiwbPHI76rylp11ghBAZoQCI+CysRdB8DRAFQP7iZqj52hGazwBRAEQIkQEKgIjPwlUE7XC60GSiIuhAcTPUag2+ZYCaaRAqIURGKAAiPgtXDVCTyQ6GARQKIDmGAiB/cTPUan1dAuMCIKoBIoTIAAVAxGfhGoXR0Mq+YafEaGkUQwDS3QGQzzVAlAEihMgIBUDEZ9wbYKgDoPoWWv4SQlsGyPsaIIvdiSZ3/VVKLP38CSHSRwEQ8RmXATLbnbD72EsmEFwGKI0KoAOSztUA+ZABOlyhh8PFIC1Ohyyaw0YIkQEKgIjP4nRq/t+hzAJxc8BoB1hg+F1gPhRB7yttAgCMyU+GQkHLj4QQ6aMAiPhMrVIiRqsCENpC6Aa+CzQtwQSC66FUZ7SCYRivvqfoXCMAYEyf5KAdFyGEhBIFQMQv4egFxDVBpEGogeGKoG0OFwzmnv//GIZB0Tk2AzQ6nwIgQog8UABE/NLWDTp0GaC2MRi0BBaIKI2KL2T3phD6ZE0Lmkx26NRKfpgqIYRIHQVAxC9tzRBDWAPUymWAKAAKlLe9gIprW7BozT4AwLiCFGjV9JJBCJEHejUjfglHM8QGGoQqGG96ARXXGvGHf+9BRbMZBWmxeO63haE6PEIICTp1z3chpKNwNEPka4BiKQMUKG96AS399CDqjTYMzU7AB7eNp/4/hBBZoQwQ8UtCiJshmmwOmO1OAJQBEkKGu5dPtb7zDFCV3oxfy/VQKIB3bhlLwQ8hRHYoACJ+CXURNJf9idK0bcEn/huUGQ8A+KW0odOvbztZBwAYlZeETGp8SAiRIQqAiF8SQlwDVGds6wJNjfgCN3lQOgDgSIUBtYaOy2BbT9QCAK4YlBHS4yKEkFChAIj4Jck9EbyxNbQZINoCL4y0OB1G5rJb2rlsD8fqcOKn4noAwNTBFAARQuSJAiDil+xEdlmkSm8OyfNxO8DSqBZFMFPc2Z2tJ2s9bj9SoUerzYm0OB2G5SSE49AIISToKAAifslJigYAVDaHKABqpUnwQuOyOz8V13uMxDhVYwQADMtJoOVGQohsUQBE/MIFQE0mO8w2Z9Cfj7pAC29IdjyUCsBgcfCDZgHgtDsAGpARF65DI4SQoKMAiPglIUrDT4WvDMEyWNscMAqAhKJTq/hAtrShlb/9dG0LAGBAJgVAhBD5ogCI+C0nia0DCsUyWD2/C4yWwIRUkBYLACipaxcAcRkg91Z5QgiRIwqAiN+47EFVc88DNQPF7wKjLtCC6pPqDoDcGSC92Y5q97b4/rQERgiRMQqAiN+yE9kAqCIEGaCGVpoDFgx93Bmg0no2ACquZbM/WQlRfK8nQgiRIwqAiN96hWgJzOli0Ei7wIKiL7cE5g6ATtdQ/Q8hJDJQAET8xi+B6YO7BNZsssHFAAoFkBJDAZCQuAzQuQYTGIbBoQo9AGBABtX/EELkjQIg4jduCSzYGSBui3ZyjBZqFf3KCik3ORoqpQJmuxPnGkz45tdKAMAU96gMQgiRK3o3IX7rldRWA9S+kZ7QuC7QqdQFWnAalRJ5yez/41NfHYXB4kCvpGhc2j8tzEdGCCHBRQEQ8VtmIrsjy+pwockUvJlgNS3sElt6PO0AC4YZQzMBANtPsTPBfj86F0oldYAmhMgbBUDEbzq1ig9KgrkMVuneZs/VHBFhPTZ7CJ6aOxTRGhXidGosGJsX7kMihJCgU4f7AIi05SRFo67FiopmMwp7JQblObht9hQABYdKqcAtlxTgmot6wWJ3Ics96JYQQuSMMkAkIDncVPggZoC4x+a23ZPgSIrRUvBDCIkYFACRgPBT4YO4FZ5bAuN2nRFCCCGBogCIBIQPgIJaA0RLYIQQQoRFARAJCLcEFqwAyGCxo8XqYJ+LlsAIIYQIhAIgEpC2DFBwlsC4QatJMRrEaKlmnxBCiDAoACIB4QKg2hYL7E6X4I/PL39R/Q8hhBABUQBEApIaq4VWpYSLAWoMwmeB2rbA0/IXIYQQ4VAARAKiVCqQzU+FFz4AogJoQgghwRDWAGjHjh2YO3cucnJyoFAo8OWXX3p8nWEYLFu2DDk5OYiOjsaUKVNw9OhRj/tYrVYsXrwYaWlpiI2Nxbx581BeXh7CsyDc8lRFs0nwx+YmzdMWeEIIIUIKawDU2tqKkSNH4o033uj06y+++CJefvllvPHGG9i7dy+ysrIwY8YMtLS08PdZsmQJ1q1bh7Vr12Lnzp0wGo2YM2cOnE5nqE4j4vVNjwUAnKw2Cv7YZY1sUJWbTAEQIYQQ4YR1W83s2bMxe/bsTr/GMAxeffVVPPnkk5g/fz4A4N1330VmZiY++ugj3HnnndDr9Vi9ejXef/99TJ8+HQDwwQcfIC8vD5s3b8aVV14ZsnOJZNwIjKOVesEfu6yJDYDyUmIEf2xCCCGRS7Q1QCUlJaiursbMmTP523Q6HSZPnoxdu3YBAIqKimC32z3uk5OTg8LCQv4+nbFarTAYDB4fxH+FOWwAdKRCD4ZhBHtci92JGoMVAJBHGSBCCCECEm0AVF1dDQDIzMz0uD0zM5P/WnV1NbRaLZKTk7u8T2eWL1+OxMRE/iMvj6ZfB2JgVhzUSgWaTHZBR2JwO8BitCqkxGoFe1xCCCFEtAEQR6FQeHzOMEyH2y7U030ef/xx6PV6/qOsrEyQY41UOrUKAzLjAbBZIKFw9T95yTE9/p8TQgghvhBtAJSVlQUAHTI5tbW1fFYoKysLNpsNTU1NXd6nMzqdDgkJCR4fJDCFOezP8GilcMuJZU1sBigvhZa/CCGECEu0AVBBQQGysrKwadMm/jabzYbt27dj0qRJAIDRo0dDo9F43KeqqgpHjhzh70NCY0BmHADgbJ1wO8HK+R1gVABNCCFEWGHdBWY0GlFcXMx/XlJSgoMHDyIlJQW9e/fGkiVL8MILL2DAgAEYMGAAXnjhBcTExOCGG24AACQmJmLRokVYunQpUlNTkZKSgocffhjDhw/nd4WR0OiTym6FL21oFewxaQcYIYSQYAlrALRv3z5MnTqV//yhhx4CACxcuBBr1qzBI488ArPZjHvuuQdNTU0YP348Nm7ciPj4eP57XnnlFajVaixYsABmsxnTpk3DmjVroFKpQn4+kawgzR0A1Zu8qtPyRlmjewmMdoARQggRmIIRct+yRBkMBiQmJkKv11M9kJ8sdieG/O07MAyw98npSI/XBfyYo57ZiGaTHRseuAxDsun/hRBCiKdA3r9FWwNEpCVKo+JHYgixDNZqdaDZZAdAXaAJIYQIjwIgIhhuJEZJfeABUG0L2wAxRqtCfJQm4McjhBBC2qMAiAiGL4QWIgAysA0VMwRYSiOEEEIuRAEQEUyfNOF2gtUZ2QxQRnxUwI9FCCGEXIgCICKYgjR2u/rZOiEyQGwAlJ5AGSBCCCHCowCICGagexzG6VojDBZ7QI/F1QClx1EARAghRHgUABHB5CbHoF96LJwuBjtP1wf0WLUt7hogygARQggJAgqAiKCmDMoAAGw9URvQ49S1UA0QIYSQ4KEAiAhqqjsA2naqDi5XW49NhmGgN3m/LNYWAFEGiBBCiPAoACKCGluQjBitCnUtVhyvbpsM/9Ev5zHymY14f885rx6HrwGiAIgQQkgQUABEBKVTqzAiNxEAcLK6hb/9/20/CwD465dH+OxOV2wOFxpbbQAoA0QIISQ4KAAigmsbjNq2Hb79bNSXNp7s9vvr3T2A1EoFkmO0wh8gIYSQiEcBEBEc1xG6pMEEALA6nChrNPFf/+ZQlUd90IXaL38plYFPlSeEEEIuRAEQEVyfCzJAJfWtcDHsXC+tWgmj1YHz7QKiC1EBNCGEkGCjAIgIrm+7AIhhGBTXGgEAg7PiMSSLbZZ4tNLQ5fdX6c0AgHTaAk8IISRIKAAigstLiYFCAbRYHWhoteF0DRsA9c+Iw9ActkD6SKW+y+8/XsUGRwMz44J/sIQQQiKSOtwHQOQnSqNCTmI0KprNKK1vxakadjdY/4w4xGjZX7nuMkDc1wp7JQb/YAkhhEQkCoBIUBSkxaKi2YzDFXpsO1kHABidnwKVu6j5aIUeDMNAofAscrY7XThRxQZMw3ISQnvQhBBCIgYtgZGg6OOeDP/yxlMw253omx6Li3snYXBWPFRKBRpabagxdOwHVFxrhM3pQnyUGr1TYkJ92IQQQiIEBUAkKEb0SgLA1gEBwHVj8qBQKBClUaFfOlskfbSTOqAjFextQ7MTOmSHCCGEEKFQAESC4pqLe2HBmFwAgEalwPyLc/mvFXKF0BUd64C4+p9hOVT/QwghJHioBogEhUalxP/9bgQm9UtDUozGY6bX0JwE/PdARbcZIKr/IYQQEkwUAJGgUSgU+O1FvTrczu3uunAnmMXuxKFyNgAanZ8c/AMkhBASsWgJjITcUHd2p6LZjCb30FMAOFjWDJvThcwEHfJTqQCaEEJI8FAAREIuIUrD7/A6VtWWBfr5bCMAYFxBKhVAE0IICSoKgEhYFPZis0BczQ8A/FLaAAAYV5ASlmMihBASOSgAImExIjcJALDpWA0AoNlkw97SJgDABAqACCGEBBkFQCQsrrmoFzQqBfada8L+80348kAFbA4XhmQnoH8GzQAjhBASXBQAkbDITIjC1aPYHWKrtp3BJ/vKAQDXjcml+h9CCCFBRwEQCZvbL+sLgF0GO15lgFal7HTbPCGEECI0CoBI2AzKiseN43sjSqNEtEaF2y8vQFKMNtyHRQghJAIoGIZhwn0Q4WYwGJCYmAi9Xo+EBOpATAghhEhBIO/flAEihBBCSMShAIgQQgghEYcCIEIIIYREHAqACCGEEBJxKAAihBBCSMShAIgQQgghEYcCIEIIIYREHAqACCGEEBJxKAAihBBCSMShAIgQQgghEYcCIEIIIYREHAqACCGEEBJxKAAihBBCSMShAIgQQgghEUcd7gMQA4ZhAAAGgyHMR0IIIYQQb3Hv29z7uC8oAALQ0tICAMjLywvzkRBCCCHEVy0tLUhMTPTpexSMP2GTzLhcLlRWViI+Ph4KhUKwxzUYDMjLy0NZWRkSEhIEe1wxoXOUBzpHeaBzlAc6R+8xDIOWlhbk5ORAqfStqocyQACUSiVyc3OD9vgJCQmy/SXm0DnKA52jPNA5ygOdo3d8zfxwqAiaEEIIIRGHAiBCCCGERBwKgIJIp9Phqaeegk6nC/ehBA2dozzQOcoDnaM80DmGBhVBE0IIISTiUAaIEEIIIRGHAiBCCCGERBwKgAghhBAScSgAIoQQQkjEoQCoEytXrkRBQQGioqIwevRo/Pjjj93e//z585g7dy5iY2ORlpaG+++/HzabzeM+hw8fxuTJkxEdHY1evXrhmWee6XF2SVNTE2666SYkJiYiMTERN910E5qbmwM9PQC+n+MDDzyA0aNHQ6fTYdSoUZ3eR8rn+Ouvv+L6669HXl4eoqOjMWTIELz22msd7iflc2xoaMCsWbOQk5MDnU6HvLw83HfffR1m4En5HNtraGhAbm4uFApFh2OR+jkqFIoOH2+++abHfcRyjjt27MDcuXORk5MDhUKBL7/8ssfvkdprqj/nKLXXVF/PURKvqQzxsHbtWkaj0TBvvfUWc+zYMeaBBx5gYmNjmXPnznV6f4fDwRQWFjJTp05l9u/fz2zatInJyclh7rvvPv4+er2eyczMZP7whz8whw8fZr744gsmPj6e+ec//9ntscyaNYspLCxkdu3axezatYspLCxk5syZE/JzZBiGWbx4MfPGG28wN910EzNy5MgOX5f6Oa5evZpZvHgxs23bNubMmTPM+++/z0RHRzMrVqyQzTk2NjYyK1euZPbu3cuUlpYymzdvZgYNGsRcf/31sjnH9q6++mpm9uzZDACmqamJv10O5wiAeeedd5iqqir+w2QyifIc169fzzz55JPMF198wQBg1q1b1+39pfia6us5Moz0XlN9PUcpvKZSAHSBcePGMXfddZfHbYMHD2Yee+yxTu+/fv16RqlUMhUVFfxtH3/8MaPT6Ri9Xs8wDMOsXLmSSUxMZCwWC3+f5cuXMzk5OYzL5er0cY8dO8YAYPbs2cPftnv3bgYAc+LECb/Pj2F8P8f2nnrqqU7/WOV0jpx77rmHmTp1Kv+5HM/xtddeY3Jzc/nP5XKOK1euZCZPnsz88MMPHQIgOZxjT29AYjtHb4+bYaT5mtqetwEQRyqvqe35eo4csb2m0hJYOzabDUVFRZg5c6bH7TNnzsSuXbsAAMuWLUOfPn34r+3evRuFhYXIycnhb7vyyithtVpRVFTE32fy5MkeDZ+uvPJKVFZWorS0tNNj2b17NxITEzF+/Hj+tgkTJiAxMZE/llCdozfkeI56vR4pKSkexyunc6ysrMR///tfTJ482eN4pX6Ox44dwzPPPIP33nuv0+GIcjhHALjvvvuQlpaGsWPH4s0334TL5RLlOfZE6q+p3pD6a6o3pPiaSgFQO/X19XA6ncjMzPS4PTMzE9XV1QCAtLQ09OvXj/9adXV1h/snJydDq9Xy39PZfbjPuftcqLq6GhkZGR1uz8jI6PJ7vOHPOXpDbue4e/dufPrpp7jzzjs9jlcO53j99dcjJiYGvXr1QkJCAt5++22P45XyOVqtVlx//fX4xz/+gd69e3d5vFI+RwB49tln8dlnn2Hz5s34wx/+gKVLl+KFF17wOF6xnGNPpP6a6g2pv6Z6Q4qvqRQAdUKhUHh8zjAMf9t9992HH374odv7X/g9XT1mV9/ry+P6y9dz9PcxO7u9u++58FgC4e85Hj16FFdffTX+9re/YcaMGT0+Zme3d/c9Fx5LIPw5x1deeQX79+/Hl19+iTNnzuChhx7q8TE7u72777nwWALhyzk+/vjjGDJkCP74xz/6/Jid3d7d91x4LIHw9f/xL3/5CyZOnIhRo0Zh6dKleOaZZ/CPf/yjx8fs6jy6+p4LjyUY5PKa2h25vKZ2R4qvqRQAtZOWlgaVStUhiqytre0QpXKysrI63L+pqQl2u53/ns7uU1tbCwDdPm5NTU2H2+vq6rr8Hm/4c47ekMs5Hjt2DFdccQVuv/12/OUvf+lwvHI4x6ysLAwePBhXX301/t//+39YtWoVqqqq+K9J+Ry3bNmCzz77DGq1Gmq1GtOmTeMf66mnnuKPV8rn2JkJEybAYDDwxyimc/SV1F5Tg0Uu5yjm11QKgNrRarUYPXo0Nm3a5HH7pk2bMGnSpE6/Z+LEiThy5Aj/BgIAGzduhE6nw+jRo/n77Nixw2Mb58aNG5GTk9PlmunEiROh1+vxyy+/8Lf9/PPP0Ov1XR6LN/w5R2/I4RyPHj2KqVOnYuHChXj++ec7PV6pn+OFuKstq9XKH6+Uz/GLL77Ar7/+ioMHD+LgwYP88t6PP/6Ie++9Vxbn2JkDBw4gKioKSUlJ/PGK5Rx9JbXX1GCRwzmK/jXVp5LpCMBtSV29ejVz7NgxZsmSJUxsbCxTWlrKMAzDrFixgrniiiv4+3NbNqdNm8bs37+f2bx5M5Obm+uxZbO5uZnJzMxkrr/+eubw4cPMf//7XyYhIcFjq9/PP//MDBo0iCkvL+dvmzVrFjNixAhm9+7dzO7du5nhw4cLuu3W23NkGIY5ffo0c+DAAebOO+9kBg4cyBw4cIA5cOAAY7VaZXGOR44cYdLT05kbb7zRY2txbW0tfx+pn+O3337L/Oc//2EOHz7MlJSUMN9++y0zbNgw5pJLLpHNOV5o69atHXaBSf0cv/rqK+bf//43c/jwYaa4uJh56623mISEBOb+++8X5Tm2tLTwrxcAmJdffpk5cOAAv81fDq+pvp4jw0jvNdXXc5TCayoFQJ3417/+xeTn5zNarZa5+OKLme3bt/Nfe+qpp5j8/HyP+587d475zW9+w0RHRzMpKSnMfffd57Gtj2EY5tChQ8xll13G6HQ6Jisri1m2bJnHNj/uhbqkpIS/raGhgbnxxhuZ+Ph4Jj4+nrnxxhs9XshDeY6TJ09mAHT4aH+8Uj7Hp556qtPzu/DnIOVz3LJlCzNx4kQmMTGRiYqKYgYMGMA8+uijHY5Fyud4oc4CIKmf44YNG5hRo0YxcXFxTExMDFNYWMi8+uqrjN1uF+U5cs9z4cfChQs7PT+Gkd5rqj/nKLXXVF/PUQqvqQqG6aHlIiGEEEKIzFANECGEEEIiDgVAhBBCCIk4FAARQgghJOJQAEQIIYSQiEMBECGEEEIiDgVAhBBCCIk4FAARQgghJOJQAEQIkbxly5Zh1KhR4T4MQoiEUCNEQoio9TTheeHChXjjjTdgtVqRmpoaoqMihEgdBUCEEFFrPy36k08+wd/+9jecPHmSvy06OhqJiYnhODRCiITREhghRNSysrL4j8TERCgUig63XbgEdvPNN+O3v/0tXnjhBWRmZiIpKQlPP/00HA4H/vznPyMlJQW5ubn4z3/+4/FcFRUVuO6665CcnIzU1FRcffXVKC0tDe0JE0JCggIgQogsbdmyBZWVldixYwdefvllLFu2DHPmzEFycjJ+/vln3HXXXbjrrrtQVlYGADCZTJg6dSri4uKwY8cO7Ny5E3FxcZg1axZsNluYz4YQIjQKgAghspSSkoLXX38dgwYNwq233opBgwbBZDLhiSeewIABA/D4449Dq9Xip59+AgCsXbsWSqUSb7/9NoYPH44hQ4bgnXfewfnz57Ft27bwngwhRHDqcB8AIYQEw7Bhw6BUtl3jZWZmorCwkP9cpVIhNTUVtbW1AICioiIUFxcjPj7e43EsFgvOnDkTmoMmhIQMBUCEEFnSaDQenysUik5vc7lcAACXy4XRo0fjww8/7PBY6enpwTtQQkhYUABECCEALr74YnzyySfIyMhAQkJCuA+HEBJkVANECCEAbrzxRqSlpeHqq6/Gjz/+iJKSEmzfvh0PPPAAysvLw314hBCBUQBECCEAYmJisGPHDvTu3Rvz58/HkCFDcOutt8JsNlNGiBAZokaIhBBCCIk4lAEihBBCSMShAIgQQgghEYcCIEIIIYREHAqACCGEEBJxKAAihBBCSMShAIgQQgghEYcCIEIIIYREHAqACCGEEBJxKAAihBBCSMShAIgQQgghEYcCIEIIIYREHAqACCGEEBJx/j91cagb4jcYywAAAABJRU5ErkJggg==", "text/plain": [ "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAHHCAYAAABQhTneAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACM1klEQVR4nO3dd3xUZfY/8M/0zKT3QkIIoYaqgBhFBWVBQNSVXXVVBNe1go1dC79lLbiK+rWzgKsrYMPCYlkRQZAAKr1D6BBaep+06c/vjzv3JiGFmcmduffOnPfrxetFksnMM5Nk5sx5znOOijHGQAghhBASItRSL4AQQgghJJAo+CGEEEJISKHghxBCCCEhhYIfQgghhIQUCn4IIYQQElIo+CGEEEJISKHghxBCCCEhhYIfQgghhIQUCn4IIYQQElIo+CGEKJpKpcLzzz8v9TIAABs2bIBKpcKGDRukXgohpBMU/BBCRLN06VKoVCrs3LlT6qUQQkiHtFIvgBBCgsXVV1+NpqYm6PV6qZdCCOkEZX4IIcTNYrHA5XL5/P1qtRphYWFQq+mplRA5o79QQkjAFRYW4s9//jOSk5NhMBgwYMAALF68uM3lLBYLnn/+efTp0wdhYWFITU3FLbfcgpMnT3b5+vn6nC+++AJz5sxBt27dYDKZYDabAQDbtm3DxIkTERsbi/DwcAwePBjvvPNOp7fbXs3P8ePHMWXKFKSkpCAsLAzp6em4/fbbUVtb6+GjRQgRG217EUICqrS0FJdffjlUKhVmzpyJxMRE/Pjjj7j33nthNpvx+OOPAwCcTiduuOEG/Pzzz7j99tvx2GOPoa6uDmvXrsXBgweRnZ3dpevnvfjii9Dr9fjb3/4Gq9UKvV6PtWvX4oYbbkBqaioee+wxpKSk4PDhw1i5ciUee+wxj++rzWbD+PHjYbVa8cgjjyAlJQWFhYVYuXIlampqEB0d7evDSAjpCkYIISJZsmQJA8B27NjR4WXuvfdelpqayioqKlp9/vbbb2fR0dGssbGRMcbY4sWLGQD25ptvtrkOl8sl/B8Ae+6557y+/ry8PAaA9ezZU/gcY4w5HA6WlZXFMjMzWXV1dYe32x7+OvPy8hhjjO3Zs4cBYMuXL+/0+wghgUXbXoSQgGGMYcWKFZg8eTIYY6ioqBD+jR8/HrW1tdi9ezcAYMWKFUhISMAjjzzS5npUKlWXr583bdo0GI1G4eM9e/agoKAAjz/+OGJiYjy63Y7wmZ01a9agsbHRq+8lhPgPbXsRQgKmvLwcNTU1eP/99/H++++3e5mysjIAwMmTJ9G3b19otZ4/TXlz/bysrKxWH/P1RAMHDvT4djuSlZWFWbNm4c0338Rnn32Gq666CjfeeCPuuusu2vIiREIU/BBCAoY/SXXXXXdh2rRp7V5m8ODBAb3+llkff3jjjTcwffp0fPfdd/jpp5/w6KOPYt68edi6dSvS09P9etuEkPZR8EMICZjExERERkbC6XRi7NixnV42Ozsb27Ztg91uh06nE/36O7tdADh48KDP13GhQYMGYdCgQZgzZw42b96MK6+8Eu+99x7++c9/inL9hBDvUM0PISRgNBoNpkyZghUrVuDgwYNtvl5eXi78f8qUKaioqMC//vWvNpdjjHX5+jty6aWXIisrC2+//TZqamo8ut2OmM1mOByOVp8bNGgQ1Go1rFarV9dFCBEPZX4IIaJbvHgxVq9e3ebzjz32GF555RXk5eVh5MiRuO+++5CTk4Oqqirs3r0b69atQ1VVFQDg7rvvxscff4xZs2Zh+/btuOqqq9DQ0IB169bh4Ycfxk033dTubXt6/R1Rq9VYtGgRJk+ejKFDh+Kee+5Bamoqjhw5gvz8fKxZs8bjx2H9+vWYOXMm/vjHP6JPnz5wOBz45JNPhCCNECINCn4IIaJbtGhRu5+fPn060tPTsX37dsydOxdff/01Fi5ciPj4eAwYMACvvvqqcFmNRoNVq1bhpZdewrJly7BixQrEx8dj1KhRGDRoUIe3nZyc7NH1d2b8+PHIy8vDCy+8gDfeeAMulwvZ2dm47777vHochgwZgvHjx+P7779HYWEhTCYThgwZgh9//BGXX365V9dFCBGPinmbxyWEEEIIUTCq+SGEEEJISKHghxBCCCEhhYIfQgghhIQUCn4IIYQQElIo+CGEEEJISKHghxBCCCEhhfr8gJsHVFRUhMjISK+nNhNCCCFEGowx1NXVIS0tDWq15/kcCn4AFBUVISMjQ+plEEIIIcQH586d82pQMAU/ACIjIwFwD15UVJTEqyGEEEKIJ8xmMzIyMoTXcU9R8AMIW11RUVEU/BBCCCEK423JChU8E0IIISSkUPBDCCGEkJBCwQ8hhBBCQgrV/BBCCCEB5HK5YLPZpF6GIuh0Omg0GtGvl4IfQgghJEBsNhsKCgrgcrmkXopixMTEICUlRdQ+fBT8EEIIIQHAGENxcTE0Gg0yMjK8asoXihhjaGxsRFlZGQAgNTVVtOum4IcQQggJAIfDgcbGRqSlpcFkMkm9HEUwGo0AgLKyMiQlJYm2BUZhJyGEEBIATqcTAKDX6yVeibLwgaLdbhftOin4IYQQQgKIZkh6xx+PFwU/hBBCCAkpFPwQQgghJKRQ8EMIIYSQTk2fPh0qlarNvxMnTvh8nRs2bIBKpUJNTY14C/UQnfYKMU4Xg93pQphO/KZRhBBCgtf111+PJUuWtPpcYmKiRKvpGsr8hJDTFQ0Y//YmDP/nOnyz57zUyyGEEKIgBoMBKSkprf698847GDRoEMLDw5GRkYGHH34Y9fX1wvecOXMGkydPRmxsLMLDwzFgwACsWrUKp0+fxpgxYwAAsbGxUKlUmD59esDui6TBz6JFizB48GBERUUhKioKubm5+PHHH4Wvjx49uk2K7cEHH2x1HWfPnsWkSZNgMpmQlJSEJ598Eg6HI9B3RVYsdif+tnwfxr+1CXlHyvD4F3sw6Pk1+N1bG3GirB71Vgee+HIfBj63Bre+twWlZovUSyaEkJDDGEOjzSHJP8aYKPdBrVbj3XffRX5+Pj766COsX78eTz31lPD1GTNmwGq1YtOmTThw4ABeffVVREREICMjAytWrAAAHD16FMXFxXjnnXdEWZMnJN32Sk9PxyuvvILevXuDMYaPPvoIN910E/bs2YMBAwYAAO677z7MnTtX+J6WjaGcTicmTZqElJQUbN68GcXFxbj77ruh0+nw8ssvB/z+yEFFvRX3fbwTe87WAADuWbqj1deHpEdjVO8ELNpwEvVWB7afrsIdH2zF1w9fiWijToIVE0JIaGqyO5Hz7BpJbvvQ3PEw6b0LAVauXImIiAjh4wkTJmD58uXCxz169MA///lPPPjgg1i4cCEALkExZcoUDBo0CADQs2dP4fJxcXEAgKSkJMTExPh6V3wiafAzefLkVh+/9NJLWLRoEbZu3SoEPyaTCSkpKe1+/08//YRDhw5h3bp1SE5OxtChQ/Hiiy/i6aefxvPPPx9SjaT2navBN3sK8fORUpyrakK0UYcre8Vj1YESxIXr8dZtQ9Ej3oSMWBPUahX+MqonzlQ14qFPd+FkeQPeXncMz00eIPXdIIQQIlNjxozBokWLhI/Dw8Oxbt06zJs3D0eOHIHZbIbD4YDFYkFjYyNMJhMeffRRPPTQQ/jpp58wduxYTJkyBYMHD5bwXnBkU/DsdDqxfPlyNDQ0IDc3V/j8Z599hk8//RQpKSmYPHky/vGPfwjZny1btmDQoEFITk4WLj9+/Hg89NBDyM/PxyWXXBLw+yGF7/YW4snl+2FzcoPyuseZsOSeEchOjMD+8zXoFmNEfISh1ffEhusRG67Ha38YjKkfbsfHW84gPdaEK7Lj0T81Soq7QQghIcWo0+DQ3PGS3ba3wsPD0atXL+Hj06dP44YbbsBDDz2El156CXFxcfj1119x7733wmazwWQy4S9/+QvGjx+PH374AT/99BPmzZuHN954A4888oiYd8drkgc/Bw4cQG5uLiwWCyIiIvDNN98gJycHAHDHHXcgMzMTaWlp2L9/P55++mkcPXoUX3/9NQCgpKSkVeADQPi4pKSkw9u0Wq2wWq3Cx2azWey7FTD5RbV44su9cDFgdN9EXJmdgCnD0hEXzmW9BqfHdPr9V/VOxO9ykrH2UCleXHkI0UYddv/jd9CoqQMpIcGMMYZDxWZY7NzIhaTIMGTE0bypQFKpVF5vPcnJrl274HK58MYbbwhDWr/66qs2l8vIyMCDDz6IBx98ELNnz8YHH3yARx55RNid4cd+BJLkj3rfvn2xd+9e1NbW4r///S+mTZuGjRs3IicnB/fff79wuUGDBiE1NRXXXXcdTp48iezsbJ9vc968eXjhhRfEWL6kGm0OvPD9IbgYMH5AMhbdOQxqH4KWf948EEadBv/bV4TaJjvMTXbEhofOliEhoeiDX07h5VVHWn3u2RtycPtlGYp+QSaB06tXL9jtdsyfPx+TJ0/Gb7/9hvfee6/VZR5//HFMmDABffr0QXV1NfLy8tC/f38AQGZmJlQqFVauXImJEyfCaDS2qinyJ8mPuuv1evTq1QvDhg3DvHnzMGTIkA4rvkeOHAkAQlOllJQUlJaWtroM/3FHdUIAMHv2bNTW1gr/zp07J8ZdCZjaRjumLd6OnGfXYHtBFcJ0ajw7eYBPgQ8AJEeF4d0/XYIIA/eEV91oE3O5hBCZKTVb8Pa64wCAbjFGdIvhJmfPXXkIOc+uwe3vb0FRTZOUSyQKMGTIELz55pt49dVXMXDgQHz22WeYN29eq8s4nU7MmDED/fv3x/XXX48+ffoIxdDdunXDCy+8gGeeeQbJycmYOXNmwNYuu/De5XK12pJqae/evQCA1NRUAEBubi5eeuklYdQ9AKxduxZRUVHC1ll7DAYDDAZDh1+Xs3NVjZi+ZDtOljcAAFQq4G/j+gpPXl0RY9Kh3upATZN4k3MJIfJhttjx3Hf5+GZPIQBgaEYMvn7oCqhUwJtrj2HRhpNwuBi2nqrChHd+wef3XY6cNKoBJMDSpUvb/fwTTzyBJ554otXnpk6dKvx//vz5nV7vP/7xD/zjH//o8vq8JWnwM3v2bEyYMAHdu3dHXV0dli1bhg0bNmDNmjU4efIkli1bhokTJyI+Ph779+/HE088gauvvlqoFB83bhxycnIwdepUvPbaaygpKcGcOXMwY8YMxQY3nTlcbMZd/9mGygYbUqPD8MHdw9E7OQIGrTjdmmNMOpyvbkINZX4ICTqFNU3485IdOFpaBwDQqlV4/sbmjPFfx/XFzGt74Xx1Ex7/Yi8OFNbi798ecAdHVANIgoukwU9ZWRnuvvtuFBcXIzo6GoMHD8aaNWvwu9/9DufOncO6devw9ttvo6GhARkZGZgyZQrmzJkjfL9Go8HKlSvx0EMPITc3F+Hh4Zg2bVqrvkDBwuliePK/+1DZYMOAtCgsnj4CyVFhot5GrImr86lppMwPIcEkv6gW05fsQHmdFYmRBrxyyyD0TYlEemzrAmeDVoPsxAj8Z9pwjHl9A/acrcG3ewvx+0vSJVo5If4hafDz4Ycfdvi1jIwMbNy48aLXkZmZiVWrVom5LFlavvMcDhaaERmmxcd/vqzN0XUx8E0Oqyn4ISRomC123P/xLpTXWdEvJRIfTh9x0W3y5KgwzBjTC/+35ijeWXccNw/tRtkfElQkL3gmF5d3pAwvrjwEAHh8bB+/BD5Ac+anlra9CFE8l4vhdEUDnv9fPgprmtA9zoSvHsz1uD5w+hU9EK7X4HRlI7YVVPl5tYQEFgU/MnewsBZ/+XgnGmxOXNU7AXfnZvrttmJMlPkhJFjM/voARr++AV/vLoRKBbz+xyGICvN8hE24QYvJQ9IAAF/tUNaJWLkTa65WqPDH40XBj8x9suUMnC6GMX0TsXj6COg0/vuRxfA1P3TaixBF23WmGl/u5AKWGJMOs8b2wWVZcV5fz20jMgAAqw4Wo94a2gOjxaDRcIdTbDbKrnujsbERAKDTiTd/UnZH3QnQZHPilR8Pw2xxCEdSH7wm26+BDwDEujM/dNqLEOVyuRhe+D4fAHDr8HS89ochPl/X0IwYxIXrUdVgw7mqRhp900VarRYmkwnl5eXQ6XRCV2TSPsYYGhsbUVZWhpiYGCF4FAMFPzJT22jH3Uu2Y9+5GuFzPeJNPr1r81aMEPxQ5ocQpVqx+zz2n69FhEGLJ8f369J1ceMXNKhqgDAGg/hOpVIhNTUVBQUFOHPmjNTLUYyYmJhOGxf7goIfmXll9WHsO1eDGJMOKnD1N7eN6B6Qkxb8thd1eCZEmeosdry6+igA4NHreiExsuuHI/gBmE0U/IhCr9ejd+/etPXlIZ1OJ2rGh0fBj4wcLKzFF+7CwvenDkdGnBGbjpUHrMdGjJEyP4Qo2b/yTqCi3oqshHBMvyJLlOsMcwc/VrtLlOsLNXUWO5psTiS16MumVqsRFiZunzbiHQp+ZIIxbp+eMeDGIWnCNtdtI7oHbA38Ufd6qwN2p8vvNUaEEPEUVDRg8a8FAIB/3NAfeq04f79hOu56aNvLO3anC04Xw00LfsPpigY8e0MObhzaDbEmHfVMkgEKfmTi+/3F2HG6GkadBrMndm2f3ldRRh1UKoAxLvsjRsqcEOJ/FrsTz6zYD7uT4Zo+iRjTN0m06w6jbS+vWB1OzPnmIL7bV4Sh6TE45Z7D+Pz3h/D894cwqFs0/j11GNJEmMdIfEdv7WWgsKYJL/9wGADw0OhspEZL80ehUauEPiC1TbQfTYhSzPpqL7YVVMGk1+AfN+SImlnggx8LbXtdVE2jDXd/uB3Ld52HzeHC9tNcc8jxA5KF2qkDhbX4/cLfUFZnkXKpIY+CH4mdKKvHzQt+Q4nZgu5xJtx/dU9J10ONDglRlhNldVh1oAQatQqLp49Ar6QIUa+/OfihzE9nyuosuGXRZmwrqEKEQYvpV/SARq3CNX0S8d5dw5D/wnj8+vQY9EwIR6nZis+2npV6ySGNgh8JMcbwzIr9wsydz++/XHiikUoMDTclRFG+2nkeADCmbxIu7xkv+vWHuWuHLA4Kfjrz0g+Hcaq8AWnRYfjvQ7l4/sYB2P2P3+HDacOhUqmgVquQHmvCo9f1BgD8d9d5OF3U6VkqFPxI6Pv9xdh5hqvzWXLPxYcNBkK0kRodEqIUdqcLX+/mgh++G7PYjHp35sdGwU97Dheb8Z9fTuG7vUVQqYD37x6OfilcM8hoow7aCw6OXD8wBZFhWhTWNOFf60/gRFm9FMsOeVTwLJFGmwPzVnF1Pg9LWOdzISN/ssNB+/ty5HQxnCirF94xdosxItokXst3ohxWhxPPrDiAinobEiMNGNM30S+3I2x70XOCwOViOFXRgG0FlZjz7UHwo6duG56Bgd2iO/3eMJ0GNw/thk+2nsFb645hyeYC7Pz72DZBEvEvCn4k8t6GkyiutSA91oj7JK7zaam5pwe9y5MTxhjK6qz4y0c7caCwVvh8fLgePz1xNeIj6GReqPn7NwfxzZ5CaNQq/OOGHL+9eArbXvScIHj75+N49+fjwsdD0qORGR+Op6/37KTujDG9UF5nxer8EtQ02lFRb0NKNPX9CSQKfiSw7VQl/r3pFADg7xP7S17n01KYloob5SbvSBke+myXcNrGoFUjyqhDvcWBygYb3lx7DC/9fpDEqySBtOtMNf67i9vu+s/dwzGmn3hH2y9k4I+607YXAMDmcOHTrdxoioQIA6YM64anx/eDWu35CbuU6DC8N3UYRr68DqVmK8rqLBT8BBgFPwH27Z5CPPXf/bA5Xbi6TyKuHyjuvJKu4huaWSnFLQsuF8O8Hw8LgU+/lEi8P3U4usebsO1UJW57fys+23YW2wqq8PLvBwVkBhyRlsvFMNc9uPSPw9L9GvgAzeMtaNuL8/PhUlQ12JAUacDmZ67tUsYtKTKMC37MVhFXSDxBwU8AvbfxJF758QgAYMLAFLx121DZdfo00LFWWVl5oBjHSusRadDix8evQrcYo/A7M7JnPG4amobv9hbhRFk9Xv/pKL56IFfiFRN/+3pPIfbxg0uv7+v326Oj7pyKeisW5p3E+iOlAIApw9K7vNXIN5Itr6fgJ9Ao+AmQk+X1eHU1F/g8cHVPPH29d2nSQGne36d3eVL7bm8hnly+HwBwz5U9kB5ranOZ1/4wGNf1T8ajn+/B9oIqFFQ0ICshPNBLJQFSb3UIzyOPXNsLSZH+3yoJ9fEW205VYueZany+/SzOVzcBANQq4NbhXT9dl+QOfijzE3gU/ATIog0nwRgwtn8SZk/sL/VyOsRnfqzU00MS9VYHdp2pxo6CKvwr7wQArjvsw2N6tXt5g1aDG4ek4Zvd55F3tBxf7TzncdElUZ7/7jyH8joresSbMP3KHgG5zVDO/KzJL8EDn+wSPs6MN2Hq5ZnISY0S5U2GEPxQt+eAo+DHjyrrrThX3YTIMC2+2VMIAJh5bW+JV9U5amUvHcYY7vtoJ7acqhQ+d99VWXhmQn9oLpIlvG1EBvKOluP7fUUU/ASxn4+UAQDuHJkJgzYwByWMIfqccLqiAX/7ah8AILdnPAZnROP+q3qKerIy0T3pvayOMj+BRsGPn1jsTtz38U7kF5mRlRAOp4vhun5JGJoRI/XSOmWgY62S+eFAMbacqoReq8aAtCj8aUR33Oph47qcVK63SHUDNacMVg1WB7ad4mZF+bvIuSVDCG57natqxJ+X7kCd1YHhmbH4+N7LoPNDK4HmzE9wBz9ldRbEGPXQa+XTy4iCHz9xMYa4cD2sDheOlNRBp1Hh75Pku93Fo4Zm0iivswrDbR8enY3Hx/bx6vs1Gi4zZKd2+UFr88lK2JwuZMQZkZ0YuLqu5ueE0Ah+Smot+P3C31BRb0NqdBj+dcelfgl8gObgp9wcvNtejDE8+vkelJmteOu2oRgikwSAfMKwIGPSa/HvqcMx/YoeUKmAR67tjZ6J4g4c9AfhqHsIvcuTWpnZgqkfbkNRrQUZcUY8cHW219ehc2+L0ayg4PXjgWIAwLV9kwJ6StQo9PkJjTdEC/JOoKLehj7JEfjm4Sv92n8nyb3tVV5vBWPB+be7+mAJtp6qQmFNE+Ij9FIvR0CZHz/SqFV4/sYB+Nv4vogwKOOh5usIKPMTGEdL6vDnpTtQWNOEpEgDPv7zSGGWkjc0LYIfxpjsWigQ3zHGMHflIXztrhscH+DeYKHU9b3MbMGXO88BAF64caDfGw8muIMBu5OhptGO2HD5BAdisNideMk9xumBa7LbPbEqFcr8BIBSAh+AMj+B9Mvxcvxh0WYU1jQhKyEcXz2Q6/MJkpb9RuzO4HwHGapWHSjBkt9OAwBmT+iHK7ITAnr7wlH3ENj2emvdMdgcLgzLjMXlPf3fMNSg1SAqjHt9qGwIvrqfDzadwvnqJqRGh+HBa+QzxgmgzA+5QCgfaw0Eu9OFI8V12HWmCv/84TAcLobLesTh31OHdeldn07TnOmhra/gYbE78bL7nfOj1/bCA9d4vyXaVfzIG7uTweF0Be0AzoOFtfhiB5f1eWZCv4BlTw06DWBxBF1X/eLaJizccBIA93ia9PIKN+S1GiI5/oku2P4Q5eKZFQewYvd54eObhqbhtT8M7vKx5ZZH4e0uF4yQz7w44rtPt55BYU0T0qLD8NDo9ns9+VvLbViLw4WIIAx+zlU14tEv9oAx4MYhaRjRI3BjYvh6PUeQZGwdTheqGmyY8dluNNmdGJ4ZixuHpEm9rDYo+CGthOKx1kCparDhf/u4uo3MeBNuHZ6Bh0dni/IOU6dufkFyBsmTKAF+yudGKTxwTbZPtWBiMLQ4nmyxOxW1je+JPWer8ZePdqKygTvd9f8C3IRW5358HS7lv+HceqoS05dsF3pCRYZp8eLNA2VZgxhcv8Wky5qnuiv/D1FuvtlTCLuTYWC3KKx85CpRr1utVkGlAhjjMj9E+Wob7dh1thoAcG0A+/pcSKVSwaBVw+pwBd2boh8PFOPxL/fC6nAhJzUKi6ePCPh0da0786P0Wj2704U53x4UXjuyE8Px3l3D0Ds5UuKVtY+CH9JK81R3J50aEonZYse7647jP78WAABuE2EmUHt0ajVsThfV/ASJTcfL4XQx9E6KQEactKdkwnSaoAt+Ptl6Bs9+dxCMAWP6JmL+HZdKktXiewgpfdvr061ncKKsHnHheqx+7CokRhpk/fpBwQ9phZ/t5WLcOxG9Vr6/vEpQWNOEPy/ZgaOldQAAk16DG4d088ttadQqwKn8J1HCyTvKjbIIZDfnjhh1GtQ22YMmI1xWZ8GLKw+BMWDq5Zl4bnKOZIXcWr5BqVO5j22jzYF/redmEf51XB+hf5GcUfBDWmm1v+9wyqodudIcOF+LP3+0A+V1ViRGGjBjdDaG94hDtEnnl9vTalSAXdlPooRjdTix3j3Ha3TfRIlXE3yT3Zf+dho2hwuXdI/B3JsGSJqh0Lrr9ZT8d/v59nOobLAhI84oyrT7QKDgh7Ri0KqF2hGL3YmoMP+8UAcrxhgKa5qw91wNnly+H012J/qlROLD6SPQLcbo19vWUpfnoLH2UClqGu1IiQrDyKx4qZcTVAOP6yx2fLL1DADgwWvEOXDQFXybCodC/27rrQ68t5E70v7w6F5+GwUiNgp+SCt8caPF7oI1CJ7oAu3V1UeFJwIAuKp3AhbeeSkiAxBE8ml7pRdOEuBLd7+ZPwxLb9XGQCr8dnhTEGR+lm07izqLA9mJ4fhd/2SplyMEC0rN/Pxr/QmU11mRGW/CLZf6Z0vfHyj4IW2E6TRc8BMCHV3F9uNBbv5SZJgWUy5Nx98n9Q/YOyGa7xUczlU14tcTFQCAPw5Pl3g1HGOQbHtZHU586D548MDV2VDLILDUKrjg+Xx1Ixa7H89/TMrpcr+yQKLgh7TB1/0EQ4o7kMrqLDhT2QiVCvjtmWsDvmXYPNmdfm5KtnDDCTAGjOqVgMz4wE1v70ywdH7/ZnchyuqsSI4y4KZL5NF4T2hyqMC/2zX5pbA5XRieGYvr+ktfmO8NZWzOkYAKlie6QNt1muvJ0i8lSpJaKb7RIWV+lOt0RQO+2sl1AH98bG+JV9Osuf+Xcp8TGqwOvLXuGADgL6N6yiZLwZ/2sikw8/Pr8XIAwO9ykiWvnfIWZX5IGzTiwjt2pwtr8kuw9hDXjXd4Zqwk69ColX9kNtS9+/NxOF0Mo/smYngARyxcDN9dWsnZ4EUbTqLUbEVGnBFTczOlXo6gedtLWY+t1eHE1lNVAICrekt/ItFbFPyQNmjEhXe+2nkOf//moPDx8B7SBD9Krh0g3Lbpt3u58Sd//V1fiVfTmtKPutc22vGfX08BAP4+MUfIbsuBXqF/t7vP1KDJ7kRChB79UuTZxbkztO1F2qARF975zV2cypPqHTsddVe2DUfL4WLAoG7RGJQeLfVyWuG3iJR62uu7fYWw2F3omxyJ8QOkP+HVkjDeQkE1PzaHS2jCeWWvBFkUjnuLMj+kDUOLERekc4wx7HTX+qRGh2H8gBS/9/PpSDB0ig1lG2TU0flC/HOCUn+3+NYBt47IkF1titIytqVmC65/exOqG+0AuMJ8JaLgh7QRTA3N/O18dRPK6qzQqlVY/9fRkk3eBqjgWcnsThd+OcZlEKUcYtoRfmvGpsA6wE3HypFfZIZOo8LvL5FfHxqdwt60/Hq8Qgh80mONGCuDXkm+oOCHtNF81J0yPxez4zRX8DewW7SkgQ/QouCZgh/F2XWmGnVWB+LD9RjcTV5bXkBzIz6lnUhaf6QUD36yGwAweUga4sL1Eq+orebxFsp4bA8W1QIApl/RA89NzpFdJs1TVPND2hAyP7TtdVE7z3BbXlKd8GqJ3/ZyKqh2gHC2F3BBtFzrJ/gZf0rJTvBeW30UNqcL4wck46WbB0m9nHbp3MOjlXLaK7/IDIB7w6fUwAeg4Ie0gz/ZQeMtOudyMWw6xvW5kMOxZKFwUiHvIEmz42X1AICctCiJV9I+nQK3vcrqLDhSUgcAePn3gyTPzHaE365Wwmwvl4vhsBD8yPN31VMU/JA2hNNelPnp1NZTlThf3YRIgxbX9JG+z4XSCidJs+Ol3It0n+QIiVfSPr3C6lKA5lOYA9KiEB9hkHg1HVPSQYVz1Y2oszqg16qRnSjP31VPUfBD2jBQ5scjX+7kTpBMHpomi3eVzUfd6eemJA6nC6fKGwAAvZPk2S9FicM3fznOBT+jesv7NJKSHtuDhVzWp19KpGKmt3dE0tUvWrQIgwcPRlRUFKKiopCbm4sff/xR+LrFYsGMGTMQHx+PiIgITJkyBaWlpa2u4+zZs5g0aRJMJhOSkpLw5JNPwuFwBPquBJVgaGXvL08u34es2T8ga/YP+G5vEQDg1uEZEq+KQ1PdlelMVSNsTheMOo1kbRIuhq/5UUrXd8YYfnUHP1fLvPsw/6ZFCRnbfHex8wCZbs96Q9LgJz09Ha+88gp27dqFnTt34tprr8VNN92E/Px8AMATTzyB77//HsuXL8fGjRtRVFSEW265Rfh+p9OJSZMmwWazYfPmzfjoo4+wdOlSPPvss1LdpaDAFzwr5YkuUKobbPjv7vNgDGDu56nLe8ZhiEwa0lGTQ2U6XsrV+/RKipBlsTOgrOwEwNVQldVZYdCqMUwGhxE6Izy2Cvi73XyyEgAwNCNG2oWIQNKj7pMnT2718UsvvYRFixZh69atSE9Px4cffohly5bh2muvBQAsWbIE/fv3x9atW3H55Zfjp59+wqFDh7Bu3TokJydj6NChePHFF/H000/j+eefh14vv2ONSqD0Vvb+svlkJRjjXqQ+v+9yAEB8uF42Jx6U2CmWNNf79JZpvQ/QMviR/ws0AKzcx2Vlc7PjZTXKoj18nx+5n/aqrLdi3/kaAMDovvLrReUt2WzaOZ1OfPHFF2hoaEBubi527doFu92OsWPHCpfp168funfvji1btgAAtmzZgkGDBiE5ubnJ0vjx42E2m4XsEfGegba92vXrCe5k19W9E5EYaUBipEFW79T5bS+nQl6gCHDgfC3eWMtNGpdrvQ/Q3PtLCZkfp4th+a7zAIApl6ZLvJqLU8p29cZj5WAMyEmNQnJUmNTL6TLJmxweOHAAubm5sFgsiIiIwDfffIOcnBzs3bsXer0eMTExrS6fnJyMkpISAEBJSUmrwIf/Ov+1jlitVlitVuFjs9ks0r0JDs2DTeX/RBcojDFscnfgvaqPPAsotdTkUFFcLoZpS7YLH8t5OKSSjrr/crwcxbUWxJh0GCezOV7taW5RIe/HNu8o9+ZPjh3IfSF55qdv377Yu3cvtm3bhoceegjTpk3DoUOH/Hqb8+bNQ3R0tPAvI0MeBatyYdJzMbFShxj6w+nKRhTWNEGvUWNklvQ9fdqjVUj6nHAKa5pQ1WADADw0OhtXyfhUEr81Y1PA79aS304DAG4e2k3IYssZH1g6ZLpdbXe6sHDDCaw5yCUUxvSTdwG5pyQPfvR6PXr16oVhw4Zh3rx5GDJkCN555x2kpKTAZrOhpqam1eVLS0uRkpICAEhJSWlz+ov/mL9Me2bPno3a2lrh37lz58S9Uwpnch/bbrTRqTnez4e536thmbFCcCg3VPCsLCfcjQ37Jkfi6ev7CdsfcqSUDs95R8uw8Vg5tGoVpl3RQ+rleETu9VRzvjkodMq+fkAKLsmQdwG5p2T31+ZyuWC1WjFs2DDodDr8/PPPwteOHj2Ks2fPIjc3FwCQm5uLAwcOoKysTLjM2rVrERUVhZycnA5vw2AwCMfr+X+kmVEIfijzAwC1jXYsyDsBAJg0OFXi1XRMKbUDhHO8jCt07iXjQmeeEra9nC6Gf67kdg3uubIHshLCJV6RZ+ScsXU4Xfh+P1c8/s+bB2LRXZfKqs6xKyR9Czt79mxMmDAB3bt3R11dHZYtW4YNGzZgzZo1iI6Oxr333otZs2YhLi4OUVFReOSRR5Cbm4vLL+dO2owbNw45OTmYOnUqXnvtNZSUlGDOnDmYMWMGDAb5dvSUOz7z00TBDwDg7Z+PobrRjt5JEbhthHy3SKnJobIccx9x7yPjQmdec+ZHvoH1L8fLcbK8AVFhWjxyXW+pl+Mx4bSXDDO2R0rq0GhzIjJMizsu6y6bk61ikDT4KSsrw913343i4mJER0dj8ODBWLNmDX73u98BAN566y2o1WpMmTIFVqsV48ePx8KFC4Xv12g0WLlyJR566CHk5uYiPDwc06ZNw9y5c6W6S0HBpON+LSjzAxTXNuGzrWcBAM9OzpF1V1NhOrQMn0RJW/w8Lzkfcefp+ayijDM/X7k7rt9yaTqiwnQSr8Zz/N+tHLNqO09zA3cv7R4bNBkfnqTBz4cfftjp18PCwrBgwQIsWLCgw8tkZmZi1apVYi8tpPHbXk12J1wuFnS/9N54f9Mp2JwujMyKw1Vy7xTLT3WX8btzwmGM4QTf3ydJ/sGPju/wLMOtGYDrQbP2EFeXJ+fsbHu0Ms787DxTDQAYLvNGkb6Q79tYIhlTizlVoTzctNHmwOfbuazPI9fKP41OTQ6Vo6jWggabE1q1Cj0UUJuiazF8kzH5vUj/eLAEdifD4PRo9E9VVg2nXhhILL+/213u4GdYDwp+SAgwtuiIGspbX1tOVsJid6FbjBFX9oqXejkXRVPdleNoCddbLCshXNZbqTyDhntOYEyepwn3852H+8g7O9seuR5UOFvZiOJaCzRqVVCMs7iQ/P/qSMCp1SphxEUoFz3nHeVOEV7bL0kRhX501F05fj2urBlJOm3z778ce/3w08Zz0uQxZ88bwmBTmWVsV+zmumSPzIqTbXuPrqDgh7SL/2UP1cwPYwx5R7iOpkpp6qXVKKNTLAE2tAislaBldsrukFdwbXU4hbYBA7spa8sLkGefH6eL4b/uESFKq6HyFAU/pF381leoNjo8UVbPdXTWqpHbU76dd1uizI8ynK5owKmKBmjVKlwp467OLWnVKvDJT7llfo6X1sPuZIg26tAtxij1crwmxzctv52oQGFNE6LCtBg/oOOGwUpGwQ9pV6j3+uG3vHJ7xgun3+SOjrorA5/1GdEjTjFHslUqVXOjQxm9SANAflEtAC7ro4Tt6QvpZVir9+3eQgDATUO7IUynjOc/b1HwQ9plCvEuz8KWV19lbHkBLY66y6x2gLTGD4hUynYqT669fvh6nwEKrPcBWh51l8fjanO4sM7dNmDykDSJV+M/FPyQdgkjLkJwuGmdxY4d7uZeo/sqoyYDaJH5kdE7SNJao82BLae4YucxCvrdAlofd5eLg4W1+PFgMQBgQJry6n2A1n+3cmgjsOVUJcwWBxIi9BgWhP19eMFXwk1EIUx2D8Gan99OVMDhYuiZEK6IHiy85syP9E+gpH1bTlbC5uDaJ/RSQHPDlvgRF1aZZH5qG+340wdbUWdxoE9yBMb2T5Z6ST7hg0qA+9vVaqTdulvtnt4+bkAKNEHc4JYyP6RdoTrc1OF04aud3CkHJWV9gBZHZmX0zpy0prT2CS01n0qSx+/XnnPVqLM40C3GiOUPXoFwgzLfy2tbnqSTOGvLGMP6I9yWV7AWOvMo+CHtMulCL/hhjOHBT3dj/ZEyqFTAjUOVtd8t12ZphKPE9gkt6WX2+3XCPRttSEY0oo3KKBxvj7ZFdkXq7uyHi+tQarbCqNNgZFacpGvxNwp+SLtC8bTX4eI6rDtcCr1GjX/fNUwxDeh4dNRd3gprmlBY0wStWqWY9gkt8dtechnAecw9G61XUqTEK+malj2UpD7xxWcmr+wVH7SnvHgU/JB2GUOwyeGus9wcm5E94zBOgSlfmu0lb/lF3KmkPsmRimmf0JLctr2OuzM/fZKVVTt1IY1aBT75I/WWNd+GQWlb/r5Q5iYp8Tsh82MPnYLn3e4hfpd2V+YJByp4lrf8Qq4fjVJPJfGFuXLo88MYw4lSLvjprfDMD8BtWdscLsl6dFkdTsxbdQQ7TnPPgaMV1OLDV5T5Ie0KxT4/wgRjhR7v5I/MSp06J+3jMz8DuymzHw2/7SWHzE+J2YI6qwMatQpZCjqR2REdn7WVaEvx7XXHsXTzaQDAY9f1RnqsSZJ1BBJlfki7Qu20V1mdBWerGqFSAUO7x0i9HJ/IrVkaae1gkdIzP/Kp+Tnuzvr0iDcJQZmScYcVnJL97f5ynCvEn3vTANyd20OSNQSa8n9riF+EWsHz7jM1AIC+yZGKGTlwIcr8yFd5nRWlZitUKqB/qjKDH72Man6OlnDFzn2Slb/lBUg73NTmcOFYCRdMju4T/LU+PAp+SLuMOr7gOTRqfva4i50vUWi9DyDPAYmEw8+fykoIV2w/GuG0l8TBtcXuxCdbzwCA4k5kdoSvp5LijcvxsjrYnC5EhmmREae8wbC+ouCHtCuUan4YY1h3mGvsNaKHgoMfOuouW0K9j0LnTwHy2fZa/FsBzlY1IjnKgLsuz5R0LWIR3rhIsO3F/24OSFPmYFhfUfBD2tV82iv4g59dZ6pxsrwBRp0Gv8tRZot8oEWTQwp+ZOdQMfcCk6PQeh9APkfdl/x2GgDwzIR+is2iXUjHz/eSILA8FASBuS8o+CHtCqWC5y93nAMATBqcikiF1vsAlPmRs+Puhnx9U5RboyKc9pIw81NZb0V5HVc7df2AVMnWIbbmwwqB/9s9yLdg6KbcwNwXFPyQdjUPNg3u4Mdid+KHA9xU6NtGZEi8mq5pGfzIYTo04didLhRUNAAAeitsmGlLehn0+eEbG6bHGhXZKLIjUmXVHE4XDhdT5ocQQXPNjyOoX0iPlNSh0eZEfLgewxXa34fHn/YCpHkHSdp3prIBdidDuF6DbjHKLSgVan5kEPwEQ2PDlvgt60AXPO85V4MGmxMxJh16Jio3MPcFBT+kXfy7KhcDrDLo6+EvzSnfaMUX+/Gpc4COu8sJ35OmV1KEon/Hmre9pPvd4rcPeyt8pMWF+CaHge7zk3eEG2dxTZ9EaNTK/d30BQU/pF2mFkPtgnnrq/kUjvL3u1sGPzTfq3OHi814bfWRgLRyOMaPYVB4T5rmzI90zwfHg2ikRUtaYUsxsIFl3lGuueGYEJjldSEKfki7tBq10HsimE985Qtdd5W/391y28upoMyPy8Ww+mAxKuutAbk9i92J+z7eiYUbTuKTLWf8fnvHy9zZCgXX+wAyyfwEyTDTC+mEba/AvWkprm3C4WIzVCrg6j7BP8vrQhT8kA7JqaOrP9idLhxxd4pV6siBljRqFfhdFSVlfpZsPo0HP92N1386FpDb+88vp3C+ugkAsN6d9vcnPluh9G7EOgmbaDLGsOlYOSrcAXJ2kNWn6CSo+dngzvpckhGDuHB9wG5XLij4IR3SaeXR1MxfTpTVw+ZwIdKgRfe44Bjkp7Tj7owxfLaNy76cqWzw++39sL8Y764/IXy880w1zBa7327P6nDiVEVzzY+S8W+GrBIEP6sOlODuxdsBAN1ijEHT34fH/90G8k0LX+8TilteAAU/pBNyON3hT3y9T/+0KKiDpNhPafO9dp2pxqlyLuipbvRfEAIAO09XYcay3bA5XJgwMAU9E8PhdDH8erzCb7e560w17E6GxEgD0mOVe9ILaH4zJEWfnx8OFAn/f/S6XgG/fX8LdObH6nDitxPc7/2YfhT8ENKKXsJhe4HAn/QKpv4WWrV0zdJ8wTeYBIDaRptfb2tbQRUA4KreCfjXHZfiWvc73jw/bn3xgdWoXgmKPukFSNeLxu504Zdj3OP47YwrcduI7gG9/UAI9Fy+HQXVaLA5kRhpQI5CB+12FQU/pENCgWOQZn4OtZhpEyyETrEK+JnVWx1Cg0nA/5kfvl4kJy0KGrUKw9x9nfgiWn/49URz8KN0Bq00meBdZ6pRZ3UgPlyPwd2C541KS3zGNlBvNPOO8lteiUGT9fYWBT+kQ0KBYxDW/DicLhx0n/QaGERPqFoFZet+2F+ERpsTKVFhALhThRY/niysauAyS/Hu4k5+lIm/WjlUN9hwwJ1dHNVb+cGPkPkJ8Gkv/oX6mj7B+0Kt1wb2TQu/5XVNn9Dc8gIo+CGd0ElY4Ohv+UVmNNqciDbqFH8EuSUlFTzzW153X5EJ/jWttsl/2Z/m4McAoMX8Ort/ev1sPlkJxrhj2cnuAE/JpKgBrLc68M3uQgDA6CCuTREyPwH4u61tsuOou1nkZVlxfr89uaLgh3So+Z1e8AU/O05z9R/DM2OD6t2kUDsg86PupysasPtsDTRqFf4wLB0xJi4bU+PHra/Kei74iYvgbksY4WL1T+bnl+PcUeJRvYKjh4oU2+AL806grM6KzHgTxg9IDtjtBpoQWAbguXb32WowBvSINyEx0uD325MrCn5Ih4K54FkIfnoE1zsf/h2k3DM/fH+dkVlxSIoMQ4yJ24Kq9mPR84XbXuHu4b2Nftj2Yow1b9f0DY7gh98GD1Tri5pGG/7zawEAYM6kHBi0wTPI9EJRRu530Z9tF3i7TlcDAIZlBtdzn7co+CEdCtaCZ8YYdrqfAC7LUvYw0wsJ/UJk/jPjA4Nr3VsZMUYu+PFX5ocxhsoGruCZb+jGb3s12Z1wiRwsHi6uQ6nZCqNOg5FBsrUQ6KanR0rqYHO4kB5rxNj+wbvlBTT/TlY3+PfEI9D8xm9Ej+B67vMWBT+kQ8I7PZm/kHrrZHkDKhtsMGjVQVXsDEAYTijnzE+D1YFtp7gn4NHu4+axwraXf57866wOIYPJ1/zw216A+CNc+ODuyl7xCNMFR8ai+c1QYH63Tldw/Z+yE5U9ENYT/LZvlZ+DH5vDhX3nawAAwyn4IaR9gdyHDqSd7nc+QzJigi6VLkWbfG/9dqICNqcLGXFGZCeGAwCihW0v/2R+qtz1Pia9Rsj4GFsEJWJvffG9g0YHUfdc/m/FnyfyWipwd/zOSggPyO1JKS4ANW8AsPFYOSx2FxIiDOiZEDwHPXxBwQ/pkC5It722u4Ofy4Ks3gdofncu52G0W/msT58k4R29kPlp8s8730r3O+qWM4zUapUQAIl53N3udGHPuRoA3PHsYCEUiPupNcCF+MxPj/jgGD3TmdhwLviv8nOjT/6E5S2Xdguqgx6+oOCHdChYB5sKe95BUovRUoL7JFNFgCak+4LvrzQkI0b4nFDz0+CnzA9f7BzR+nRLuIF7QW+wiXfcvbC6CU4Xg1GnUfxIi5ZMLWqkArGtWsAHP6GQ+WlR88OYfx7bMrNF2I69dXiGX25DSSj4IR0KxtNeJbUWnKtqgloFXNo9RurliC4pkusnU2aWZ/DjcjEcdnfWHtitubN2TLifMz/uYDD+gunVRj9kM067t2sy401BVavScpiovzOLLhfDmcpGAKGx7cVnPh0uhjqrf/pOrdxfDKeLYVhmrOKH7IqBgh/SIZ02sEdbA2HnGS7r0z81SujwG0yS3H07yuosEq+kfWerGlFndUCvVSM7sfkJmM/8+Kvmp71tLwAw6bgXdDG3vfgX7e5xwbVdY9CqhWaUjX56geYVmy2wOlzQqlXoFhM82bOOhOk0whasv0587XVvxV4bxM0ivUHBD+mQVIMM/elwMZd1GJweI+1C/CQpigt+yuvkmfnht7z6p0QKv19A8zvfWn8VPF/Q44dn8sO2Fx/8ZAZZrYpKpRJ6IzX4ue6Hr/fpHmcSRrYEO2Hry09/A/zfXjDNMuyK0PitIj7RB+Fpr+Ol3BDLPsnBmfZNFDI/8gx+8vlhshe0GPB3k8Pmmp8Lgh+9+AXPZ4Rtr+DbrhGCRT9mfr7ccRZ3/mcbgNDY8uLxRc/+yPw0WB1CDdWAtOBq7+ErCn5Ih4Ix88NP8O6THCnxSvxDqPmRafBzsLD9d5988FPTZBe14JMxhiW/FeCbPdx8qLjw1gXPRp34XZ7PVAVn5gfwb1dsgPt5vfTDYeHjYM3QtifWj71+DhebwRiQHGUI6ZEWLWkvfhESqvhj07YgKXi22J3Cu/JgGmbaEl/zU1lvhdPFhKaHcuByMWHK+cAL3n3yT/w2hwtNdidMenGemn4+XIYXvj8kfHxh/Qh/2qtRpG0vl4vhrDv46RHMmR8RtwlbOlfVBLPFAb1GjX/fPQxXZMf75XbkqHnbS/zgh8+4Xvh3F8oo+CEdCrbMT0FFA1wMiDbqgvbdT3yEAWoV4GJAZYNVyATJwamKetQ02mHQqtE/tXXmx6TXQKdRwe5kqG60ixL8MMYwP+8EAGBM30SMH5DSZtSE2L1rzlY1wuZwQadRITVaPo+9WPifi5jbhC3xdSl9UyIxJogaRHrCn5mfjjKuoYy2vUiH+PEWwRL8HCutA8BlfYLpCHJLGrVK6GUjt+Pu/Dy1oRkxQlaRp1KpWkx2F+fJf/fZauw7V4MwnRr/98chuP2y7m0au4m97bXJPcn9ku6xQVmoG673b81Pvjv4adkGIVTwwY8/Cp75jOuFtXahTNK/znnz5mHEiBGIjIxEUlISbr75Zhw9erTVZUaPHg2VStXq34MPPtjqMmfPnsWkSZNgMpmQlJSEJ598Eg6Hf49ihgJh2ytICp5PuOt9egdpvQ8vMUKeJ752nuGCn45mCok93PRgIZfqH9UrEQkR7Wf6xN724sdaBGvWwuTnmh/+Z5YTgtszcX4qeK63OoQ3fkNCqIbqYiQNfjZu3IgZM2Zg69atWLt2Lex2O8aNG4eGhoZWl7vvvvtQXFws/HvttdeErzmdTkyaNAk2mw2bN2/GRx99hKVLl+LZZ58N9N0JOsG27dUy8xPM+OPucuv1w89UG57ZfmftWJHnG/GnW3omdlx7I2aTwyabE5tPVgII3l4q/DahP2p+XC7WnPkJwe2ZWHfNj9gjLvacrYaLAemxRqQE4VasrySt+Vm9enWrj5cuXYqkpCTs2rULV199tfB5k8mElJSUdq/jp59+wqFDh7Bu3TokJydj6NChePHFF/H000/j+eefh16vb/f7yMUJR92DpOCZfzHMDvbgJ1J+mZ/yOitOVzZCpQIu7d5+5ida5OPufKflzgqPTSLO9tp6qhJWhwtp0WFB20qB7/LcaBU/8/P1nkJU1NsQYdC2qQkLBfxwU7EzPzvc283DM0N7ivuFZLUpXVvLRf1xca3fGX722WdISEjAwIEDMXv2bDQ2Ngpf27JlCwYNGoTk5GThc+PHj4fZbEZ+fn5gFh6khMGmQbDtxRjDuaomAMHXefdCcjzufsjdXDI7MUIIci4U6/58bZM4mR9hMGZCxz9vk4Fv2tf1TMYu97beVb0Tg7amzF+Zn3qrA6+uPgIAmHltL4S5g9JQEuenuXy73F3thwfhIOeukM1pL5fLhccffxxXXnklBg4cKHz+jjvuQGZmJtLS0rB//348/fTTOHr0KL7++msAQElJSavAB4DwcUlJSbu3ZbVaYbU2/4KZzWax705Q0AdRwXNlgw1NdidUKiAtJrhTv3IcblpUc/HAM0bEd752pwvnqrnb7KxRnpinvfgj7tlJwXfEneevzM+qA8Uor7MiM96Ee67sIep1K0VqFNeGobrRjiabU9iS7QqH04U9Z2sAdFxrF6o8Cn5mzZrl9RXPmTOnTQanMzNmzMDBgwfx66+/tvr8/fffL/x/0KBBSE1NxXXXXYeTJ08iOzvb63UBXKH1Cy+84NP3hpJgqvk5535hSokKg0Eb3O8qI9wzyxr8sDXhKz746SzwbNnosKvOuyerh+nUSO7kuL+YHZ7PVXO/YxmxwZtZ9Ffmh8/SXdMnMej/PjsSZdQiXK9Bg82J4tom9Ezs+tbpkZI6NNqciAzTok9ScB/08JZHwc/bb7+N3Nxcj+tnfv31V8ycOdPj4GfmzJlYuXIlNm3ahPT09E4vO3LkSADAiRMnkJ2djZSUFGzfvr3VZUpLSwGgwzqh2bNntwrozGYzMjIyPFprKOGDH2sQbHvxWYBgfmHi+WNkQ1cVuoOf1OiOh1TGinjUnX8xzYwLb3O8vSWTXrxtL35bNSOIt1XD/dTnJ5T+PjuiUqmQFmPE8bJ6FNVYRAl+drgPGVzaPbbTv4NQ5PG21zfffIOkJM9OMERGehZhMsbwyCOP4JtvvsGGDRuQlZV10e/Zu3cvACA1NRUAkJubi5deegllZWXC+tauXYuoqCjk5OS0ex0GgwEGQ3A2uRNTMGZ+0mODf0I0Px260S6fdg/FNdzJs84mdPM1P2I0eSvwoN4HEC9QbLI5hW3GYH4B91eHZ/7vMyMu+P8+O5MqBD9Nolwf315iBG15teFR8LNkyRJER3ved+Hf//53mzqc9syYMQPLli3Dd999h8jISKFGJzo6GkajESdPnsSyZcswceJExMfHY//+/XjiiSdw9dVXY/DgwQCAcePGIScnB1OnTsVrr72GkpISzJkzBzNmzKAAp4v4Pj/2IDjtdd69JZEexO/KeWIe3xZLUS2/7dXxixs/d0uMJm/8GJMeFxmMKVbND//7FRmm7bCgOxj4a7aX8PcZxIGjJ7q5t4X5v5euYIxhl/uk17AO2kuEMo+Cn2nTpnl1pXfccYdHl1u0aBEArpFhS0uWLMH06dOh1+uxbt06vP3222hoaEBGRgamTJmCOXPmCJfVaDRYuXIlHnroIeTm5iI8PBzTpk3D3LlzvVozaUsfVJkfPq0e/O8s5bbt5XIxIfPT2cgHvslbpQiF2oeLuZ5O2RfZOmhu2te1TEYo1PsALWp+ROzw3GhzoKKey/YF85ahJ9Lc28JiZH4Ka5pQYrZAq1ZhaEZMl68v2Ph82stms6GsrAwuV+sXxu7du3t8HReb3pyRkYGNGzde9HoyMzOxatUqj2+XeEanDZ7TXsKLUwg8uQrBj10ewU9lgw02pwsqFTptssZnfswWB+xOl7Dt6i2rw4m952sAAMMu0tuEf6zsTtal22yu9wnu4NofHZ7Pu+t9IsO0iDYGb9bME6kxfPDT9QalfOuFAd2iRTk5Fmy8Dn6OHz+OP//5z9i8eXOrzzPGoFKp4HTK4wmXdF2wFDw7XUx4JxUKwY/RzyMIvMU/9smRYZ0GF9FGHVQqgDGu0aGvQ1kPFpphc7gQF65Hz4tse7V8UWi0ORFt9DX4CZHMj0H8zE+oPHae4E9DipH52e0OfoZ10FQ01Hkd/EyfPh1arRYrV65Eampq0DbzIsGz7XW2qhF2J4NOo0JKVHD3+AGauxbbHC44XQwaiU958E/kqRfpr6RRqxBr0qOqwYbqBrvPwQ8/RmNYZuxFn5/0GjW0ahUcLoZGm8PnzEOoZBZb1vzwb3i7ioqdm/EHAopqm7r8+B4r5WYZ0iT39nkd/Ozduxe7du1Cv379/LEeIiPBUvD83d5CAMCIHnGSBwKB0Dqb4UBkmLRbCYU1Fy925sWadKhqsKGywQrAt74k3pxwUalUMOo1qLM4upQpC5ltL3fmx+FisDldovTkoWPuzfhtYYvdhepGO+LCfR/PdLzMPcswSEetdJXXOd6cnBxUVFT4Yy1EZvgtCqeLwelSZgDkcjEs33keAHDr8NDo5WTQqsG/YZRD0XNx7cWPufPi+RNfDb6d+GKMCbUOnp5wEaNAvMTMF3QHefDTYuyEWF2emzM/FPwYtBokRHB/A13Z+qpqsAlF5L2CfJahrzwKfsxms/Dv1VdfxVNPPYUNGzagsrKy1ddoTERw0WmasyRK3fracqoShTVNiAzT4vqB7Te9DDYqlap5YKcMip5PlnPpd09e3GLD+V4/vp34Ol/dhKoGG3QaFQZ28yzdz2/l+FrHYne6hN5E/FDZYKXVqGFwZ4QbRfrdOlzCvW70TAzesSDe4E9EltT6XvR8vJTL+qTHGoUiddKaR49KTExMq71Hxhiuu+66Vpehgufg07I41e50KXLY4C/HuSzlhIEpily/r4x6LRpsTlkUPR8s5F7cPKk94E98VfmY+TlYyA1H7psS6fGWjNAXyccXc765odZdsxTswg1aWB02NIpQ9FxmtuBcVRPUKtBxbDd+Nl+lj28AAOB4GfeGozdlfTrkUfCTl5fn73UQGdK3CH5sCj3xxaeOe4fYXBsxB3Z2RZnZgop6K9QqoH+KJ8FP1zI/+UXuQCvV86asXR3ZUGbm1poQYQiJEQImvQZVDUCDCL9bfH1W35QoyWvT5CLeve3Fb1t563CxGT8d4kY89UkOrec9b3gU/FxzzTVYvHgxJk+ejMTERH+viciEWq0STsIotejZ05NGwYYfcSF1zc/BIi4Tk50Y4VGvESHz42OX53z37Q3wcMsL6HpH7PI6LvhJigruLS9eV7cJW+JnTw2/SD+mUMLX/PC/V96oabTh9wt/g8XOvVmlep+OeVzw/OmnnyIjIwNXXHEFXn31VRw+fNif6yIyofT5XnyxrScnjYJJ8wu6tPO98r3Y8gK6nvk5yGd+0jzP/Ji6+FiV8cFPkNf78MLdJ77qLF3/3eKL04fT7CkBv+1V4UOn8/3na4XAB6DMT2c8Dn7Wr1+P4uJiPPzww9i1axdGjhyJ3r17469//Ss2bdrUptMzCQ580bNNgcGP08WEUzienDQKJnLp8sxnfgZ28ywY6UrNT5nZgvI6K1QqoH+q50/6Xe1aXFbH/Y4lhkjww29P1Vm6NoOt0eYQtikv1ok7lPC/R74EP/zjCQBj+iYih3r8dMiro+6xsbG466678NVXX6GiogLz589HU1MT7rzzTiQlJeHuu+/Gf//7XzQ0NPhrvSTAmnv9KC/4KauzwOli0KpVQio5VMhlvhf/ZOzpk3Ccu2DYl8wPf1vZiRFenXDpan0Uvz2R6GNTRqWJDOMe265mfo6V1sPpYkiI0Ifcm5POJHSh5od/s/H09f2w5J7LfB7XEgp8fmT0ej2uv/56LFy4EOfOncPq1avRo0cPvPjii3jzzTfFXCOREP/Ho8SCZ77eJyU6LCSaG7YkhxEXNY02YW6Tp9tQce6Uf3WD/aKz/y7EN3Xrl+Jdql8IfnysYQm1bS8+81PfxZof/jh2n+RImhTQAh/8+DLg91CRd9vMoUy0BgDDhw/H8OHDMXfuXNjtXUuHEvlQcuan0D0cMC3IG8+1Rw59fvgn4ow4o8djI/jMj83pQoPNiQiD509RfJfl7l42yxO2vXx8rJozP6ER/EQJmZ+uPc/Tcez2xfNvABrtXg3brbPYUVDB7bpQ8HNxXgc/jDH897//RV5eXpup7iqVCitWrIBOR0cWg0Vz5kd5p72KhbEKobEd0ZIcCp6Feh8vio+Neg2MOg2a7E5U1du8C358nK/V1S3C8pDL/Iiz7cVnfnpTUW4rsSY91CrAxbhOzckeziM8XMw9nqnRYcJxedIxr7e9Hn/8cUydOhUFBQWIiIhAdHS08C8qiqLNYKPk015FXsyUCjZdPb4thnwfU/D8PKOqRu9qHnydDs4/Vr4c3WaMhVzmhw9Ixaj5ASjzcyGNWiUU/ntz3J1v8ElZH894nfn55JNP8PXXX2PixIn+WA+RGb37tJcigx/3MffUEAx+TDLo8yMEPx6e9OLFhetRWNPkVdEzY0yoL/J2uCh/dNuXLcLaJrtwEjJUgh++5sfchW2vBqtDGHhLx7HbSojQo6Le6tWJr91nubYBQ9Jj/LSq4OJ15ic6Oho9e/b0x1qIDAVD5qdbCG97SVXz02hzCDO9vH0nGstnfrw47l5eZ4XV4YJa5X2mz6jzvTicb6UQY9KJMuFcCcTY9jrhrvdJiNALP2/SrPm4u+fZz938QF/qmeQRr4Of559/Hi+88AKamnyfOEuUgy94tirwtBff4DAlKgQzPxKf9jpcXAfGuDqYJC+PgMeHe3/cna/3SY02en2819SFba8lv54G4P0JMyUTo88PX+xMHYjb5+2Jr6KaJhTVWqBRq2hGmoe83va69dZb8fnnnyMpKQk9evRoU9y8e/du0RZHpNec+VFWwbPV4RQmbadEh17mR+o+PyfdL259fQgKYk3eZ374k17psd4Hur5uex04X4uvdp0DADw5vp/Xt6tUfOanK0fd97i3aPp5MO8tFPFvADzd9uI7ZeekRtEUdw95/ShNmzYNu3btwl133YXk5GTqzxDklLrtxQ+b1GvViDWF3ulDfoK9VKe9+K7HKR6eVGmJP+rrVeanyreTXoDv217Ltp8FY8CNQ9JCqkNxlJD58e13izGGvCNlAIBr+tCsyPbw215lHhY888FPKP0edpXXwc8PP/yANWvWYNSoUf5YD5EZvVaZBc98LUZylCEkA3Spp7qXdWHYp0+Zn2rfTnoBvjc5POY+qj02J9nr21SyiLDmYNHhdEHr5TbjsdJ6FNVaYNCqcXnPeH8sUfH4ujW+bvFiKPjxntc1PxkZGXSkPYQotcNzSa3vmYdgIPVsLz7z5m29D9DiqLsXmR/+2LS3J70AwOTe9mq0Oz3uKs0Ya+5TE2J1K/y2F+Db1lfeUS7rk5sdLxTmk9a6ubdv+ROMnWmwOnComGakecvr4OeNN97AU089hdOnT/thOURuhOBHYZmfUiHzE5rBj1Himp/yet8b//HBT3WjZ5mf3WersfdcDbRqFUb6kEngayQY87ywv7zeCrPFAbUKyEoI9/o2lUynUSNMxz0v+LL1xW95XdsvSdR1BZN0d+an1Gy5aNZ937kaOF0MadFhIdnTzFdeb3vdddddaGxsRHZ2NkwmU5uC56qqKtEWR6QnjLdQWIdnyvxwf9pSBT9dmXTOBz+ennRZsP4EAOCWS7v5NCDTqGvOPjRYHUK9VGf4o9oZcSaPLh9sIsN0sNitXvf6cboY9p2vAQBckZ3gh5UFh4QIA/QaNWxOF0pqLZ3WsvFbXpdS1scrXgc/b7/9th+WQeRKr9CCZ77mJxRPegHNL+j8Vk4g654YY6Jse5ktjovONnI4XfjleAUA4N5RvvUf06hVCNOpYbG70GhzwpPc0YkQn0sVGaZFeZ3V68zPqfJ6WOwuhOs16BliGTNvqNUqpMWE4XRlI85XN3Ua/Ox0Bz/DKfjxisfBT11dHSIjIzFt2rQOL7Nx40ZRFkXkQ6fQDs+loR78uLe9nC4Gm9MV0AZ8ZotD2D7ypeA52qgTZhtVN9o6DaDOVDXC5nTBqNN0KRAx6bWw2G0e10jxwU92yAY/7snuXgY//Ly3/qlRUKtD7yCCN7rFGnG6slHohN0el4sJnZ2HZcYFamlBweOan8mTJ8Nq7TgNvXHjRtxwww2iLIrIh1JrfoTMT8huezUHO4He+uLnEUWGaX3aEtKoVYhxn/iqvsiJr+Olzc3yuvJiymfKPG10eKqcm56dnRiiwQ8/38vq3bZXfiFXmDvQy5EnoYjfwi3spOj5eFk96iwOGHUa9EsNnUabYvA4+KmsrMStt97aaoo7b9OmTZg0aRKmT58u5tqIDCixzw9jDKXubZdQLXjWadRC1i7Qx935ep+uTDkX6n4ucuLrRJk4J674RoeePlZFte6miiFaYOrriAs+80PDNy8u3d22obCmscPLbD/N1dgOyYj2urN5qPP40VqzZg0OHjzYJsD55ZdfcMMNN2DatGmYP3++2OsjEuMLnpV01L260S6sN1SDH6A5mxHo4+5iTDmP8zDzI0wG7+JwzDgvO+ryNU3JIbqt6kvwY3e6hMzPgDTK/FwMn/nhu5e3Z+PRcgDAqF5UPO4tj4OftLQ0/PTTT1i3bh0ee+wxAMCvv/6KiRMn4o477sCCBQv8tkgiHb0Cx1vwJ73iw/VC8BaKpDrx1ZViZ56nmZ/jIhUeJ7rXWu5BR916q0PobxOq26q+THbPO1KGOqsDCRF69EkOze1Cb/CjYQ4W1sLpavv8a3U48dsJrth/dF9qG+Atr057ZWdnY/Xq1Rg9ejRqa2vxzTff4E9/+hPee+89f62PSIzfOlFSzc/ZKq4eo5sPc56CiVGiLs9d6fHD65nInQTadKwcd+f2aPcyThcTJsf37uKLKb9WT4IfPriONGgRbgjNOUq+ZH6+2snNQbvl0nSvu0KHov6pUYgwaFFndeBwsblNndT2gio02Z1IijTQNqIPPP4NNJvNMJvN6NGjBz777DN88cUXmDBhAv7v//5P+JrZbPbnWokEdEKfH+UEP/xJnF4hWozKM0o036vMXWzuy0kv3i2XpgMA8o6WC9d3obNVjbA5XAjTqYX6CF8leTFLSWigGaJbXkDzfC9zk2eZnzKzBXnuLZpbh2f4bV3BRKNWCR2btxe07Z+Xd4R7PEf3TQzJET5d5XHwExMTg9jYWMTGxuKGG26AzWbDV199hbi4OMTGxgpfJ8ElTCvtmARf8FshvUI8tc5nfiz2wAauRbV8wbPvwUGvpAgMy4yF08Xw393n270MP14iOzECmi4em+YDNb5YuzOh3kATAGLcw4JrPQx+1hwqhdPFcEn3GPQK0fYAvrgsizu+vuN0O8HPUeqU3RUe52zz8vL8uQ4iU/yEbU+2A+SCMj8cPvNjCXDgesq9FdXVY+C3Dc/ArjPVWL7zPB66JrvNu1ux6n0AIDGCC2T4eqXOlIT46BSgefhsdaPNo8vvdL94X92bprh7Y6Q7+NleUNWqWWlBRQMKKhqgVatwJRU7+8Tj4Oeaa67x5zqITPHv3j09BSM1V4s6kFB/hxkmwWmv6gYbKuq5F8TspK518J00OBUvfJ+PgooGbC+oajO3Sxgs2sWTXkBz5qfcg99zftsrNYS3vaLdmZ8aD+ev7TzNNeIb0YMa8XljUHo09Fo1KhtsOFneIDynbXBnfUb0iBOKz4l3PNr28raWp66uzqfFEPnhjytXNtjgUEDRc2FNEyx2F/QaNbp30hI+FEgx3PSEO/DsFmMUTpv5KtygxQ2D0wAAX7qLZVsSM/PD1/zUNNphdXT+ePHbXqFc88NnfjwJfoprm1BY0wS1ChjaPcbPKwsuBq0Gl2TEAGi99cXXT9GWl+88Cn5iY2NRVlbm8ZV269YNp06d8nlRRD7iw/XQqFVgDMI7ejnjt7yyEsJD/kSJ0T15O5CZn5Ydl8Vw6wiuOHbVgWIU1zb3O3G6mPCz7iNC5ifaqBPaOlxsi7c0xLuHA0CM0T3ewuq4aANUPuuTk8adXiLeabn1BXAHGLaeqgQAjOlH24i+8ug3kTGG//znP4iI8OwJzW73ruU5kS+1WoWECD1KzVaU1VlkPyuLf3fUn1q9S1LzI9RbiRT8XNo9BgPSopBfZMadH2zDtzOvRFSYDuerG2F1uKDXqjsd+ugplUqFxEgDCmuaUFZn7fT0WKiPTgGAKKMOKhXAGJf96ayh5S5h8CZteflixAXBz+FiM2wOF5IiDSE7XkUMHgU/3bt3xwcffODxlaakpECno33IYJEUGYZSs1URRc/rj3AZSmr6BYRJuO0l1rRzlUqFf08dhj8s2oJTFQ34Kb8UfxiWLmSYxDjpxeODn85+zx1Ol/D15Gjfj/IrnUatQlSYDrVNdtQ22ToNfg4Xc2UTQzKoq7MvLu0eC7WK29IvNVuENxh9UyLpiHsXeBT8nD592s/LIHKW6EUPFCkV1zbhSEkdVCrg6j6UDpZivIVw0kvEYvP0WBOu7Z+EZdvOoqCCu/7jwpaXeLfjSa+fohoLXIxr/pkQHrrBDwDEmrjgp/oidT/8ibCutD4IZeEGLbITI3C8rB75RbWiby2HqtAuiiAeEV4UPDgGLCW+6dfQjBhhPEIoC9MFts8PY0wIHMTeEuqZwJ0cO13BDXncfJJr6y9WhgloDvLLO2iqCAC7znJbDwPSors0RT4YRAvz1zqvBaxyz2fji6SJ9/juzgcLzS2yq7S13xUU/JCLan5HfPEGcFLadMx9AoK2vAAEvubH3OQQBsp2Zahpe3rEc8FPQUUD8o6W4ZfjFdCqVZg4KFW02+AzE51lfvji3eGZ1NA1lj/u3kmjQ8aYkPmhNyS+48dXUOZHPFR6Ty4q0Yu5R1I6W8VlBQamU20BEPhtLz44jjbqhKyTWHrwmZ/KBvxz5SEAwPQreqCniAWffN+e4tqOg3wh+KF+NcKJr5pOGh2aLQ5hKCffFZp4b0Aa95y243Q1qtyZNjGznqGIMj/kohI9eEcsB3wjxsSI0K7F4AW64JkPjsXO+gBA9zgT1CpuSOvJ8gYYdRo8Ora3qLeRFsMNwm15pL6l2kY7jpVxPcyGUeYHMR70+uEDI5NeI3pAHEpy3JkfPvCJD9cjljJpXULBD7koofutjIMfl4uh0v3EkEDBDwApMj9dn+beEb1WjW6xRuHjK3slCMM1xZIawwX5hdVNYIy1+frus9VgjOsh5Y8AT2maR1x0HPzwL9ZU79M10UadsM0IAMN7UPDdVR5te+3fv9/jKxw8eLDPiyHylNRi26vlfBk5qWmyC+l1fh5ZqAt0zQ+/7eWP4Afg6n7OVXFZGX80d0uL5oKrBpsTZosD0cbWwdXBwloAEDruhrrm4aYdb3tRvY94rumTiG/3FqFvciRe+v0gqZejeB4FP0OHDoVKpfLohc/pVM70b+IZPpNic7pgbnIIc33khN/yijHpoAvxzs48oz6wHZ79ue0FtH4B9UcfJ6Neg7hwPaoabCiqaWoT/BTWcIFXZnzXZpYFCz74qW7oLPPjPulFwU+X/X1SDsb0S8L4ASm0hSgCj14lCgoKcOrUKRQUFGDFihXIysrCwoULsWfPHuzZswcLFy5EdnY2VqxY4e/1EgmE6TRCIznLReYeSaXC/cIbT0+yAmGwaYBqfpq3vfzTzyW+RV+dbjHGTi7pu+ai57Z1P0XuQmh+eyzUCTU/nZz24o/Bx8nwDZPSJEYacNPQbhT4iMSj4CczM1P49/LLL+Pdd9/FAw88gMGDB2Pw4MF44IEH8Pbbb+PFF1/06sbnzZuHESNGIDIyEklJSbj55ptx9OjRVpexWCyYMWMG4uPjERERgSlTpqC0tLTVZc6ePYtJkybBZDIhKSkJTz75JBwOh1drIZ0zaLlflUCOSvAGP42b6n2aBbzmx90Hiq8RE9sj1/bC+AHJWHrPCL9cP9Bc9FxY0/bEV5E78+OvwEtphKPunZz24re9Yqjmh8iM1/sDBw4cQFZWVpvPZ2Vl4dChQ15d18aNGzFjxgxs3boVa9euhd1ux7hx49DQ0CBc5oknnsD333+P5cuXY+PGjSgqKsItt9wifN3pdGLSpEmw2WzYvHkzPvroIyxduhTPPvust3eNdIIPfqwOeU5254euJlAhqiAswDU/5X4+bRcbrse/pw736+gSPrDhAx0eY0z4XBoFPwCAGCNf8Ew1P0R5vA5++vfvj3nz5sFma/6Ft9lsmDdvHvr37+/Vda1evRrTp0/HgAEDMGTIECxduhRnz57Frl27AAC1tbX48MMP8eabb+Laa6/FsGHDsGTJEmzevBlbt24FAPz00084dOgQPv30UwwdOhQTJkzAiy++iAULFrRaI+ka/oXUGqBuwd6iY+5t8Zkfu5PBcZHJ22Ioc3dG9lfmJxDS3FtaFwY/tU12NLq3D1NlPtw3UBIjDVCpuA7ilfXtnwQVTntR8ENkxuvg57333sOaNWuQnp6OsWPHYuzYsUhPT8eaNWvw3nvvdWkxtbXcaYq4OK6B2K5du2C32zF27FjhMv369UP37t2xZcsWAMCWLVswaNAgJCcnC5cZP348zGYz8vPz270dq9UKs9nc6h/pXHPmR57bXpXCthc9yfKM+ubaAIufM3YWO3dCCmjuC6VEqe4TX8UXbHsVuT+OD9dTzYWbUa9Burv9AD9s80J8MXQcbXsRmfE6+Lnssstw6tQp/POf/xRqfl566SWcOnUKl112mc8LcblcePzxx3HllVdi4MCBAICSkhLo9XrExMS0umxycjJKSkqEy7QMfPiv819rz7x58xAdHS38y8jI8HndocKgdWd+5L7tRZkfAR+wAv4veuZPeum1akSFKbdxfHPNT+vMD215tY+fL3Wsg+CnqpHv80MFz0RefHqWCg8Px/333y/qQmbMmIGDBw/i119/FfV62zN79mzMmjVL+NhsNlMAdBEGnbwzPxVU8NyGSqWCUadBk93p97qflj1+5NgHylN8zU+J2QKH0wWtu21CUS0f/Cg3q+UPvZMisP5IGU6U1rX7db4Ymra9iNz41BDlk08+wahRo5CWloYzZ84AAN566y189913Pi1i5syZWLlyJfLy8pCeni58PiUlBTabDTU1Na0uX1paipSUFOEyF57+4j/mL3Mhg8GAqKioVv9I54RtL7nW/LgzD1Tw3Bq/9eXvE1/8tPXucSa/3o6/JUUaYNCq4XSxVtkfftuL3xYjnN7J7sxPadvMj8vFhO7PVPBM5Mbr4GfRokWYNWsWJkyYgOrqaqGpYWxsLN5++22vrosxhpkzZ+Kbb77B+vXr25wiGzZsGHQ6HX7++Wfhc0ePHsXZs2eRm5sLAMjNzcWBAwdQVlYmXGbt2rWIiopCTk6Ot3ePdEDO216MMWHbi/r8tGYMUK+f05XcCU1+AKlSqdWqVhPkeXTMvX38cM3j7Wx71dFQUyJjXgc/8+fPxwcffIC///3v0Gqbd82GDx+OAwcOeHVdM2bMwKeffoply5YhMjISJSUlKCkpQVMT90QTHR2Ne++9F7NmzUJeXh527dqFe+65B7m5ubj88ssBAOPGjUNOTg6mTp2Kffv2Yc2aNZgzZw5mzJgBg4GyAGKRc8Gz2eKAzX2aiWYutRamC0yXZz5QyAqC7sc9Erjs1el2gh+q+Wmtlzv4qai3Cg0NeeequWxgXLheePNEiFx4HfwUFBTgkksuafN5g8HQqj+PJxYtWoTa2lqMHj0aqampwr8vv/xSuMxbb72FG264AVOmTMHVV1+NlJQUfP3118LXNRoNVq5cCY1Gg9zcXNx11124++67MXfuXG/vGulEc82P/DI//JMuTY5uK2DbXkGS+QGa78PpSu7FmzGGU+5AKCOOgp+Wwg1aIRt2YfbnmLsOiM8OESInXhc8Z2VlYe/evcjMzGz1+dWrV3vd56e9yckXCgsLw4IFC7BgwYIOL5OZmYlVq1Z5ddvEO8K2lwxrfvj2+jFGSq1fSBhu6sdtL8aYUPOTlaDsmh+gOXvFZ7NKzBZUNdigUavQx13jQpr1SY5AYU0TjpSYcVlWnPB5PhjqnUzBD5Efr4OfWbNmYcaMGbBYLGCMYfv27fj8888xb948/Oc///HHGokMyHnbq9Yd/ERTL5E2hC7Pfvy5lddbUW91QK0CMhRe8Aw0Z3744OdgIdcHrHdSBGUW2zEgLRp5R8uRX9i6X9pxdxE0fxyeEDnxOvj5y1/+AqPRiDlz5qCxsRF33HEH0tLS8M477+D222/3xxqJDMh5vIUQ/BiV21/GX5qHm/rv58ZnfdJijEFR25HlDn7OVzfC5nAhv4hrvjogLVrKZcnWgDTutGx+cW2rz58oo20vIl8+vVrceeeduPPOO9HY2Ij6+nokJflv1g6RB4NOvqe9at29RKJp26uNQAw35QuDs4Kg3gfgjrub9Bo02pw4V90oZH74F3nS2sBuXFB4tKQONocLeq0aFrsTZ6u4oLg3bRUSGfKpz4/D4cC6devwySefwGh0DwIsKkJ9fftdPonyNff5ke+2Fz9okTQzBmC4aQFf7BwEJ70ArjmkcNy9vAGH3Jkf/kWetJYea0RUmBZ2J8Nxd7bnZHk9XIw74k4jZ4gceR38nDlzBoMGDcJNN92EGTNmoLy8HADw6quv4m9/+5voCyTyoIhtL+ol0oZw2suPBc/n3O/wM+OVX+/D65/KZXl+OFCMolqL+3OUwWiPSqUStgT5uh9+1lfvpAhFd/wmwcvr4Oexxx7D8OHDUV1dLWR9AOD3v/99q2aEJLiEBSCD4KuaRr7mh4KfC4UFYNsrGHvgjBvAzQf8Zk8hAKBvciQiw+j3qyNC3Y87S3bSHfz0onofIlNe1/z88ssv2Lx5M/T61qnMHj16oLCwULSFEXlRQuYnioKfNgJR81PszowEU/BzTZ9Eoe4HAB4b21viFckbvyV4sIjL/JwKsjowEny8zvy4XC5hpEVL58+fR2QkpYWDlZzHW9RSn58OGfXuDs9+2vayO10oNfPBT/AM/QzTaTCmL3eQY2RWHCYMbH9OIOHwmZ/DxWY4Xay56WWQ1IGR4ON18DNu3LhWM7xUKhXq6+vx3HPPYeLEiWKujciInKe6Nx91p+DnQuEGLrlbZ3H45fpLzRa4GKDTqJAQHlyjRZ66vi/uzs3EG7cOobqVi+iZGIEwnRqNNicKKhpaNL2k4IfIk9fbXm+88QbGjx+PnJwcWCwW3HHHHTh+/DgSEhLw+eef+2ONRAbkPNWdgp+O8XUq9Va7X66f3/JKjTZCrQ6uACEzPhxzbxoo9TIUQaNWoX9qFPacrcHGY+WotzqgCpKmlyQ4eR38pKenY9++ffjiiy+wf/9+1NfX495778Wdd97ZqgCaBBdFbHvRaa82IsP8m/lpLnYOni0v4puBadHYc7YGP+wvAgCkRRupIzaRLZ+aHGq1Wtx1111ir4XImFzHW9gcLqEolTI/bUX5OfgpDMKTXsQ3fN3P7rM1AICeibTlReTLp+Dn6NGjmD9/Pg4fPgwA6N+/P2bOnIl+/fqJujgiH3Kd6s5nfQDQUeR28I9JncU/215C5ieagp9Qd2ETSCp2JnLmdcHzihUrMHDgQOzatQtDhgzBkCFDsHv3bgwaNAgrVqzwxxqJDMh1qrtwzD1MC02Q1ZyIIaJFwTNjTPTrL64JvmPuxDe9kyOEDDHQPCCWEDnyOvPz1FNPYfbs2Zg7d26rzz/33HN46qmnMGXKFNEWR+RDrtte1N25c3zNj8PFYLG7hI7PYimkmh/iZtBqMHtCPzz//SEAQE8KfoiMeZ35KS4uxt13393m83fddReKi4tFWRSRH7kWPNc20VDTzoTrteBPaftj6ysYuzsT302/MguvTRmM24Zn4MpeCVIvh5AOeR38jB49Gr/88kubz//666+46qqrRFkUkR+51/xQ8NM+tVrVvPVlFbfoudHmgNldSJ0aTZkfwrl1RAZe/cNg6LU+zc0mJCC83va68cYb8fTTT2PXrl24/PLLAQBbt27F8uXL8cILL+B///tfq8uS4MBvezldDA6nC1qNPJ7YahtpovvFRIXpUGdxiH7iq8Td4ydcr6Fic0KIongd/Dz88MMAgIULF2LhwoXtfg3gOj+3NwaDKBO/7QVw2R+5BD81NNfropp7/Yi77VXiHmuRTFkfQojCeB38uFzy2vYggdHyFIfV4YJcJhnQttfF+avRIT/TKyWKgh9CiLLI4+07kT21WgW9O9tj8eOEcG9Rd+eLaz7uLnLmp9YKAEim4IcQojAeBz9btmzBypUrW33u448/RlZWFpKSknD//ffDarWKvkAiH83H3eWT/eNrfijz07HmRof+yfxQ8EMIURqPg5+5c+ciPz9f+PjAgQO49957MXbsWDzzzDP4/vvvMW/ePL8sksiDHCe7V9RzAXd8OBU8d4Tf9jL7qeA5JUome6CEEOIhj4OfvXv34rrrrhM+/uKLLzBy5Eh88MEHmDVrFt5991189dVXflkkkQc5dnkuq+OCnyTKPnRImOwudvDD1/xQwTMhRGE8Dn6qq6uRnJwsfLxx40ZMmDBB+HjEiBE4d+6cuKsjsiK3bS+XiwmZn6RIyj50xF+nvWjbixCiVB4HP8nJySgoKAAA2Gw27N69W+jzAwB1dXXQ6ajuIpjpZTbioqbJDruTm1eVEEHBT0f8Mdnd6WJC1o0yP4QQpfE4+Jk4cSKeeeYZ/PLLL5g9ezZMJlOrjs779+9Hdna2XxZJ5MGgk9e2V1kdl3mINemom2wnIvjgxype5qey3gqni0GtAhIp8CSEKIzHfX5efPFF3HLLLbjmmmsQERGBjz76CHp9c5Hp4sWLMW7cOL8sksiD3La9ysz8lhdlHjoTaRD/tBdf75MQYZBNw0tCCPGUx8FPQkICNm3ahNraWkRERECjaT0devny5YiIiBB9gUQ+5DbZvVwodqbMQ2f80eRQOOlFW16EEAXyusNzdHR0u5+Pi4vr8mKIvMltsjtfc0LbLp3zR5+f6kYbAGoxQAhRJspXE48JfX5k0uGZr/lJpMxPp/xx2quGHyhrouCHEKI8FPwQj8mu5qeOan48wQc/VocLNpF+djRTjRCiZBT8EI/JbdtLqPmhHj+dCjc072432sTZ+qqhmWqEEAWj4Id4TK4Fz4kU/HRKp1ELrQDqreIEPzRTjRCiZBT8EI+Fya3Pj/u4NWV+Lo6f7N5gFSdwraXMDyFEwSj4IR6TU81Pg9WBBhv3Qk5zvS4u3MAFrmJlfmqauNNeMUYqeCaEKA8FP8Rj/GkviwxOe/FbXia9RshqkI6F6/nMj0jBD7/tRZkfQogCUfBDPCangucyqvfxSvO2l7g1PzFU80MIUSAKfojHwtyZnyYZZH74Hj9U7+MZkzv4EWPby+F0oc59PVTwTAhRIgp+iMeaOwWL1yzPVzTXyzsR7pofMTI/5hadoin4IYQoEQU/xGP+mBHlq/J62vbyhlDzY+t61q7GPdoi0qCloaaEEEWiZy7isSh38GOWU+aHRlt4JFzEbS++wSEVOxNClIqCH+KxKD8MyPSVMNeLhpp6hC94bhQh+KHRFoQQpaPgh3is5XRwxpikaxFGW1CPH480Z366vu0lnPSizA8hRKEo+CEe42t+nC4m+YkvmuvlHTELnvmaH2pwSAhRKgp+iMdMeg00ahUAabe+7E4XKhu4F2AKfjzDZ34aRBhsWuKut4oLp+CHEKJMFPwQj6lUKiH7Y26Srui5wn3SS6tWIdZEL8CeELPgOb+oFgDQLzWyy9dFCCFSoOCHeEUIfiTM/PAnvRIiDFC7M1Gkc2J1eGaMIb/IDAAYmBbd5XURQogUJA1+Nm3ahMmTJyMtLQ0qlQrffvttq69Pnz4dKpWq1b/rr7++1WWqqqpw5513IioqCjExMbj33ntRX18fwHsRWiIN0jc6bC52pi0vT4WLNNW9xGxBVYMNGrUKfVMo80MIUSZJg5+GhgYMGTIECxYs6PAy119/PYqLi4V/n3/+eauv33nnncjPz8fatWuxcuVKbNq0Cffff7+/lx6y5NDosIyKnb0WrhdnqvvBQi7r0zspAmE6TZfXRQghUpB0HPaECRMwYcKETi9jMBiQkpLS7tcOHz6M1atXY8eOHRg+fDgAYP78+Zg4cSJef/11pKWlib7mUBfl7u0iZaNDoccPBT8eC2+x7cUYg0rl23YhX++TkxYl2toIISTQZF/zs2HDBiQlJaFv37546KGHUFlZKXxty5YtiImJEQIfABg7dizUajW2bdvW4XVarVaYzeZW/4hn5JT5SaS5Xh7jgx+Hi8HqcPl8PXzmh+p9CCFKJuvg5/rrr8fHH3+Mn3/+Ga+++io2btyICRMmwOnk6hZKSkqQlJTU6nu0Wi3i4uJQUlLS4fXOmzcP0dHRwr+MjAy/3o9gEiWD4abNQ00p8+MpftsLABq7MN/rZDlXT0cnvQghSibpttfF3H777cL/Bw0ahMGDByM7OxsbNmzAdddd5/P1zp49G7NmzRI+NpvNFAB5SA6ZH36oKQU/ntNq1AjTqWGxu9Bgdfjco6fa3eCQxooQQpRM1pmfC/Xs2RMJCQk4ceIEACAlJQVlZWWtLuNwOFBVVdVhnRDA1RFFRUW1+kc8I4vgx8zV/NBoC+9EdLHXj8vFhP5ONNeLEKJkigp+zp8/j8rKSqSmpgIAcnNzUVNTg127dgmXWb9+PVwuF0aOHCnVMoMav+0lVZNDxpiQ+aGCZ++Ed7HXT53VAZd7pFsUBT+EEAWTdNurvr5eyOIAQEFBAfbu3Yu4uDjExcXhhRdewJQpU5CSkoKTJ0/iqaeeQq9evTB+/HgAQP/+/XH99dfjvvvuw3vvvQe73Y6ZM2fi9ttvp5NefhIp8WT36kY77E7uFZi2XrwTru9a5ocPeMN0ajrmTghRNEkzPzt37sQll1yCSy65BAAwa9YsXHLJJXj22Weh0Wiwf/9+3HjjjejTpw/uvfdeDBs2DL/88gsMhuYXvc8++wz9+vXDddddh4kTJ2LUqFF4//33pbpLQa+5w7M0mR++wWGsSQe9VlGJS8lFdLHRYU0jbXkRQoKDpJmf0aNHgzHW4dfXrFlz0euIi4vDsmXLxFwW6YTUNT98j58kOubutRgTF7Twj6G3at2ZH5rmTghROnrrTLwidZND/pg71ft4r18qV9h/qMi3vlY1TdxJL8r8EEKUjoIf4hU+81NvdcDl6jhr5y802sJ3A9xdmQ/6GPzwmZ9oEwU/hBBlo+CHeIU/7cUY0GAL/NYXX/OTSENNvTawG9eV+XhpHawO7+t+qOaHEBIsKPghXjFo1dBpuLlQUtT9VPDH3Omkl9fSosMQY9LB4WI4VlLv9febhZofCn4IIcpGwQ/xikqlajHiIvDBT2UDF/wkUPDjNZVKJczkOugeUOoNyvwQQoIFBT/Ea1Ied6+s54pu4yPoxJEv+LqffB+CH+G0F9X8EEIUjoIf4rVICYebVvDBTzhlfnzR333i61ip99te/Gkv6u5MCFE6Cn6I16Tq9eN0MVQJ216U+fFFajTXH4kvHPdGbRP3844x0WNPCFE2Cn6I15q3vQIb/NQ02oTZUr5OJQ91fH8kn4KfRurzQwgJDhT8EK9FSbTtVdnAvfjGmnTQauhX1xdJUVzmp97qQKOXrQpq6bQXISRI0CsI8VqkMNk9sJkf/ph7PJ308lmEQQuTnhtKynfL9oTd6UKDjesNRJkfQojSUfBDvNZc8xPgzI9Q7ExbXl3Bd8cu82Lri8/6AFTwTAhRPgp+iNekKniurKceP2Lwpe6HD34iw7TQqFV+WRchhAQKBT/Ea/w7/0Bnfiqox48okiK5uh9vpruX1HKXpUJzQkgwoOCHeC1KotNe1N1ZHIk+bHvtPlMNABjkng9GCCFKRsEP8ZpUTQ4p8yOOJPdQWG8Knne6g5/hmbF+WRMhhAQSBT/Ea1LX/FB3567hh8KW13sW/LhcDLvPuoOfHnF+WxchhAQKBT/Ea1INNuX7/FB3567he/2UmT2r+TlWVoc6iwMmvQb9UiL9uTRCCAkICn6I1/jMT73VASffcjkAKuqoz48Ykrw87bX1ZCUA4JLuMdRckhASFOiZjHiNr/kBgPoAZX+abE6hyR5lfrqGD34qG2ywO12dXnb1wWLM+/EIAOCK7AS/r40QQgKBgh/iNb1WDYOW+9UxB6jomT/ppdeqEWHQBuQ2g1WsSQ+tu1cP3ziyPasOFGPGsj2wOly4rl8S/nxlVqCWSAghfkXBD/FJZIDrfvgX6YRwPVQqarLXFWq1SmgX0FGvn+oGG574ci+cLoY/DEvH+3cPh9E9FoMQQpSOgh/ikyhjYEdc8JkfqvcRB3/cnW9eeKGNx8phdbjQOykCr04ZTF2dCSFBhYIf4hNhuGmAMj/U40dcfZO5U1vbC6ra/Xre0TIAwNicZAp8CCFBh4If4pOoAA83raC5XqIa0y8JQHOQ05LTxbDxWDkA4Fr35QghJJhQ8EN8EmPiMjBVDR0XzIqpkjI/ohrVOwEatQonyxtwtrKx1df2nqtBTaMd0UYdLsmIkWaBhBDiRxT8EJ+kRnON8oo7qBkRmzDRnbo7iyIqTCeMqrgw+7P1FNfXZ1TvBOrrQwgJSvTMRnyS5g5+imqaAnJ7fHdnyvyIh9/6+vVERavPHyutAwAMTKMhpoSQ4ETBD/FJWowRAFAUoMxPc8EzZX7Ewgc3p8rrW33+eCn3ce+kiICviRBCAoGCH+ITIfgJVOZHKHimzI9YeiSYAABnqxqFMSVOF8NJdzDUO5mCH0JIcKLgh/iED37K66ywOpx+vS2Xi7UYakqZH7GkRRuh16phdzIUVnNB7LmqRlgdLoTp1EiPNUm8QkII8Q8KfohPYk06hOm4X5/SWs8GZPqqtskuZCZiTZT5EYtarUJmHBfgFFQ2AGiu98lOjKD+PoSQoEXBD/GJSqVCWjSX/Sn089YX39052qiDXku/smLqkRAOADhdwQU/x8uo3ocQEvzolYT4LFB1P9Td2X96uoOfAj74cWd+ers7QBNCSDCi4If4LC2G7/Xj58xPPdX7+IuQ+alsAGMM+wtrAVDmhxAS3Cj4IT5LFba9/HvcvYJOevlNj/jmba+952pwqrwBBq0aI3vGS7wyQgjxHwp+iM+6BWjbiz/mHk/dnUWX5c78nKtuwus/HQUATByUimijTsplEUKIX1HwQ3yWGqBtr1IzF/wkRlLwI7bkKAMGp0fD6WL47QQ31uLW4RkSr4oQQvyLgh/iM77gubC6CYwxv91OkTu44m+PiEelUuHTv4zEHSO7AwByUqNwec84iVdFCCH+pZV6AUS5+KPuDTYnzBaH37ZK+KP0fIE1EVdUmA4v/34QZozphQiDFioV9fchhAQ3yvwQnxn1GsSauIDHX1tfjDEUuwuqu1Hmx6+6xRip1ocQEhIo+CFd4u9ePzWNdjTZufEZKdGU+SGEENJ1FPyQLmkOfvxz3J3f8kqIMMCg1fjlNgghhIQWCn5Il6S5szH+yvwUUb0PIYQQkVHwQ7rE39texbVcRokvriaEEEK6ioIf0iVC8FPrn22v5swPBT+EEELEQcEP6RJ+O8pfmR865k4IIURsFPyQLuEzMiW1Fjhd4jc6pMwPIYQQsUka/GzatAmTJ09GWloaVCoVvv3221ZfZ4zh2WefRWpqKoxGI8aOHYvjx4+3ukxVVRXuvPNOREVFISYmBvfeey/q6+sDeC9CW1JkGDRqFRwuhrI68be++JqfVDrmTgghRCSSBj8NDQ0YMmQIFixY0O7XX3vtNbz77rt47733sG3bNoSHh2P8+PGwWJpfZO+8807k5+dj7dq1WLlyJTZt2oT7778/UHch5GnUKvSINwEAjpbUiXrdVocTJWbuZ50eaxL1ugkhhIQuScdbTJgwARMmTGj3a4wxvP3225gzZw5uuukmAMDHH3+M5ORkfPvtt7j99ttx+PBhrF69Gjt27MDw4cMBAPPnz8fEiRPx+uuvIy0tLWD3JZQN7BaNk+UNyC8yY3TfJNGut6jGAsYAo06DhAi9aNdLCCEktMm25qegoAAlJSUYO3as8Lno6GiMHDkSW7ZsAQBs2bIFMTExQuADAGPHjoVarca2bds6vG6r1Qqz2dzqH/HdwLRoAMDBwlpRr/dcVSMAID3WSPOmCCGEiEa2wU9JSQkAIDk5udXnk5OTha+VlJQgKal1pkGr1SIuLk64THvmzZuH6Oho4V9GRobIqw8tA7pFAQAOFokc/FRzwU9GHG15EUIIEY9sgx9/mj17Nmpra4V/586dk3pJijYglcv8nKtqQm2jXbTrPVfFnfTKiKWTXoQQQsQj2+AnJSUFAFBaWtrq86WlpcLXUlJSUFZW1urrDocDVVVVwmXaYzAYEBUV1eof8V20SYeMOC5AyS8WL/tDmR9CCCH+INvgJysrCykpKfj555+Fz5nNZmzbtg25ubkAgNzcXNTU1GDXrl3CZdavXw+Xy4WRI0cGfM2hrHdSJADgVHmDaNd5Xqj5oeCHEEKIeCQ97VVfX48TJ04IHxcUFGDv3r2Ii4tD9+7d8fjjj+Of//wnevfujaysLPzjH/9AWloabr75ZgBA//79cf311+O+++7De++9B7vdjpkzZ+L222+nk14B1iM+HABwukK84OdctXvbK462vQghhIhH0uBn586dGDNmjPDxrFmzAADTpk3D0qVL8dRTT6GhoQH3338/ampqMGrUKKxevRphYc0N7z777DPMnDkT1113HdRqNaZMmYJ333034Pcl1GUlcNmZ05XiBD8NVgeqGmwAaNuLEEKIuCQNfkaPHg3GOh6JoFKpMHfuXMydO7fDy8TFxWHZsmX+WB7xQo8ELvNTIFLmh6/3iTbqEBWmE+U6CSGEEEDGNT9EWfhtr3NVTaLM+Cp0b3ml00kvQgghIqPgh4giLcYIvVYNm9MlyoT3sjorACA5imZ6EUIIERcFP0QUGrUKme7aHDG2vsrMXPCTFGno8nURQgghLVHwQ0TD1/2IUfRcXs8NNKXghxBCiNgo+CGiyXIHP2L0+uEzP4m07UUIIURkFPwQ0fRN5hod7jlb3eXr4mt+EiMo80MIIURcFPwQ0VzVOwEAsO98LcrdwYuv+O9PiqLghxBCiLgo+CGiSYoKw4A0bk7apmPlPl8PY6w5+KGaH0IIISKj4IeIakzfJABA3tHWA2ddLgazxbOJ77VNdticLgBAIgU/hBBCREbBDxHVmH6JALjMj6tFs8PHvtyLy1/+GfvP11z0Ovh6n2ijDgatxi/rJIQQEroo+CGiGpweA61aBbPFgRIzd1ydMYbv9xWh0ebEXf/Z1iooag/1+CGEEOJPFPwQUek0amEQKT/hvaxF8bPZ4sD/9hV1eh1lde4eP1TsTAghxA8o+CGi6xHv7vTsbnZ4oqy+1de/v2jww2d+qMcPIYQQ8VHwQ0QndHp2Z36Ol9YBAOLC9QCA/CJzp99PJ70IIYT4EwU/RHQ93cFPQUUjAOBEOZf5mTw4FSoVUGK2oKK+4z5AxbXcYFQ66UUIIcQfKPghortwxtfxUi74GZIRg6x47mudZX8OF3OZoj7ujtGEEEKImCj4IaLr4Q5wzlY2wuF04bi75qdXUgRy3E0Q84tq2/3eOotdmArPN0wkhBBCxETBDxFdWowReo0aNqcLX+8uRFWDDZEGLfokR2Jgt2gAQH5h+5kfPuuTGh2GeJrrRQghxA8o+CGi06hV6O4+8fXiykMAgMlD0xCm0wjZnI4yP/znB6RFB2ClhBBCQhEFP8QvBrszPHVWBwDgtuEZAJqDmtOVjahrZ9zFQXdGiLa8CCGE+AsFP8QvZk/sj5xULoDplxKJwelc0BMXrkdaNNe/51A7Rc/NmR8KfgghhPiHVuoFkOCUGGnAioeuwOfbz+Kq3glQqVTC13LSolFUa0F+kRkje8YLn2+yOYWGiAO60bYXIYQQ/6DMD/Ebo16DP4/KQu8LjqwP7MZldQ5eUPez51w1HC6GlKgwITtECCGEiI2CHxJwfN3Phdte2wuqAAAje8a1yhQRQgghYqLghwQcX89zvKweFrtT+Py2U1zwc1lWnCTrIoQQEhoo+CEBlxodhrhwPZwuhqMlXF8fm8OF3WerAQAjKfghhBDiRxT8kIBTqVTC6a+1h0oBAL+dqIDV4UJChB7ZiRFSLo8QQkiQo+CHSILv+/PptjNotDnw5Y5zAIDJQ9Ko3ocQQohfUfBDJDFuQAq6x5lQ02jHgrwTWHeYywDdNiJD4pURQggJdhT8EElo1Cr85aosAMCCvJNwuBiGpEejXwo1NySEEOJfFPwQyfxhWDqGZMTAoFUj2qjDzGt7S70kQgghIYA6PBPJmPRafDfjSqmXQQghJMRQ5ocQQgghIYWCH0IIIYSEFAp+CCGEEBJSKPghhBBCSEih4IcQQgghIYWCH0IIIYSEFAp+CCGEEBJSKPghhBBCSEih4IcQQgghIYWCH0IIIYSEFAp+CCGEEBJSKPghhBBCSEih4IcQQgghIYWCH0IIIYSEFK3UC5ADxhgAwGw2S7wSQgghhHiKf93mX8c9RcEPgLq6OgBARkaGxCshhBBCiLfq6uoQHR3t8eVVzNtwKQi5XC4UFRUhMjISKpVKtOs1m83IyMjAuXPnEBUVJdr1ygndx+BA9zE40H0MDnQfPccYQ11dHdLS0qBWe17JQ5kfAGq1Gunp6X67/qioqKD9BebRfQwOdB+DA93H4ED30TPeZHx4VPBMCCGEkJBCwQ8hhBBCQgoFP35kMBjw3HPPwWAwSL0Uv6H7GBzoPgYHuo/Bge6j/1HBMyGEEEJCCmV+CCGEEBJSKPghhBBCSEih4IcQQgghIYWCH0IIIYSEFAp+2rFgwQL06NEDYWFhGDlyJLZv397p5ffv34+rrroKYWFhyMjIwGuvvdbmMsuXL0e/fv0QFhaGQYMGYdWqVRddx4YNG3DppZfCYDCgV69eWLp0qa93qQ1v7qPFYsH06dMxaNAgaLVa3HzzzaKt15PHzlfe3McNGzbgpptuQmpqKsLDwzF06FB89tlnbS6n5J/j0aNHMWbMGCQnJyMsLAw9e/bEnDlzYLfbW11OyfexpRMnTiAyMhIxMTFtvqbk+3j69GmoVKo2/7Zu3drqcnK5j5s2bcLkyZORlpYGlUqFb7/99qLfc/bsWUyaNAkmkwlJSUl48skn4XA4urxWfz3f+HIfH330UQwbNgwGgwFDhw4Vbb2ePHa+8PY+7tu3D3/605+QkZEBo9GI/v3745133mlzOcl+joy08sUXXzC9Xs8WL17M8vPz2X333cdiYmJYaWlpu5evra1lycnJ7M4772QHDx5kn3/+OTMajezf//63cJnffvuNaTQa9tprr7FDhw6xOXPmMJ1Oxw4cONDhOk6dOsVMJhObNWsWO3ToEJs/fz7TaDRs9erVAb+P9fX17MEHH2Tvv/8+Gz9+PLvppptEWa8nj12g7uNLL73E5syZw3777Td24sQJ9vbbbzO1Ws2+//574TJK/zmePHmSLV68mO3du5edPn2afffddywpKYnNnj07aO4jz2azseHDh7MJEyaw6OjoVl9T+n0sKChgANi6detYcXGx8M9ms8nyPq5atYr9/e9/Z19//TUDwL755ptOL+9wONjAgQPZ2LFj2Z49e9iqVatYQkJCq99TuT3feHsfGWPskUceYf/617/Y1KlT2ZAhQ0RZryePna+8vY8ffvghe/TRR9mGDRvYyZMn2SeffMKMRiObP3++cBkpf44U/FzgsssuYzNmzBA+djqdLC0tjc2bN6/dyy9cuJDFxsYyq9UqfO7pp59mffv2FT6+9dZb2aRJk1p938iRI9kDDzzQ4TqeeuopNmDAgFafu+2229j48eO9uj/t8fY+tjRt2rR2gx9f1uvJY+errtxH3sSJE9k999wjfBxMP0feE088wUaNGiV8HCz38amnnmJ33XUXW7JkSZvgR+n3kQ9+9uzZ0+F1yu0+8jx50Vy1ahVTq9WspKRE+NyiRYtYVFSU8Fwht+ebljwNfnjPPfdcu8GPL+v15LETg7f3kffwww+zMWPGCB9L+XOkba8WbDYbdu3ahbFjxwqfU6vVGDt2LLZs2QIAmD59OkaPHi18fcuWLbj66quh1+uFz40fPx5Hjx5FdXW1cJmW18lfhr/O9vjyPZ7w5T56wtf7eLHHzhdi3cfa2lrExcW1Wm8w/RxPnDiB1atX45prrunSeuV2H9evX4/ly5djwYIFoq1XbvcRAG688UYkJSVh1KhR+N///tfl9frrPl7M888/jx49erRax6BBg5CcnNxqHWazGfn5+T6v1V/PN5648D56wpf1evLY+Ysn91Gs51Qxfo4U/LRQUVEBp9PZ6hcHAJKTk1FSUgIASE1NRffu3YWvlZSUtHt5/mudXYb/ens6+h6z2YympiYv71kzX+6jJ3xZryePnS/EuI9fffUVduzYgXvuueei61Xaz/GKK65AWFgYevfujauuugpz58696HqVch8rKysxffp0LF26tMNhiUq/jxEREXjjjTewfPly/PDDDxg1ahRuvvnmVgGQnO7jxSQkJCA7O/ui6+C/5uta/fV844kL76MnfFmvnO/j5s2b8eWXX+L+++8XPiflz5Gmuntp3rx5Ui/B70L9Publ5eGee+7BBx98gAEDBgRwVeLq6D5++eWXqKurw759+/Dkk0/i9ddfx1NPPRXg1Ynjwvt433334Y477sDVV18t0YrEd+F9TEhIwKxZs4SPR4wYgaKiIvzf//0fbrzxxkAvr8tmzpyJmTNnSr0Mvwr1+3jw4EHcdNNNeO655zBu3LgAr6x9lPlpISEhARqNBqWlpa0+X1paipSUlHa/JyUlpd3L81/r7DIdXWdn3xMVFQWj0ejZHWqHL/fRE76s15PHzhdduY8bN27E5MmT8dZbb+Huu+/2aL1K+zlmZGQgJycHf/rTn/DKK6/g+eefh9Pp7HS9SrmP69evx+uvvw6tVgutVot7770XtbW10Gq1WLx4cafrVcp9bM/IkSNx4sSJi65Xivvora48p0rxfOMvvqxXjvfx0KFDuO6663D//fdjzpw5rb4m5c+Rgp8W9Ho9hg0bhp9//ln4nMvlws8//4zc3Nx2vyc3NxebNm1qdVx47dq16Nu3L2JjY4XLtLxO/jIdXaev3+MJX+6jJ3y9jxd77Hzh633csGEDJk2ahFdffbVVarbleoPt5+hyuWC32+FyuXxer5zu45YtW7B3717h39y5cxEZGYm9e/fi97//vc/rldN9bM/evXuRmprapfX66z56Kzc3FwcOHEBZWVmrdURFRSEnJ8fntfrr+cZffFmvJ49dIOXn52PMmDGYNm0aXnrppTZfl/Tn6FV5dAj44osvmMFgYEuXLmWHDh1i999/P4uJiRGq55955hk2depU4fI1NTUsOTmZTZ06lR08eJB98cUXzGQytTnqrtVq2euvv84OHz7MnnvuuTbHTi+8Xv4I4JNPPskOHz7MFixYIOrRWm/uI2OM5efnsz179rDJkyez0aNHsz179rQ6beLJeufPn8+uvfZarx67QN3H9evXM5PJxGbPnt3q+HBlZaVwGaX/HD/99FP25ZdfskOHDrGTJ0+yL7/8kqWlpbE777wzaO7jhdo77aX0+7h06VK2bNkydvjwYXb48GH20ksvMbVazRYvXizL+1hXVyc8XwBgb775JtuzZw87c+YMY6zt8wJ/XHvcuHFs7969bPXq1SwxMbHdo+5yeb7x9j4yxtjx48fZnj172AMPPMD69OkjfD9/ismT9X799detTjl58tgF6j4eOHCAJSYmsrvuuqvVc2pZWZlwGSl/jhT8tGP+/Pmse/fuTK/Xs8suu4xt3bpV+Nq0adPYNddc0+ry+/btY6NGjWIGg4F169aNvfLKK22u86uvvmJ9+vRher2eDRgwgP3www+tvt7e9ebl5bGhQ4cyvV7PevbsyZYsWSLWXfT6PmZmZjIAbf55s97nnnuOZWZmtvqcJ49dIO7jtGnT2r1/Fz4OSv45fvHFF+zSSy9lERERLDw8nOXk5LCXX36ZNTU1Bc19vFB7wQ9jyr6PS5cuZf3792cmk4lFRUWxyy67jC1fvly29zEvL6/dv61p06Yxxtp/Xjh9+jSbMGECMxqNLCEhgf31r39ldrvdq7UG8vnGl/t4zTXXtPs9BQUFHq93yZIlbZ6HPXnsAnEfn3vuuXYvf+HjINXPUcUYY57niQghhBBClI1qfgghhBASUij4IYQQQkhIoeCHEEIIISGFgh9CCCGEhBQKfgghhBASUij4IYQQQkhIoeCHEEIIISGFgh9CiOJNnz4dN998s9TLIIQoBE11J4TImkql6vTrzz33HN555x1Qv1ZCiKco+CGEyFpxcbHw/y+//BLPPvssjh49KnwuIiICERERUiyNEKJQtO1FCJG1lJQU4V90dDRUKlWrz0VERLTZ9ho9ejQeeeQRPP7444iNjUVycjI++OADNDQ04J577kFkZCR69eqFH3/8sdVtHTx4EBMmTEBERASSk5MxdepUVFRUBPgeE0L8jYIfQkhQ+uijj5CQkIDt27fjkUcewUMPPYQ//vGPuOKKK7B7926MGzcOU6dORWNjIwCgpqYG1157LS655BLs3LkTq1evRmlpKW699VaJ7wkhRGwU/BBCgtKQIUMwZ84c9O7dG7Nnz0ZYWBgSEhJw3333oXfv3nj22WdRWVmJ/fv3AwD+9a9/4ZJLLsHLL7+Mfv364ZJLLsHixYuRl5eHY8eOSXxvCCFiopofQkhQGjx4sPB/jUaD+Ph4DBo0SPhccnIyAKCsrAwAsG/fPuTl5bVbP3Ty5En06dPHzysmhAQKBT+EkKCk0+lafaxSqVp9jj9F5nK5AAD19fWYPHkyXn311TbXlZqa6seVEkICjYIfQggBcOmll2LFihXo0aMHtFp6aiQkmFHNDyGEAJgxYwaqqqrwpz/9CTt27MDJkyexZs0a3HPPPXA6nVIvjxAiIgp+CCEEQFpaGn777Tc4nU6MGzcOgwYNwuOPP46YmBio1fRUSUgwUTFqi0oIIYSQEEJvZwghhBASUij4IYQQQkhIoeCHEEIIISGFgh9CCCGEhBQKfgghhBASUij4IYQQQkhIoeCHEEIIISGFgh9CCCGEhBQKfgghhBASUij4IYQQQkhIoeCHEEIIISGFgh9CCCGEhJT/D/UYYMbGtZyeAAAAAElFTkSuQmCC" + ] }, "metadata": {}, "output_type": "display_data" } ], - "execution_count": 10 + "source": [ + "# FastF1 Example\n", + "import fastf1\n", + "import fastf1.plotting\n", + "\n", + "fastf1.plotting.setup_mpl(misc_mpl_mods=False, color_scheme=None)\n", + "\n", + "session = fastf1.get_session(2019, 'Monza', 'Q')\n", + "session.load()\n", + "\n", + "fast_leclerc = session.laps.pick_drivers('LEC').pick_fastest()\n", + "lec_car_data = fast_leclerc.get_car_data()\n", + "t = lec_car_data['Time']\n", + "vCar = lec_car_data['Speed']\n", + "\n", + "# The rest is just plotting\n", + "fig, ax = plt.subplots()\n", + "ax.plot(t, vCar, label='Fast')\n", + "ax.set_xlabel('Time')\n", + "ax.set_ylabel('Speed [Km/h]')\n", + "ax.set_title('Leclerc is')\n", + "ax.legend()\n", + "plt.show()" + ] }, { + "cell_type": "code", + "execution_count": 3, "metadata": { "ExecuteTime": { "end_time": "2024-11-20T03:31:25.964278Z", "start_time": "2024-11-20T03:29:39.724591Z" } }, - "cell_type": "code", - "source": [ - "# Define the cache directory\n", - "cache_dir = '/Users/connorcoles/PycharmProjects/F1-Prediction/csci349_final_project/project/cache'\n", - "if not os.path.exists(cache_dir):\n", - " os.makedirs(cache_dir)\n", - "\n", - "fastf1.Cache.enable_cache(cache_dir)\n", - "\n", - "# Years and sessions of interest\n", - "years = [2020, 2021, 2022, 2023, 2024]\n", - "sessions = ['Q', 'Race'] # Qualifying and Race sessions\n", - "event_name = 'Bahrain' # Example event name\n", - "\n", - "# Data holders\n", - "weather_data_list = []\n", - "lap_data_list = []\n", - "\n", - "# Loop through years and sessions\n", - "for year in years:\n", - " for session_name in sessions:\n", - " try:\n", - " # Load the session\n", - " session = fastf1.get_session(year, event_name, session_name)\n", - " session.load()\n", - " \n", - " # Process weather data\n", - " weather_data = session.weather_data\n", - " weather_df = pd.DataFrame(weather_data)\n", - " weather_df['Year'] = year\n", - " weather_df['Session'] = session_name\n", - " weather_data_list.append(weather_df)\n", - "\n", - " # Process lap data\n", - " lap_data = session.laps\n", - " lap_df = pd.DataFrame(lap_data)\n", - " lap_df['Year'] = year\n", - " lap_df['Session'] = session_name\n", - " lap_data_list.append(lap_df)\n", - " \n", - " except Exception as e:\n", - " print(f\"Error with {event_name} {session_name} ({year}): {e}\")\n", - "\n", - "# Combine weather and lap data into separate DataFrames\n", - "if weather_data_list:\n", - " weather_data_combined = pd.concat(weather_data_list, ignore_index=True)\n", - " print(\"Weather Data:\")\n", - " print(weather_data_combined.head())\n", - "\n", - "if lap_data_list:\n", - " lap_data_combined = pd.concat(lap_data_list, ignore_index=True)\n", - " print(\"Lap Data:\")\n", - " print(lap_data_combined.head())" - ], "outputs": [ { "name": "stderr", @@ -205,6 +154,59 @@ "core INFO \tLoading data for Bahrain Grand Prix - Race [v3.4.4]\n", "req INFO \tUsing cached data for session_info\n", "req INFO \tUsing cached data for driver_info\n", + "Request for URL https://ergast.com/api/f1/2020/15/results.json failed; using cached response\n", + "Traceback (most recent call last):\n", + " File \"/opt/homebrew/Caskroom/miniconda/base/envs/csci349/lib/python3.10/site-packages/urllib3/connectionpool.py\", line 536, in _make_request\n", + " response = conn.getresponse()\n", + " File \"/opt/homebrew/Caskroom/miniconda/base/envs/csci349/lib/python3.10/site-packages/urllib3/connection.py\", line 507, in getresponse\n", + " httplib_response = super().getresponse()\n", + " File \"/opt/homebrew/Caskroom/miniconda/base/envs/csci349/lib/python3.10/http/client.py\", line 1375, in getresponse\n", + " response.begin()\n", + " File \"/opt/homebrew/Caskroom/miniconda/base/envs/csci349/lib/python3.10/http/client.py\", line 318, in begin\n", + " version, status, reason = self._read_status()\n", + " File \"/opt/homebrew/Caskroom/miniconda/base/envs/csci349/lib/python3.10/http/client.py\", line 279, in _read_status\n", + " line = str(self.fp.readline(_MAXLINE + 1), \"iso-8859-1\")\n", + " File \"/opt/homebrew/Caskroom/miniconda/base/envs/csci349/lib/python3.10/socket.py\", line 705, in readinto\n", + " return self._sock.recv_into(b)\n", + " File \"/opt/homebrew/Caskroom/miniconda/base/envs/csci349/lib/python3.10/ssl.py\", line 1307, in recv_into\n", + " return self.read(nbytes, buffer)\n", + " File \"/opt/homebrew/Caskroom/miniconda/base/envs/csci349/lib/python3.10/ssl.py\", line 1163, in read\n", + " return self._sslobj.read(len, buffer)\n", + "TimeoutError: The read operation timed out\n", + "\n", + "The above exception was the direct cause of the following exception:\n", + "\n", + "Traceback (most recent call last):\n", + " File \"/opt/homebrew/Caskroom/miniconda/base/envs/csci349/lib/python3.10/site-packages/requests/adapters.py\", line 667, in send\n", + " resp = conn.urlopen(\n", + " File \"/opt/homebrew/Caskroom/miniconda/base/envs/csci349/lib/python3.10/site-packages/urllib3/connectionpool.py\", line 843, in urlopen\n", + " retries = retries.increment(\n", + " File \"/opt/homebrew/Caskroom/miniconda/base/envs/csci349/lib/python3.10/site-packages/urllib3/util/retry.py\", line 474, in increment\n", + " raise reraise(type(error), error, _stacktrace)\n", + " File \"/opt/homebrew/Caskroom/miniconda/base/envs/csci349/lib/python3.10/site-packages/urllib3/util/util.py\", line 39, in reraise\n", + " raise value\n", + " File \"/opt/homebrew/Caskroom/miniconda/base/envs/csci349/lib/python3.10/site-packages/urllib3/connectionpool.py\", line 789, in urlopen\n", + " response = self._make_request(\n", + " File \"/opt/homebrew/Caskroom/miniconda/base/envs/csci349/lib/python3.10/site-packages/urllib3/connectionpool.py\", line 538, in _make_request\n", + " self._raise_timeout(err=e, url=url, timeout_value=read_timeout)\n", + " File \"/opt/homebrew/Caskroom/miniconda/base/envs/csci349/lib/python3.10/site-packages/urllib3/connectionpool.py\", line 369, in _raise_timeout\n", + " raise ReadTimeoutError(\n", + "urllib3.exceptions.ReadTimeoutError: HTTPSConnectionPool(host='ergast.com', port=443): Read timed out. (read timeout=5.0)\n", + "\n", + "During handling of the above exception, another exception occurred:\n", + "\n", + "Traceback (most recent call last):\n", + " File \"/opt/homebrew/Caskroom/miniconda/base/envs/csci349/lib/python3.10/site-packages/requests_cache/session.py\", line 286, in _resend\n", + " response = self._send_and_cache(request, actions, cached_response, **kwargs)\n", + " File \"/opt/homebrew/Caskroom/miniconda/base/envs/csci349/lib/python3.10/site-packages/requests_cache/session.py\", line 254, in _send_and_cache\n", + " response = super().send(request, **kwargs)\n", + " File \"/opt/homebrew/Caskroom/miniconda/base/envs/csci349/lib/python3.10/site-packages/fastf1/req.py\", line 136, in send\n", + " return super().send(request, **kwargs)\n", + " File \"/opt/homebrew/Caskroom/miniconda/base/envs/csci349/lib/python3.10/site-packages/requests/sessions.py\", line 703, in send\n", + " r = adapter.send(request, **kwargs)\n", + " File \"/opt/homebrew/Caskroom/miniconda/base/envs/csci349/lib/python3.10/site-packages/requests/adapters.py\", line 713, in send\n", + " raise ReadTimeout(e, request=request)\n", + "requests.exceptions.ReadTimeout: HTTPSConnectionPool(host='ergast.com', port=443): Read timed out. (read timeout=5.0)\n", "req INFO \tUsing cached data for session_status_data\n", "req INFO \tUsing cached data for lap_count\n", "req INFO \tUsing cached data for track_status_data\n", @@ -212,19 +214,9 @@ "req INFO \tUsing cached data for timing_app_data\n", "core INFO \tProcessing timing data...\n", "req INFO \tUsing cached data for car_data\n", - "req INFO \tUpdating cache for position_data...\n", - "_api INFO \tFetching position data...\n", - "_api INFO \tParsing position data...\n", - "_api WARNING \tDriver 241: Position data is incomplete!\n", - "_api WARNING \tDriver 242: Position data is incomplete!\n", - "_api WARNING \tDriver 243: Position data is incomplete!\n", - "req INFO \tCache updated!\n", - "req INFO \tNo cached data found for weather_data. Loading data...\n", - "_api INFO \tFetching weather data...\n", - "req INFO \tData has been written to cache!\n", - "req INFO \tNo cached data found for race_control_messages. Loading data...\n", - "_api INFO \tFetching race control messages...\n", - "req INFO \tData has been written to cache!\n", + "req INFO \tUsing cached data for position_data\n", + "req INFO \tUsing cached data for weather_data\n", + "req INFO \tUsing cached data for race_control_messages\n", "core INFO \tFinished loading data for 20 drivers: ['44', '33', '23', '4', '55', '10', '3', '77', '31', '16', '26', '63', '5', '6', '7', '99', '20', '11', '18', '8']\n", "core INFO \tLoading data for Bahrain Grand Prix - Qualifying [v3.4.4]\n", "req INFO \tUsing cached data for session_info\n", @@ -240,43 +232,18 @@ "req INFO \tUsing cached data for race_control_messages\n", "core INFO \tFinished loading data for 20 drivers: ['33', '44', '77', '16', '10', '3', '4', '55', '14', '18', '11', '99', '22', '7', '63', '31', '6', '5', '47', '9']\n", "core INFO \tLoading data for Bahrain Grand Prix - Race [v3.4.4]\n", - "req INFO \tNo cached data found for session_info. Loading data...\n", - "_api INFO \tFetching session info data...\n", - "req INFO \tData has been written to cache!\n", - "req INFO \tNo cached data found for driver_info. Loading data...\n", - "_api INFO \tFetching driver list...\n", - "req INFO \tData has been written to cache!\n", - "req INFO \tNo cached data found for session_status_data. Loading data...\n", - "_api INFO \tFetching session status data...\n", - "req INFO \tData has been written to cache!\n", - "req INFO \tNo cached data found for lap_count. Loading data...\n", - "_api INFO \tFetching lap count data...\n", - "req INFO \tData has been written to cache!\n", - "req INFO \tNo cached data found for track_status_data. Loading data...\n", - "_api INFO \tFetching track status data...\n", - "req INFO \tData has been written to cache!\n", - "req INFO \tNo cached data found for _extended_timing_data. Loading data...\n", - "_api INFO \tFetching timing data...\n", - "_api INFO \tParsing timing data...\n", - "req INFO \tData has been written to cache!\n", - "req INFO \tNo cached data found for timing_app_data. Loading data...\n", - "_api INFO \tFetching timing app data...\n", - "req INFO \tData has been written to cache!\n", + "req INFO \tUsing cached data for session_info\n", + "req INFO \tUsing cached data for driver_info\n", + "req INFO \tUsing cached data for session_status_data\n", + "req INFO \tUsing cached data for lap_count\n", + "req INFO \tUsing cached data for track_status_data\n", + "req INFO \tUsing cached data for _extended_timing_data\n", + "req INFO \tUsing cached data for timing_app_data\n", "core INFO \tProcessing timing data...\n", - "req INFO \tNo cached data found for car_data. Loading data...\n", - "_api INFO \tFetching car data...\n", - "_api INFO \tParsing car data...\n", - "req INFO \tData has been written to cache!\n", - "req INFO \tNo cached data found for position_data. Loading data...\n", - "_api INFO \tFetching position data...\n", - "_api INFO \tParsing position data...\n", - "req INFO \tData has been written to cache!\n", - "req INFO \tNo cached data found for weather_data. Loading data...\n", - "_api INFO \tFetching weather data...\n", - "req INFO \tData has been written to cache!\n", - "req INFO \tNo cached data found for race_control_messages. Loading data...\n", - "_api INFO \tFetching race control messages...\n", - "req INFO \tData has been written to cache!\n", + "req INFO \tUsing cached data for car_data\n", + "req INFO \tUsing cached data for position_data\n", + "req INFO \tUsing cached data for weather_data\n", + "req INFO \tUsing cached data for race_control_messages\n", "core INFO \tFinished loading data for 20 drivers: ['44', '33', '77', '4', '11', '16', '3', '55', '22', '18', '7', '99', '31', '63', '5', '47', '10', '6', '14', '9']\n", "core INFO \tLoading data for Bahrain Grand Prix - Qualifying [v3.4.4]\n", "req INFO \tUsing cached data for session_info\n", @@ -292,45 +259,18 @@ "req INFO \tUsing cached data for race_control_messages\n", "core INFO \tFinished loading data for 20 drivers: ['16', '1', '55', '11', '44', '77', '20', '14', '63', '10', '31', '47', '4', '23', '24', '22', '27', '3', '18', '6']\n", "core INFO \tLoading data for Bahrain Grand Prix - Race [v3.4.4]\n", - "req INFO \tNo cached data found for session_info. Loading data...\n", - "_api INFO \tFetching session info data...\n", - "req INFO \tData has been written to cache!\n", - "req INFO \tNo cached data found for driver_info. Loading data...\n", - "_api INFO \tFetching driver list...\n", - "req INFO \tData has been written to cache!\n", - "req INFO \tNo cached data found for session_status_data. Loading data...\n", - "_api INFO \tFetching session status data...\n", - "req INFO \tData has been written to cache!\n", - "req INFO \tNo cached data found for lap_count. Loading data...\n", - "_api INFO \tFetching lap count data...\n", - "req INFO \tData has been written to cache!\n", - "req INFO \tNo cached data found for track_status_data. Loading data...\n", - "_api INFO \tFetching track status data...\n", - "req INFO \tData has been written to cache!\n", - "req INFO \tNo cached data found for _extended_timing_data. Loading data...\n", - "_api INFO \tFetching timing data...\n", - "_api INFO \tParsing timing data...\n", - "req INFO \tData has been written to cache!\n", - "req INFO \tNo cached data found for timing_app_data. Loading data...\n", - "_api INFO \tFetching timing app data...\n", - "req INFO \tData has been written to cache!\n", + "req INFO \tUsing cached data for session_info\n", + "req INFO \tUsing cached data for driver_info\n", + "req INFO \tUsing cached data for session_status_data\n", + "req INFO \tUsing cached data for lap_count\n", + "req INFO \tUsing cached data for track_status_data\n", + "req INFO \tUsing cached data for _extended_timing_data\n", + "req INFO \tUsing cached data for timing_app_data\n", "core INFO \tProcessing timing data...\n", - "req INFO \tNo cached data found for car_data. Loading data...\n", - "_api INFO \tFetching car data...\n", - "_api INFO \tParsing car data...\n", - "req INFO \tData has been written to cache!\n", - "req INFO \tNo cached data found for position_data. Loading data...\n", - "_api INFO \tFetching position data...\n", - "_api INFO \tParsing position data...\n", - "_api WARNING \tDriver 241: Position data is incomplete!\n", - "_api WARNING \tDriver 242: Position data is incomplete!\n", - "req INFO \tData has been written to cache!\n", - "req INFO \tNo cached data found for weather_data. Loading data...\n", - "_api INFO \tFetching weather data...\n", - "req INFO \tData has been written to cache!\n", - "req INFO \tNo cached data found for race_control_messages. Loading data...\n", - "_api INFO \tFetching race control messages...\n", - "req INFO \tData has been written to cache!\n", + "req INFO \tUsing cached data for car_data\n", + "req INFO \tUsing cached data for position_data\n", + "req INFO \tUsing cached data for weather_data\n", + "req INFO \tUsing cached data for race_control_messages\n", "core INFO \tFinished loading data for 20 drivers: ['16', '55', '44', '63', '20', '77', '31', '22', '14', '24', '47', '18', '23', '3', '4', '6', '27', '11', '1', '10']\n", "core INFO \tLoading data for Bahrain Grand Prix - Qualifying [v3.4.4]\n", "req INFO \tUsing cached data for session_info\n", @@ -346,43 +286,18 @@ "req INFO \tUsing cached data for race_control_messages\n", "core INFO \tFinished loading data for 20 drivers: ['1', '11', '16', '55', '14', '63', '44', '18', '31', '27', '4', '77', '24', '22', '23', '2', '20', '81', '21', '10']\n", "core INFO \tLoading data for Bahrain Grand Prix - Race [v3.4.4]\n", - "req INFO \tNo cached data found for session_info. Loading data...\n", - "_api INFO \tFetching session info data...\n", - "req INFO \tData has been written to cache!\n", - "req INFO \tNo cached data found for driver_info. Loading data...\n", - "_api INFO \tFetching driver list...\n", - "req INFO \tData has been written to cache!\n", - "req INFO \tNo cached data found for session_status_data. Loading data...\n", - "_api INFO \tFetching session status data...\n", - "req INFO \tData has been written to cache!\n", - "req INFO \tNo cached data found for lap_count. Loading data...\n", - "_api INFO \tFetching lap count data...\n", - "req INFO \tData has been written to cache!\n", - "req INFO \tNo cached data found for track_status_data. Loading data...\n", - "_api INFO \tFetching track status data...\n", - "req INFO \tData has been written to cache!\n", - "req INFO \tNo cached data found for _extended_timing_data. Loading data...\n", - "_api INFO \tFetching timing data...\n", - "_api INFO \tParsing timing data...\n", - "req INFO \tData has been written to cache!\n", - "req INFO \tNo cached data found for timing_app_data. Loading data...\n", - "_api INFO \tFetching timing app data...\n", - "req INFO \tData has been written to cache!\n", + "req INFO \tUsing cached data for session_info\n", + "req INFO \tUsing cached data for driver_info\n", + "req INFO \tUsing cached data for session_status_data\n", + "req INFO \tUsing cached data for lap_count\n", + "req INFO \tUsing cached data for track_status_data\n", + "req INFO \tUsing cached data for _extended_timing_data\n", + "req INFO \tUsing cached data for timing_app_data\n", "core INFO \tProcessing timing data...\n", - "req INFO \tNo cached data found for car_data. Loading data...\n", - "_api INFO \tFetching car data...\n", - "_api INFO \tParsing car data...\n", - "req INFO \tData has been written to cache!\n", - "req INFO \tNo cached data found for position_data. Loading data...\n", - "_api INFO \tFetching position data...\n", - "_api INFO \tParsing position data...\n", - "req INFO \tData has been written to cache!\n", - "req INFO \tNo cached data found for weather_data. Loading data...\n", - "_api INFO \tFetching weather data...\n", - "req INFO \tData has been written to cache!\n", - "req INFO \tNo cached data found for race_control_messages. Loading data...\n", - "_api INFO \tFetching race control messages...\n", - "req INFO \tData has been written to cache!\n", + "req INFO \tUsing cached data for car_data\n", + "req INFO \tUsing cached data for position_data\n", + "req INFO \tUsing cached data for weather_data\n", + "req INFO \tUsing cached data for race_control_messages\n", "core INFO \tFinished loading data for 20 drivers: ['1', '11', '14', '55', '44', '18', '63', '77', '10', '23', '22', '2', '20', '21', '27', '24', '4', '31', '16', '81']\n", "core INFO \tLoading data for Bahrain Grand Prix - Qualifying [v3.4.4]\n", "req INFO \tUsing cached data for session_info\n", @@ -398,44 +313,18 @@ "req INFO \tUsing cached data for race_control_messages\n", "core INFO \tFinished loading data for 20 drivers: ['1', '16', '63', '55', '11', '14', '4', '81', '44', '27', '22', '18', '23', '3', '20', '77', '24', '2', '31', '10']\n", "core INFO \tLoading data for Bahrain Grand Prix - Race [v3.4.4]\n", - "req INFO \tNo cached data found for session_info. Loading data...\n", - "_api INFO \tFetching session info data...\n", - "req INFO \tData has been written to cache!\n", - "req INFO \tNo cached data found for driver_info. Loading data...\n", - "_api INFO \tFetching driver list...\n", - "req INFO \tData has been written to cache!\n", - "req INFO \tNo cached data found for session_status_data. Loading data...\n", - "_api INFO \tFetching session status data...\n", - "req INFO \tData has been written to cache!\n", - "req INFO \tNo cached data found for lap_count. Loading data...\n", - "_api INFO \tFetching lap count data...\n", - "req INFO \tData has been written to cache!\n", - "req INFO \tNo cached data found for track_status_data. Loading data...\n", - "_api INFO \tFetching track status data...\n", - "req INFO \tData has been written to cache!\n", - "req INFO \tNo cached data found for _extended_timing_data. Loading data...\n", - "_api INFO \tFetching timing data...\n", - "_api INFO \tParsing timing data...\n", - "req INFO \tData has been written to cache!\n", - "req INFO \tNo cached data found for timing_app_data. Loading data...\n", - "_api INFO \tFetching timing app data...\n", - "req INFO \tData has been written to cache!\n", + "req INFO \tUsing cached data for session_info\n", + "req INFO \tUsing cached data for driver_info\n", + "req INFO \tUsing cached data for session_status_data\n", + "req INFO \tUsing cached data for lap_count\n", + "req INFO \tUsing cached data for track_status_data\n", + "req INFO \tUsing cached data for _extended_timing_data\n", + "req INFO \tUsing cached data for timing_app_data\n", "core INFO \tProcessing timing data...\n", - "logger WARNING \tFailed to add first lap time from Ergast!\n", - "req INFO \tNo cached data found for car_data. Loading data...\n", - "_api INFO \tFetching car data...\n", - "_api INFO \tParsing car data...\n", - "req INFO \tData has been written to cache!\n", - "req INFO \tNo cached data found for position_data. Loading data...\n", - "_api INFO \tFetching position data...\n", - "_api INFO \tParsing position data...\n", - "req INFO \tData has been written to cache!\n", - "req INFO \tNo cached data found for weather_data. Loading data...\n", - "_api INFO \tFetching weather data...\n", - "req INFO \tData has been written to cache!\n", - "req INFO \tNo cached data found for race_control_messages. Loading data...\n", - "_api INFO \tFetching race control messages...\n", - "req INFO \tData has been written to cache!\n", + "req INFO \tUsing cached data for car_data\n", + "req INFO \tUsing cached data for position_data\n", + "req INFO \tUsing cached data for weather_data\n", + "req INFO \tUsing cached data for race_control_messages\n", "core INFO \tFinished loading data for 20 drivers: ['1', '11', '55', '16', '63', '4', '44', '81', '14', '18', '24', '20', '3', '22', '23', '27', '31', '10', '77', '2']\n" ] }, @@ -497,38 +386,72 @@ ] } ], - "execution_count": 30 + "source": [ + "# Define the cache directory\n", + "cache_dir = '../data/cache'\n", + "if not os.path.exists(cache_dir):\n", + " os.makedirs(cache_dir)\n", + "\n", + "fastf1.Cache.enable_cache(cache_dir)\n", + "\n", + "# Years and sessions of interest\n", + "years = [2020, 2021, 2022, 2023, 2024]\n", + "sessions = ['Q', 'Race'] # Qualifying and Race sessions\n", + "event_name = 'Bahrain' # Example event name\n", + "\n", + "# Data holders\n", + "weather_data_list = []\n", + "lap_data_list = []\n", + "\n", + "# Loop through years and sessions\n", + "for year in years:\n", + " for session_name in sessions:\n", + " try:\n", + " # Load the session\n", + " session = fastf1.get_session(year, event_name, session_name)\n", + " session.load()\n", + " \n", + " # Process weather data\n", + " weather_data = session.weather_data\n", + " weather_df = pd.DataFrame(weather_data)\n", + " weather_df['Year'] = year\n", + " weather_df['Session'] = session_name\n", + " weather_data_list.append(weather_df)\n", + "\n", + " # Process lap data\n", + " lap_data = session.laps\n", + " lap_df = pd.DataFrame(lap_data)\n", + " lap_df['Year'] = year\n", + " lap_df['Session'] = session_name\n", + " lap_data_list.append(lap_df)\n", + " \n", + " except Exception as e:\n", + " print(f\"Error with {event_name} {session_name} ({year}): {e}\")\n", + "\n", + "# Combine weather and lap data into separate DataFrames\n", + "if weather_data_list:\n", + " weather_data_combined = pd.concat(weather_data_list, ignore_index=True)\n", + " print(\"Weather Data:\")\n", + " print(weather_data_combined.head())\n", + "\n", + "if lap_data_list:\n", + " lap_data_combined = pd.concat(lap_data_list, ignore_index=True)\n", + " print(\"Lap Data:\")\n", + " print(lap_data_combined.head())" + ] }, { + "cell_type": "code", + "execution_count": 4, "metadata": { "ExecuteTime": { "end_time": "2024-11-20T03:39:01.456623Z", "start_time": "2024-11-20T03:39:01.428009Z" } }, - "cell_type": "code", - "source": [ - "# Display data\n", - "weather_data_combined.head(5)" - ], "outputs": [ { "data": { - "text/plain": [ - " Time AirTemp Humidity Pressure Rainfall TrackTemp \\\n", - "0 0 days 00:00:33.157000 26.9 52.6 1015.9 False 28.7 \n", - "1 0 days 00:01:33.168000 26.9 52.7 1016.0 False 28.6 \n", - "2 0 days 00:02:33.172000 26.8 52.8 1015.9 False 28.5 \n", - "3 0 days 00:03:33.168000 26.8 53.0 1015.9 False 28.5 \n", - "4 0 days 00:04:33.155000 26.7 53.2 1016.0 False 28.5 \n", - "\n", - " WindDirection WindSpeed Year Session \n", - "0 305 0.6 2020 Q \n", - "1 40 0.8 2020 Q \n", - "2 341 0.8 2020 Q \n", - "3 295 0.4 2020 Q \n", - "4 347 0.5 2020 Q " - ], "text/html": [ "
\n", "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TimeLapTimeLapNumberStintPitOutTimePitInTimeSector1TimeSector2TimeSector3TimeSector1SessionTime...Sector3SessionTimeSpeedI1SpeedI2SpeedFLSpeedSTTyreLifeLapStartTimeLapStartDatePositionYear
count662860586628.0000006628.0000006896946056659965666048...65665394.0000006601.0000005926.0000005944.0000006628.000000662866225349.0000006628.000000
mean0 days 01:42:02.1923713030 days 00:01:41.11775866624.3667772.5458660 days 01:07:15.4796037730 days 01:08:51.7783429390 days 00:00:32.8017278730 days 00:00:44.3828510380 days 00:00:25.8638967400 days 01:45:48.699285218...0 days 01:42:19.752332013221.138673240.172095277.101249276.0238908.9222990 days 01:40:00.8885146342022-05-19 11:52:27.3287777289.9801832022.045112
min0 days 00:15:27.7650000 days 00:01:27.2640001.0000001.0000000 days 00:13:35.5530000 days 00:18:28.4150000 days 00:00:27.6690000 days 00:00:37.7150000 days 00:00:21.8530000 days 00:15:57.525000...0 days 00:15:28.00500054.00000044.00000042.00000031.0000001.0000000 days 00:13:35.5530002020-11-28 14:00:03.4210001.0000002020.000000
25%0 days 01:09:17.5055000 days 00:01:36.2192509.0000002.0000000 days 00:29:59.1070000 days 00:35:37.6622500 days 00:00:30.7327500 days 00:00:41.6765000 days 00:00:23.7360000 days 01:14:22.595250...0 days 01:09:21.996000225.000000241.000000277.000000280.0000003.0000000 days 01:06:55.9955002021-03-28 15:21:05.4147499525.0000002021.000000
50%0 days 01:39:58.3020000 days 00:01:37.86550022.0000002.0000000 days 00:59:30.3800000 days 00:58:21.2415000 days 00:00:31.1480000 days 00:00:42.5820000 days 00:00:24.1260000 days 01:44:32.815000...0 days 01:40:39.423500231.000000250.000000281.000000295.0000008.0000000 days 01:38:20.1610002022-03-20 15:46:26.37799987210.0000002022.000000
75%0 days 02:13:43.2485000 days 00:01:40.39150039.0000003.0000000 days 01:28:09.3430000 days 01:25:50.7960000 days 00:00:31.7920000 days 00:00:43.7795000 days 00:00:24.9017500 days 02:15:42.518250...0 days 02:14:05.441000235.000000257.000000284.000000303.00000013.0000000 days 02:12:04.5752502023-03-05 16:12:27.61200015.0000002023.000000
max0 days 03:33:47.4280000 days 00:03:05.09200057.0000007.0000000 days 03:28:04.3890000 days 03:27:38.6380000 days 00:01:39.1600000 days 00:01:27.3400000 days 00:01:10.4780000 days 03:32:33.946000...0 days 03:33:47.428000248.000000274.000000302.000000333.00000037.0000000 days 03:32:00.1210002024-03-02 16:35:23.28000020.0000002024.000000
std0 days 00:44:32.8912776240 days 00:00:10.57513220716.8600941.1550310 days 00:41:40.5849278460 days 00:39:18.2270300520 days 00:00:05.8435876090 days 00:00:06.0251954530 days 00:00:04.8621554150 days 00:42:50.934311129...0 days 00:44:32.42562987228.86124232.65715522.13379852.8784716.4752310 days 00:44:57.137961013NaN5.5117661.411731
\n", + "

8 rows × 21 columns

\n", + "
" + ], "text/plain": [ " Time LapTime LapNumber \\\n", - "count 6628 6038 6628.000000 \n", - "mean 0 days 01:42:02.192371303 0 days 00:01:41.108333885 24.366777 \n", + "count 6628 6058 6628.000000 \n", + "mean 0 days 01:42:02.192371303 0 days 00:01:41.117758666 24.366777 \n", "min 0 days 00:15:27.765000 0 days 00:01:27.264000 1.000000 \n", - "25% 0 days 01:09:17.505500 0 days 00:01:36.217000 9.000000 \n", - "50% 0 days 01:39:58.302000 0 days 00:01:37.859500 22.000000 \n", - "75% 0 days 02:13:43.248500 0 days 00:01:40.345500 39.000000 \n", + "25% 0 days 01:09:17.505500 0 days 00:01:36.219250 9.000000 \n", + "50% 0 days 01:39:58.302000 0 days 00:01:37.865500 22.000000 \n", + "75% 0 days 02:13:43.248500 0 days 00:01:40.391500 39.000000 \n", "max 0 days 03:33:47.428000 0 days 00:03:05.092000 57.000000 \n", - "std 0 days 00:44:32.891277624 0 days 00:00:10.588901657 16.860094 \n", + "std 0 days 00:44:32.891277624 0 days 00:00:10.575132207 16.860094 \n", "\n", " Stint PitOutTime PitInTime \\\n", "count 6628.000000 689 694 \n", @@ -1462,263 +1475,38 @@ "std NaN 5.511766 1.411731 \n", "\n", "[8 rows x 21 columns]" - ], - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
TimeLapTimeLapNumberStintPitOutTimePitInTimeSector1TimeSector2TimeSector3TimeSector1SessionTime...Sector3SessionTimeSpeedI1SpeedI2SpeedFLSpeedSTTyreLifeLapStartTimeLapStartDatePositionYear
count662860386628.0000006628.0000006896946056659965666048...65665394.0000006601.0000005926.0000005944.0000006628.000000662866225349.0000006628.000000
mean0 days 01:42:02.1923713030 days 00:01:41.10833388524.3667772.5458660 days 01:07:15.4796037730 days 01:08:51.7783429390 days 00:00:32.8017278730 days 00:00:44.3828510380 days 00:00:25.8638967400 days 01:45:48.699285218...0 days 01:42:19.752332013221.138673240.172095277.101249276.0238908.9222990 days 01:40:00.8885146342022-05-19 11:52:27.3287777289.9801832022.045112
min0 days 00:15:27.7650000 days 00:01:27.2640001.0000001.0000000 days 00:13:35.5530000 days 00:18:28.4150000 days 00:00:27.6690000 days 00:00:37.7150000 days 00:00:21.8530000 days 00:15:57.525000...0 days 00:15:28.00500054.00000044.00000042.00000031.0000001.0000000 days 00:13:35.5530002020-11-28 14:00:03.4210001.0000002020.000000
25%0 days 01:09:17.5055000 days 00:01:36.2170009.0000002.0000000 days 00:29:59.1070000 days 00:35:37.6622500 days 00:00:30.7327500 days 00:00:41.6765000 days 00:00:23.7360000 days 01:14:22.595250...0 days 01:09:21.996000225.000000241.000000277.000000280.0000003.0000000 days 01:06:55.9955002021-03-28 15:21:05.4147499525.0000002021.000000
50%0 days 01:39:58.3020000 days 00:01:37.85950022.0000002.0000000 days 00:59:30.3800000 days 00:58:21.2415000 days 00:00:31.1480000 days 00:00:42.5820000 days 00:00:24.1260000 days 01:44:32.815000...0 days 01:40:39.423500231.000000250.000000281.000000295.0000008.0000000 days 01:38:20.1610002022-03-20 15:46:26.37799987210.0000002022.000000
75%0 days 02:13:43.2485000 days 00:01:40.34550039.0000003.0000000 days 01:28:09.3430000 days 01:25:50.7960000 days 00:00:31.7920000 days 00:00:43.7795000 days 00:00:24.9017500 days 02:15:42.518250...0 days 02:14:05.441000235.000000257.000000284.000000303.00000013.0000000 days 02:12:04.5752502023-03-05 16:12:27.61200015.0000002023.000000
max0 days 03:33:47.4280000 days 00:03:05.09200057.0000007.0000000 days 03:28:04.3890000 days 03:27:38.6380000 days 00:01:39.1600000 days 00:01:27.3400000 days 00:01:10.4780000 days 03:32:33.946000...0 days 03:33:47.428000248.000000274.000000302.000000333.00000037.0000000 days 03:32:00.1210002024-03-02 16:35:23.28000020.0000002024.000000
std0 days 00:44:32.8912776240 days 00:00:10.58890165716.8600941.1550310 days 00:41:40.5849278460 days 00:39:18.2270300520 days 00:00:05.8435876090 days 00:00:06.0251954530 days 00:00:04.8621554150 days 00:42:50.934311129...0 days 00:44:32.42562987228.86124232.65715522.13379852.8784716.4752310 days 00:44:57.137961013NaN5.5117661.411731
\n", - "

8 rows × 21 columns

\n", - "
" ] }, - "execution_count": 49, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], - "execution_count": 49 + "source": [ + "lap_data_combined.describe()" + ] }, { + "cell_type": "code", + "execution_count": 9, "metadata": { "ExecuteTime": { "end_time": "2024-11-20T03:40:23.364581Z", "start_time": "2024-11-20T03:40:23.214723Z" } }, - "cell_type": "code", + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0oAAAIhCAYAAABwnkrAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABKjElEQVR4nO3deXwU9eH/8feGJJuQYyEcCUgSQBruQwtiEDnkvj2oBTSASBEFRFBB4EuBlghoPdDKkaKoCFIQECqYSksSioKCgCBasAgJCgQLZROOHCTz+8NH9udOAmYx2Qmb1/Px2Efc2U9m3pMdMG9m5rM2wzAMAQAAAABc/KwOAAAAAAAVDUUJAAAAAEwoSgAAAABgQlECAAAAABOKEgAAAACYUJQAAAAAwISiBAAAAAAmFCUAAAAAMKEoAQAAAIAJRQmAT7DZbKV6pKamWh3VMlu2bNHs2bOtjlGiN9980+19CgoKUlRUlLp27ap58+bpzJkzxb5n9uzZstlsHm3n0qVLmj17tsfHQUnbql+/vvr37+/Ren7OqlWr9PLLL5f4ms1ms+T9K9r3//73v+Wy/vPnz6tevXpq3769CgoKir2+Y8cOValSRdOmTSuX7QPA1VCUAPiEnTt3uj369u2r4ODgYstvvfVWq6NaZsuWLZozZ47VMa5p+fLl2rlzp7Zu3arXXntNbdq00YIFC9S0aVP94x//cBs7evRo7dy506P1X7p0SXPmzPG4KF3Ptq7HtYrSzp07NXr06HLP4G3VqlXTG2+8oc8++0wLFixwe+3SpUt66KGH1Lx58wp/7ALwPf5WBwCAsnD77be7Pa9Vq5b8/PyKLfclly5dUtWqVa2OUaY5WrRoobZt27qe33fffZo0aZI6duyoe++9V998840iIyMlSfXq1VO9evXKZLtXU7Rv3tjWz/HlY7lnz5569NFHNWfOHA0YMEAtW7aUJD3zzDNKT0/X7t27FRgYWO45Ll++rKCgII/PVALwTZxRAlBp5OXlae7cuWrSpInsdrtq1aqlhx56SD/88IPbuKJLqj744APdcsstCg4OVtOmTfXBBx9I+vEysaZNmyokJES33Xab9uzZ4/b9I0eOVGhoqA4dOqRu3bopJCREtWrV0vjx43Xp0iW3sYZhaNGiRWrTpo2Cg4NVvXp1DR48WN9++63buC5duqhFixbavn27OnTooKpVq2rUqFGSpL/+9a/q2bOn6tSp48r6zDPP6OLFi26ZXnvtNUnulykeP35cx48fl81m05tvvlnsZ2a+3KvoMqy9e/dq8ODBql69um6++WaP9sVTMTExeuGFF5Sdna2lS5cWy/JT27ZtU5cuXVSjRg0FBwcrJiZG9913ny5duqTjx4+rVq1akqQ5c+a4fgYjR4782X271mV+GzZsUKtWrRQUFKSGDRvqlVdecXu96LLC48ePuy1PTU11uxy0S5cu2rx5s9LT093eoyIlXXr35ZdfatCgQapevbqCgoLUpk0bvfXWWyVu591339WMGTNUt25dhYeHq3v37jp8+PDVf/AmJ06c0L333qvw8HA5HA49+OCDbn92Hn74YUVERBQ7xiXprrvuUvPmza+5/ueff17R0dEaMWKE8vPztX37dv35z3/W7Nmz1bp1a0k/Huvx8fEKCQlRaGioevXqpX379rmtZ8+ePRoyZIjq16+v4OBg1a9fX0OHDlV6errbuKL35aOPPtKoUaNUq1YtVa1aVbm5uaX+mQDwbRQlAJVCYWGhBg0apPnz52vYsGHavHmz5s+fr61bt6pLly66fPmy2/gvvvhC06ZN09SpU7V+/Xo5HA7de++9mjVrlpYtW6Znn31WK1eulNPpVP/+/Yt9f35+vvr27atu3brp/fff1/jx47V06VL99re/dRv3yCOP6IknnlD37t31/vvva9GiRTp06JA6dOigzMxMt7GnTp3Sgw8+qGHDhmnLli167LHHJEnffPON+vbtq9dff13Jycl64okntGbNGg0YMMD1vTNnztTgwYMluV+mWKdOnev6ed57771q1KiR1q5dqyVLlni8L57q27evqlSpou3bt191zPHjx9WvXz8FBgbqjTfeUHJysubPn6+QkBDl5eWpTp06Sk5OlvTjL/VFP4OZM2f+7L5dzf79+/XEE09o0qRJ2rBhgzp06KCJEyfqT3/6k8f7uGjRIt1xxx2Kiopye4+u5vDhw+rQoYMOHTqkV155RevXr1ezZs00cuRIPffcc8XGT58+Xenp6Vq2bJmSkpL0zTffaMCAASXeF1SSe+65R40aNdJ7772n2bNn6/3331evXr2Un58vSZo4caL+97//adWqVW7f99VXXyklJUXjxo275vpDQkL01ltv6YsvvtD06dP10EMP6bbbbtPUqVMlSc8++6yGDh2qZs2aac2aNVqxYoWys7N155136quvvnKt5/jx42rcuLFefvll/f3vf9eCBQt06tQptWvXrsT7rEaNGqWAgACtWLFC7733ngICAkr18wBQCRgA4INGjBhhhISEuJ6/++67hiRj3bp1buN2795tSDIWLVrkWhYbG2sEBwcb3333nWvZ/v37DUlGnTp1jIsXL7qWv//++4YkY9OmTW7blmQsXLjQbVuJiYmGJGPHjh2GYRjGzp07DUnGCy+84DbuxIkTRnBwsDFlyhTXss6dOxuSjH/+85/X3O/CwkIjPz/fSEtLMyQZX3zxheu1cePGGSX9tX/s2DFDkrF8+fJir0kyZs2a5Xo+a9YsQ5Lx+9//3m2cJ/tSkuXLlxuSjN27d191TGRkpNG0adNiWYq89957hiRj//79V13HDz/8UGyffm7fStqWYfx4nNhstmLb69GjhxEeHu46Tor27dixY27jUlJSDElGSkqKa1m/fv2M2NjYErObcw8ZMsSw2+1GRkaG27g+ffoYVatWNc6fP++2nb59+7qNW7NmjSHJ2LlzZ4nbM+/7pEmT3JavXLnSkGS88847rmWdO3c22rRp4zbu0UcfNcLDw43s7OxrbqfIlClTDElGcHCwcfjwYcMwDCMjI8Pw9/c3JkyY4DY2OzvbiIqKMu6///6rru/KlSvGhQsXjJCQELc/k0Xvy/Dhw0uVC0DlwxklAJXCBx98oGrVqmnAgAG6cuWK69GmTRtFRUUVu7m/TZs2uummm1zPmzZtKunHy6N+ej9O0XLzZT2S9MADD7g9HzZsmCQpJSXFlclms+nBBx90yxQVFaXWrVsXy1S9enXdddddxbbz7bffatiwYYqKilKVKlUUEBCgzp07S5K+/vrr0vx4PHbfffe5Pfd0X66HYRjXfL1NmzYKDAzUmDFj9NZbb133JX/mfbuW5s2buy4LKzJs2DBlZWVp796917X90tq2bZu6deum6Ohot+UjR47UpUuXip2NGjhwoNvzVq1aSSr52C2J+Xi+//775e/v7zqepR/PKu3fv18ff/yxJCkrK0srVqzQiBEjFBoaWqrt/OEPf5AkPfjgg4qLi5Mk/f3vf9eVK1c0fPhwt+MrKChInTt3dju+Lly4oKlTp6pRo0by9/eXv7+/QkNDdfHixRL/PHjyfgOoXJjMAUClkJmZqfPnz1/1hnDzJTkRERFuz4u+72rLc3Jy3Jb7+/urRo0absuioqIkSWfPnnVlMgzDNTmBWcOGDd2el3SZ3IULF3TnnXcqKChIc+fOVVxcnKpWreq6n8R8SWBZMWfxdF88dfHiRZ09e9Z1k39Jbr75Zv3jH//Qc889p3HjxunixYtq2LChHn/8cU2cOLHU2/LkcsSi97SkZUXvc3k5e/ZsiVnr1q1b4vbNx6PdbpekUh8j5n0tOsZ/up1Bgwapfv36eu2113THHXfozTff1MWLF3/2sruScv30z2rRpZvt2rUr8Xv8/P7/v/sOGzZM//znPzVz5ky1a9dO4eHhstls6tu3b4n7er2XnwLwfRQlAJVCzZo1VaNGDdc9KmZhYWFlur0rV67o7Nmzbr+cnj59WtL//4W1Zs2astls+te//uX65fCnzMtKmkxg27ZtOnnypFJTU11nkaQfP5umtIKCgiSp2E3s1/pF35zF033x1ObNm1VQUKAuXbpcc9ydd96pO++8UwUFBdqzZ49effVVPfHEE4qMjNSQIUNKtS1PZjwrek9LWlb0Pl/t5/tLP5eoRo0aOnXqVLHlJ0+elPTje1KWTp8+7XaWtaRj3M/PT+PGjdP06dP1wgsvaNGiRerWrZsaN278i7ZdtC/vvfeeYmNjrzrO6XTqgw8+0KxZs/TMM8+4lufm5urcuXMlfg8z3AG4GooSgEqhf//+Wr16tQoKCtS+fXuvbHPlypV6/PHHXc+LbnIv+mW/f//+mj9/vr7//nvdf//917WNol/yzEXkp7PDFfnpGYTg4GDX8sjISAUFBenAgQNu4zdu3FjqHGWxL1eTkZGhp556Sg6HQ4888kipvqdKlSpq3769mjRpopUrV2rv3r0aMmSIx2dRfs6hQ4f0xRdfuF1+t2rVKoWFhbk+s6t+/fqSpAMHDrgVhk2bNhVbn91uL3W2bt26acOGDTp58qTrLJIkvf3226patWqZTye+cuVK/frXv3Y9X7Nmja5cuVKsvI4ePVqzZ8/WAw88oMOHDxf7bKTr0atXL/n7++vo0aPXvFTOZrPJMIxifx6WLVtW6kkrAKAIRQlApTBkyBCtXLlSffv21cSJE3XbbbcpICBA3333nVJSUjRo0CDdc889Zba9wMBAvfDCC7pw4YLatWunTz75RHPnzlWfPn3UsWNHSdIdd9yhMWPG6KGHHtKePXvUqVMnhYSE6NSpU9qxY4datmypRx999Jrb6dChg6pXr66xY8dq1qxZCggI0MqVK/XFF18UG1t02dqCBQvUp08fValSRa1atVJgYKAefPBBvfHGG7r55pvVunVrffbZZ8VmL7uWstgX6cfprovuPzlz5oz+9a9/afny5apSpYo2bNjgmt67JEuWLNG2bdvUr18/xcTEKCcnR2+88YYkqXv37pJ+PHMYGxurjRs3qlu3boqIiFDNmjVdZcZTdevW1cCBAzV79mzVqVNH77zzjrZu3aoFCxa47mVr166dGjdurKeeekpXrlxR9erVtWHDBu3YsaPY+lq2bKn169dr8eLF+vWvfy0/Pz+3z5X6qVmzZumDDz5Q165d9fvf/14RERFauXKlNm/erOeee04Oh+O69ulq1q9fL39/f/Xo0UOHDh3SzJkz1bp162LFuFq1aho+fLgWL16s2NhYt9kXr1f9+vX1hz/8QTNmzNC3336r3r17q3r16srMzNRnn32mkJAQzZkzR+Hh4erUqZOef/551/ualpam119/XdWqVfvFOQBUMtbOJQEA5cM8651hGEZ+fr7xpz/9yWjdurURFBRkhIaGGk2aNDEeeeQR45tvvnGNi42NNfr161dsnZKMcePGuS0rmjHu+eefL7btAwcOGF26dDGCg4ONiIgI49FHHzUuXLhQbL1vvPGG0b59eyMkJMQIDg42br75ZmP48OHGnj17XGM6d+5sNG/evMR9/eSTT4z4+HijatWqRq1atYzRo0cbe/fuLTaTXW5urjF69GijVq1ahs1mc5uJzel0GqNHjzYiIyONkJAQY8CAAcbx48evOuvdDz/8UGKW0uxLSYpmICt6BAYGGrVr1zY6d+5sPPvss8aZM2eKfY95JrqdO3ca99xzjxEbG2vY7XajRo0aRufOnd1mJDQMw/jHP/5h3HLLLYbdbjckGSNGjPjZfbvarHf9+vUz3nvvPaN58+ZGYGCgUb9+fePFF18s9v1HjhwxevbsaYSHhxu1atUyJkyYYGzevLnYrHfnzp0zBg8ebFSrVs31HhUxvxeGYRgHDx40BgwYYDgcDiMwMNBo3bp1sdkLi2a9W7t2rdvya812WNK+f/7558aAAQOM0NBQIywszBg6dKiRmZlZ4vekpqYakoz58+dfc91XU9KfNcP4cZbJrl27GuHh4YbdbjdiY2ONwYMHG//4xz9cY7777jvjvvvuM6pXr26EhYUZvXv3Nr788ksjNjbW9V4bRulmWgRQudkM42emEQIAeGTkyJF67733dOHCBaujAJZ48skntXjxYp04caLYJBIAcKPg0jsAAFAmdu3apSNHjmjRokV65JFHKEkAbmgUJQAAUCbi4+NVtWpV9e/fX3PnzrU6DgD8Ilx6BwAAAAAmfj8/BAAAAAAqF4oSAAAAAJhQlAAAAADAxOcncygsLNTJkycVFhbm+gR7AAAAAJWPYRjKzs5W3bp15ed37XNGPl+UTp48qejoaKtjAAAAAKggTpw4oXr16l1zjM8XpbCwMEk//jDCw8MtTgMAAADAKllZWYqOjnZ1hGvx+aJUdLldeHg4RQkAAABAqW7JYTIHAAAAADChKAEAAACAiaVFafHixWrVqpXrsrj4+Hh9+OGHbmO+/vprDRw4UA6HQ2FhYbr99tuVkZFhUWIAAAAAlYGlRalevXqaP3++9uzZoz179uiuu+7SoEGDdOjQIUnS0aNH1bFjRzVp0kSpqan64osvNHPmTAUFBVkZGwAAAICPsxmGYVgd4qciIiL0/PPP6+GHH9aQIUMUEBCgFStWXPf6srKy5HA45HQ6mcwBAAAAqMQ86QYV5h6lgoICrV69WhcvXlR8fLwKCwu1efNmxcXFqVevXqpdu7bat2+v999//5rryc3NVVZWltsDAAAAADxheVE6ePCgQkNDZbfbNXbsWG3YsEHNmjXTmTNndOHCBc2fP1+9e/fWRx99pHvuuUf33nuv0tLSrrq+efPmyeFwuB582CwAAAAAT1l+6V1eXp4yMjJ0/vx5rVu3TsuWLVNaWpqqVaumm266SUOHDtWqVatc4wcOHKiQkBC9++67Ja4vNzdXubm5rudFHyrFpXcAAABA5ebJpXeWf+BsYGCgGjVqJElq27atdu/erYULF+rVV1+Vv7+/mjVr5ja+adOm2rFjx1XXZ7fbZbfbyzUzAAAAAN9m+aV3ZoZhKDc3V4GBgWrXrp0OHz7s9vqRI0cUGxtrUToAAAAAlYGlZ5SmT5+uPn36KDo6WtnZ2Vq9erVSU1OVnJwsSXr66af129/+Vp06dVLXrl2VnJysv/3tb0pNTbUyNgAAAAAfZ2lRyszMVEJCgk6dOiWHw6FWrVopOTlZPXr0kCTdc889WrJkiebNm6fHH39cjRs31rp169SxY0crYwMAAADwcZZP5lDe+BwlAAAAANIN+jlKAAAAAFBRUJQAAAAAwISiBAAAAAAmFCUAAAAAMLH8A2cBWC8nJ0cZGRlWx7BMTEyMgoKCrI4BAAAqEIoSAGVkZGjMmDFWx7BMUlKS4uLirI4BAAAqEIoSAMXExCgpKcmSbaenpysxMVEzZsxQbGysJRliYmIs2S4AAKi4KEoAFBQUZPkZldjYWMszAAAAFGEyBwAAAAAwoSgBAAAAgAlFCQAAAABMKEoAAAAAYEJRAgAAAAATihIAAAAAmDA9OAAAQBkpKCjQgQMHdO7cOUVERKhVq1aqUqWK1bEAXAeKEgAAQBnYvn27Fi1apNOnT7uWRUVF6bHHHlOnTp0sTAbgenDpHQAAwC+0fft2zZo1Sw0bNtRrr72mLVu26LXXXlPDhg01a9Ysbd++3eqIADxEUQIAAPgFCgoKtGjRIsXHx2vOnDnKy8vTzp07lZeXpzlz5ig+Pl6LFy9WQUGB1VEBeIBL7wAAAH6BAwcO6PTp0xowYIASEhKKXXo3YMAAffLJJzpw4IBuueUWC5MC8ARFCQAA4Bc4d+6cJGnZsmWKj4/XzJkz1aBBAx07dkwrV67UsmXL3MYBuDFw6R0AAMAvUK1aNUlSixYtNHfuXDVv3lxVq1ZV8+bNNXfuXLVo0cJtHIAbA0UJAAAAAEwoSgAAAL/A+fPnJUkHDx7U//3f/+nQoUO6dOmSDh06pP/7v//TwYMH3cYBuDFwjxIAAMAvEBERIUn63e9+p7/97W8aN26c67U6depo9OjRWrZsmWscgBsDRQkAAPicnJwcZWRkeGVbwcHBqlGjhj799FP9/ve/19GjR+V0OuVwOHTzzTdryZIlqlmzpoKDg3XkyBGvZIqJiVFQUJBXtgX4KooSAADwORkZGRozZoxXt3n27Fk99thjV3197NixXsuSlJSkuLg4r20P8EUUJQAA4HNiYmKUlJTk1W3u3btXa9eu1dmzZ13LatasqcGDB+vWW2/1apaYmBivbg/wRRQlAADgc4KCgrx+RiUuLk6/+c1vtGXLFr3wwgt68skn1bdvX1WpUsWrOQCUDWa9AwAAKCNVqlRR48aNJUmNGzemJAE3MIoSAAAAAJhQlAAAAADAhKIEAAAAACYUJQAAAAAwoSgBAAAAgAlFCQAAAABMKEoAAAAAYEJRAgAAAAATihIAAAAAmFCUAAAAAMCEogQAAAAAJhQlAAAAADChKAEAAACACUUJAAAAAEwoSgAAAABgQlECAAAAABOKEgAAAACYWFqUFi9erFatWik8PFzh4eGKj4/Xhx9+WOLYRx55RDabTS+//LJ3QwIAAACodCwtSvXq1dP8+fO1Z88e7dmzR3fddZcGDRqkQ4cOuY17//339emnn6pu3boWJQUAAABQmVhalAYMGKC+ffsqLi5OcXFxSkxMVGhoqHbt2uUa8/3332v8+PFauXKlAgICLEwLAAAAoLLwtzpAkYKCAq1du1YXL15UfHy8JKmwsFAJCQl6+umn1bx581KtJzc3V7m5ua7nWVlZ5ZIXAAAAgO+yfDKHgwcPKjQ0VHa7XWPHjtWGDRvUrFkzSdKCBQvk7++vxx9/vNTrmzdvnhwOh+sRHR1dXtEBAAAA+CjLzyg1btxY+/fv1/nz57Vu3TqNGDFCaWlpunz5shYuXKi9e/fKZrOVen3Tpk3T5MmTXc+zsrIoSwAAAAA8YnlRCgwMVKNGjSRJbdu21e7du7Vw4UI1bdpUZ86cUUxMjGtsQUGBnnzySb388ss6fvx4ieuz2+2y2+3eiA4AAADAR1lelMwMw1Bubq4SEhLUvXt3t9d69eqlhIQEPfTQQxalAwAAAFAZWFqUpk+frj59+ig6OlrZ2dlavXq1UlNTlZycrBo1aqhGjRpu4wMCAhQVFaXGjRtblBgAAABAZWBpUcrMzFRCQoJOnTolh8OhVq1aKTk5WT169LAyFgAAAIBKztKi9Prrr3s0/mr3JQEAAABAWbJ8enAAAAAAqGgoSgAAAABgQlECAAAAABOKEgAAAACYUJQAAAAAwISiBAAAAAAmFCUAAAAAMKEoAQAAAIAJRQkAAAAATChKAAAAAGBCUQIAAAAAE4oSAAAAAJhQlAAAAADAhKIEAAAAACYUJQAAAAAwoSgBAAAAgAlFCQAAAABMKEoAAAAAYEJRAgAAAAATihIAAAAAmFCUAAAAAMCEogQAAAAAJhQlAAAAADDxtzoAgP8vMzNTTqfT6hhelZ6e7va1MnE4HIqMjLQ6BgAAKAFFCaggMjMz9WDCcOXn5VodxRKJiYlWR/C6gEC73lnxNmUJAIAKiKIEVBBOp1P5ebm63LCzCoMcVsdBOfPLcUrfpsnpdFKUAACogChKQAVTGORQYUhNq2MAAABUakzmAAAAAAAmFCUAAAAAMKEoAQAAAIAJRQkAAAAATChKAAAAAGBCUQIAAAAAE4oSAAAAAJhQlAAAAADAhKIEAAAAACYUJQAAAAAwoSgBAAAAgAlFCQAAAABMKEoAAAAAYOJvdQAAQOWRk5OjjIwMq2NYJiYmRkFBQVbHAACUAkUJAOA1GRkZGjNmjNUxLJOUlKS4uDirYwAASoGiBADwmpiYGCUlJVmy7fT0dCUmJmrGjBmKjY21JENMTIwl2wUAeI6iBADwmqCgIMvPqMTGxlqeAQBQ8TGZAwAAAACYUJQAAAAAwMTSorR48WK1atVK4eHhCg8PV3x8vD788ENJUn5+vqZOnaqWLVsqJCREdevW1fDhw3Xy5EkrIwMAAACoBCwtSvXq1dP8+fO1Z88e7dmzR3fddZcGDRqkQ4cO6dKlS9q7d69mzpypvXv3av369Tpy5IgGDhxoZWQAAAAAlYClkzkMGDDA7XliYqIWL16sXbt26eGHH9bWrVvdXn/11Vd12223KSMjg5mDAAAAAJSbCjPrXUFBgdauXauLFy8qPj6+xDFOp1M2m03VqlW76npyc3OVm5vrep6VlVXWUQEAAAD4OMsnczh48KBCQ0Nlt9s1duxYbdiwQc2aNSs2LicnR88884yGDRum8PDwq65v3rx5cjgcrkd0dHR5xgcAAADggywvSo0bN9b+/fu1a9cuPfrooxoxYoS++uortzH5+fkaMmSICgsLtWjRomuub9q0aXI6na7HiRMnyjM+AAAAAB9k+aV3gYGBatSokSSpbdu22r17txYuXKilS5dK+rEk3X///Tp27Ji2bdt2zbNJkmS322W328s9NwAAAADfZXlRMjMMw3WPUVFJ+uabb5SSkqIaNWpYnA4AAABAZWBpUZo+fbr69Omj6OhoZWdna/Xq1UpNTVVycrKuXLmiwYMHa+/evfrggw9UUFCg06dPS5IiIiIUGBhoZXQAAAAAPszSopSZmamEhASdOnVKDodDrVq1UnJysnr06KHjx49r06ZNkqQ2bdq4fV9KSoq6dOni/cAAAAAAKgVLi9Lrr79+1dfq168vwzC8mAYAAAAAfmT5rHcAAAAAUNFQlAAAAADAhKIEAAAAACYUJQAAAAAwoSgBAAAAgAlFCQAAAABMKEoAAAAAYEJRAgAAAAATihIAAAAAmFCUAAAAAMCEogQAAAAAJhQlAAAAADChKAEAAACACUUJAAAAAEwoSgAAAABg4m91AAAA4LsyMzPldDqtjuFV6enpbl8rE4fDocjISKtjAGWCogQAAMpFZmamHkwYrvy8XKujWCIxMdHqCF4XEGjXOyvepizBJ1CUAABAuXA6ncrPy9Xlhp1VGOSwOg7KmV+OU/o2TU6nk6IEn0BRAgAA5aowyKHCkJpWxwAAjzCZAwAAAACYUJQAAAAAwISiBAAAAAAmFCUAAAAAMKEoAQAAAIAJRQkAAAAATChKAAAAAGBCUQIAAAAAE4oSAAAAAJhQlAAAAADAhKIEAAAAACYUJQAAAAAwoSgBAAAAgAlFCQAAAABMKEoAAAAAYEJRAgAAAAATihIAAAAAmFCUAAAAAMCEogQAAAAAJhQlAAAAADChKAEAAACACUUJAAAAAEwoSgAAAABgQlECAAAAABOKEgAAAACYUJQAAAAAwMTf6gCoePLy8rRx40adPHlSdevW1aBBgxQYGGh1LAAAAMBrLD2jtHjxYrVq1Urh4eEKDw9XfHy8PvzwQ9frhmFo9uzZqlu3roKDg9WlSxcdOnTIwsS+b8mSJerTp49ee+01bdiwQa+99pr69OmjJUuWWB0NAAAA8BpLi1K9evU0f/587dmzR3v27NFdd92lQYMGucrQc889pxdffFF//vOftXv3bkVFRalHjx7Kzs62MrbPWrJkiVavXq3w8HA99dRTWrdunZ566imFh4dr9erVlCUAAABUGpYWpQEDBqhv376Ki4tTXFycEhMTFRoaql27dskwDL388suaMWOG7r33XrVo0UJvvfWWLl26pFWrVlkZ2yfl5eVp7dq1ql69utauXav+/furRo0a6t+/v9vyvLw8q6MCAAAA5a7CTOZQUFCg1atX6+LFi4qPj9exY8d0+vRp9ezZ0zXGbrerc+fO+uSTT666ntzcXGVlZbk98PM2btyogoICPfzww/L3d791zd/fX6NGjVJBQYE2btxoUUIAAADAeywvSgcPHlRoaKjsdrvGjh2rDRs2qFmzZjp9+rQkKTIy0m18ZGSk67WSzJs3Tw6Hw/WIjo4u1/y+4uTJk5Kk+Pj4El8vWl40DgAAAPBlls9617hxY+3fv1/nz5/XunXrNGLECKWlpblet9lsbuMNwyi27KemTZumyZMnu55nZWXdsGUpJydHGRkZXtlWQECAJOn999/XnXfeWez17du3u8YdOXLEK5liYmIUFBTklW0BAAAAP2V5UQoMDFSjRo0kSW3bttXu3bu1cOFCTZ06VZJ0+vRp1alTxzX+zJkzxc4y/ZTdbpfdbi/f0F6SkZGhMWPGeHWbK1as0IoVK676+po1a7RmzRqvZElKSlJcXJxXtgUAAAD8lOVFycwwDOXm5qpBgwaKiorS1q1bdcstt0j6ccKBtLQ0LViwwOKU3hETE6OkpCSvbe+9997TRx99pLCwMHXs2FEffvih+vTpox07dig7O1s9e/bU4MGDvZYnJibGa9sCAAAAfsrSojR9+nT16dNH0dHRys7O1urVq5Wamqrk5GTZbDY98cQTevbZZ/WrX/1Kv/rVr/Tss8+qatWqGjZsmJWxvSYoKMirZ1SmT5+uiIgIrV271vV5Vh9++KGqVKmiIUOGaOzYsV7LAgAAAFjJ0qKUmZmphIQEnTp1Sg6HQ61atVJycrJ69OghSZoyZYouX76sxx57TP/73//Uvn171xkPlI+xY8dq1KhRWrZsmdasWaP7779fo0ePVmBgoNXRAAAAAK+xtCi9/vrr13zdZrNp9uzZmj17tncCQdKP9411795da9asUffu3SlJAAAAqHQsnx4cAAAAACoaihIAAAAAmFCUAAAAAMCEogQAAAAAJhQlAAAAADChKAEAAACAiaXTgwMAAN/nd/m81RHgBbzP8DUUJQAAUK6Cj223OgIAeOwXFSXDMCT9+MGwAAAAJbncoJMKg6tZHQPlzO/yeUoxfMp1FaXXX39dL730kr755htJ0q9+9Ss98cQTGj16dJmGAwAAN77C4GoqDKlpdQwA8IjHRWnmzJl66aWXNGHCBMXHx0uSdu7cqUmTJun48eOaO3dumYcEAAAAAG/yuCgtXrxYf/nLXzR06FDXsoEDB6pVq1aaMGECRQkAAADADc/j6cELCgrUtm3bYst//etf68qVK2USCgAAAACs5HFRevDBB7V48eJiy5OSkvTAAw+USSgAAAAAsNJ1T+bw0Ucf6fbbb5ck7dq1SydOnNDw4cM1efJk17gXX3yxbFICAMpUZmamnE6n1TG8Kj093e1rZeJwOBQZGWl1DAC4oXhclL788kvdeuutkqSjR49KkmrVqqVatWrpyy+/dI1jynAAqJgyMzP1YMJw5eflWh3FEomJiVZH8LqAQLveWfE2ZQkAPOBxUUpJSSmPHAAAL3E6ncrPy9Xlhp1VGOSwOg7KmV+OU/o2TU6nk6IEAB74RR84CwC4cRUGOfhsGwAArsLjopSTk6NXX31VKSkpOnPmjAoLC91e37t3b5mFAwAAAAAreFyURo0apa1bt2rw4MG67bbbuBcJAAAAgM/xuCht3rxZW7Zs0R133FEeeQAAAADAch5/jtJNN92ksLCw8sgCAAAAABWCx0XphRde0NSpUyvl51AAAAAAqBw8vvSubdu2ysnJUcOGDVW1alUFBAS4vX7u3LkyCwcAAAAAVvC4KA0dOlTff/+9nn32WUVGRjKZAwAAAACf43FR+uSTT7Rz5061bt26PPIAAAAAgOU8vkepSZMmunz5cnlkAQAAAIAKweOiNH/+fD355JNKTU3V2bNnlZWV5fYAAAAAgBudx5fe9e7dW5LUrVs3t+WGYchms6mgoKBskgEAAACARTwuSikpKeWRAwAA+Ci/HKfVEeAFvM/wNR4Xpc6dO5dHDgAA4GMcDocCAu3St2lWR4GXBATa5XA4rI4BlAmPi5Ik/etf/9LSpUv17bffau3atbrpppu0YsUKNWjQQB07dizrjECl4nf5vNUR4AW8z6gMIiMj9c6Kt+V0Vq4zDenp6UpMTNSMGTMUGxtrdRyvcjgcioyMtDoGUCY8Lkrr1q1TQkKCHnjgAe3du1e5ubmSpOzsbD377LPasmVLmYcEKpPgY9utjgAAZSYyMrLS/uIcGxuruLg4q2MAuE4eF6W5c+dqyZIlGj58uFavXu1a3qFDB/3hD38o03BAZXS5QScVBlezOgbKmd/l85RiAAAqMI+L0uHDh9WpU6diy8PDw3X+/PmyyARUaoXB1VQYUtPqGAAAAJWax5+jVKdOHf3nP/8ptnzHjh1q2LBhmYQCAAAAACuVuii9/fbbys3N1SOPPKKJEyfq008/lc1m08mTJ7Vy5Uo99dRTeuyxx8ozKwAAAAB4RakvvXvooYfUu3dvTZkyRU6nU127dlVOTo46deoku92up556SuPHjy/PrAAAAADgFaUuSoZhuP67aMrLr776SoWFhWrWrJlCQ0PLJSAAAAAAeJtHkznYbDbXf1etWlVt27Yt80AAAAAAYDWPitLIkSNlt9uvOWb9+vW/KFBFlJmZWSk/LO+nXysTPiwPAAAAHhWlsLAwBQcHl1eWCikzM1MPJgxXfl6u1VEskZiYaHUErwsItOudFW9TlgAAACoxj4rSK6+8otq1a5dXlgrJ6XQqPy9Xlxt2VmGQw+o4KGd+OU7p2zQ5nU6KEgAAQCVW6qL00/uTKqPCIAcfAgoAAABUEqX+HKWfznoHAAAAAL6s1EUpJSVFEREROnHixFXH7Nq1q0xCAQAAAICVSl2UOnfuLH9/f/Xo0UNnz54t9vrHH3+s3r17e7TxefPmqV27dgoLC1Pt2rV199136/Dhw25jLly4oPHjx6tevXoKDg5W06ZNtXjxYo+2AwAAAACeKHVRKnLnnXeqZ8+eys7Odi3bvn27+vbtq1mzZnm0rrS0NI0bN067du3S1q1bdeXKFfXs2VMXL150jZk0aZKSk5P1zjvv6Ouvv9akSZM0YcIEbdy40dPoAAAAAFAqHhelpKQkNWjQQP369VNOTo5SUlLUr18//eEPf9CkSZM8WldycrJGjhyp5s2bq3Xr1lq+fLkyMjL0+eefu8bs3LlTI0aMUJcuXVS/fn2NGTNGrVu31p49e0pcZ25urrKystweAAAAAOAJj4uSzWbTu+++q6CgIHXr1k0DBw7UvHnzNHHixF8cpuhDXSMiIlzLOnbsqE2bNun777+XYRhKSUnRkSNH1KtXrxLXMW/ePDkcDtcjOjr6F+cCAAAAULmUanrwAwcOFFs2a9YsDR06VA8++KA6derkGtOqVavrCmIYhiZPnqyOHTuqRYsWruWvvPKKfve736levXry9/eXn5+fli1bpo4dO5a4nmnTpmny5Mmu51lZWZQlAAAAAB4pVVFq06aNbDab2xThRc+XLl2qpKQkGYYhm82mgoKC6woyfvx4HThwQDt27HBb/sorr2jXrl3atGmTYmNjtX37dj322GOqU6eOunfvXmw9drtddrv9ujIAAAAAgFTKonTs2LFyDTFhwgRt2rRJ27dvV7169VzLL1++rOnTp2vDhg3q16+fpB/PWO3fv19/+tOfSixKAAAAAPBLlaooxcbGlsvGDcPQhAkTtGHDBqWmpqpBgwZur+fn5ys/P19+fu63UlWpUkWFhYXlkgkAAAAASlWUfmrevHmKjIzUqFGj3Ja/8cYb+uGHHzR16tRSr2vcuHFatWqVNm7cqLCwMJ0+fVqS5HA4FBwcrPDwcHXu3FlPP/20goODFRsbq7S0NL399tt68cUXPY0OAAAAAKXi8ax3S5cuVZMmTYotb968uZYsWeLRuhYvXiyn06kuXbqoTp06rsdf//pX15jVq1erXbt2euCBB9SsWTPNnz9fiYmJGjt2rKfRAQAAAKBUPD6jdPr0adWpU6fY8lq1aunUqVMereunk0NcTVRUlJYvX+7RegEAAADgl/D4jFJ0dLQ+/vjjYss//vhj1a1bt0xCAQAAAICVPD6jNHr0aD3xxBPKz8/XXXfdJUn65z//qSlTpujJJ58s84AVhd/l81ZHgBfwPgMAAEC6jqI0ZcoUnTt3To899pjy8vIkSUFBQZo6daqmTZtW5gEriuBj262OAAAAAMBLPC5KNptNCxYs0MyZM/X1118rODhYv/rVr3z+Q14vN+ikwuBqVsdAOfO7fJ5SDAAAAM+LUpHQ0FC1a9euLLNUaIXB1VQYUtPqGAAAAAC84LqK0u7du7V27VplZGS4Lr8rsn79+jIJBgAAAABW8XjWu9WrV+uOO+7QV199pQ0bNig/P19fffWVtm3bJofDUR4ZAQAAAMCrPC5Kzz77rF566SV98MEHCgwM1MKFC/X111/r/vvvV0xMTHlkBAAAAACv8rgoHT16VP369ZMk2e12Xbx4UTabTZMmTVJSUlKZBwQAAAAAb/O4KEVERCg7O1uSdNNNN+nLL7+UJJ0/f16XLl0q23QAAAAAYAGPJ3O48847tXXrVrVs2VL333+/Jk6cqG3btmnr1q3q1q1beWQEAAAAAK/yuCj9+c9/Vk5OjiRp2rRpCggI0I4dO3Tvvfdq5syZZR4QAAAAALzNo6J05coV/e1vf1OvXr0kSX5+fpoyZYqmTJlSLuEAAAAAwAoe3aPk7++vRx99VLm5ueWVBwAAAAAs5/Gld+3bt9e+ffsUGxtbHnkqLL8cp9UR4AW8zwAAAJCuoyg99thjevLJJ/Xdd9/p17/+tUJCQtxeb9WqVZmFqwgcDocCAu3St2lWR4GXBATa+fBkAACASq7URWnUqFF6+eWX9dvf/laS9Pjjj7tes9lsMgxDNptNBQUFZZ/SQpGRkXpnxdtyOivXmYb09HQlJiZqxowZle7socPhUGRkpNUxAAAAYKFSF6W33npL8+fP17Fjx8ozT4UUGRlZaX9xjo2NVVxcnNUxAJQDv8vnrY4AL+B9BoDrU+qiZBiGJFW6swuAt3GfVOVQEd7n4GPbrY4AAECF5dE9SjabrbxyAJUe98NVPlbfD3e5QScVBlezbPvwDr/L5ynFAHAdPCpKcXFxP1uWzp0794sCAZUV98NxP5y3FQZXU2FITcu2DwBAReZRUZozZw6zgQHliPvhuB8OAABUDB4VpSFDhqh27drllQUAAAAAKgS/0g7k/iQAAAAAlUWpi1LRrHcAAAAA4OtKfeldYWFheeYAAAAAgAqj1GeUAAAAAKCyoCgBAAAAgAlFCQAAAABMKEoAAAAAYEJRAgAAAAATjz5wFgAA4EaQk5OjjIwMS7adnp7u9tUKMTExCgoKsmz7gC+gKAEAAJ+TkZGhMWPGWJohMTHRsm0nJSUpLi7Osu0DvoCiBAAAfE5MTIySkpKsjmGZmJgYqyMANzyKEgAA8DlBQUGcUYFXWHmZZ0Xgy5d5UpQAAACA61QRLvO0ki9f5klRAgAAAK6TlZd5pqenKzExUTNmzFBsbKwlGXz5Mk+KEgAAAHCdKsJlnrGxsZZn8EV8jhIAAAAAmFCUAAAAAMCEogQAAAAAJhQlAAAAADChKAEAAACACUUJAAAAAEwoSgAAAABgYmlRmjdvntq1a6ewsDDVrl1bd999tw4fPlxs3Ndff62BAwfK4XAoLCxMt99+uzIyMixIDAAAAKAysLQopaWlady4cdq1a5e2bt2qK1euqGfPnrp48aJrzNGjR9WxY0c1adJEqamp+uKLLzRz5kwFBQVZmBwAAACAL/O3cuPJycluz5cvX67atWvr888/V6dOnSRJM2bMUN++ffXcc8+5xjVs2NCrOQEAAABULpYWJTOn0ylJioiIkCQVFhZq8+bNmjJlinr16qV9+/apQYMGmjZtmu6+++4S15Gbm6vc3FzX86ysrHLPXV5ycnIsu8QwPT3d7asVYmJiOHPoJRxrlfNY88txWh0BXsD7DADXp8IUJcMwNHnyZHXs2FEtWrSQJJ05c0YXLlzQ/PnzNXfuXC1YsEDJycm69957lZKSos6dOxdbz7x58zRnzhxvxy8XGRkZGjNmjKUZEhMTLdt2UlKS4uLiLNt+ZcKxVrmONYfDoYBAu/RtmtVR4CUBgXY5HA6rYwDADcVmGIZhdQhJGjdunDZv3qwdO3aoXr16kqSTJ0/qpptu0tChQ7Vq1SrX2IEDByokJETvvvtusfWUdEYpOjpaTqdT4eHh5b8jZcjKf+WvCCrrv/JbgWOt8h1rmZmZrrP4lUV6eroSExM1Y8YMxcbGWh3HqxwOhyIjI62OAaCMHTlyRGPGjKl0/+D3S2RlZcnhcJSqG1SIM0oTJkzQpk2btH37dldJkqSaNWvK399fzZo1cxvftGlT7dixo8R12e122e32cs3rLUFBQRz08AqOtconMjKy0v7iHBsby/EOAPhZlhYlwzA0YcIEbdiwQampqWrQoIHb64GBgWrXrl2xKcOPHDlS6f41EAAAAID3WFqUxo0bp1WrVmnjxo0KCwvT6dOnJf14iUBwcLAk6emnn9Zvf/tbderUSV27dlVycrL+9re/KTU11cLkAAAAAHyZpZ+jtHjxYjmdTnXp0kV16tRxPf7617+6xtxzzz1asmSJnnvuObVs2VLLli3TunXr1LFjRwuTAwAAAPBlll96VxqjRo3SqFGjyjkNAAAAAPzI0jNKAAAAAFARUZQAAAAAwISiBAAAAAAmFCUAAAAAMKEoAQAAAIAJRQkAAAAATChKAAAAAGBCUQIAAAAAE4oSAAAAAJhQlAAAAADAhKIEAAAAACYUJQAAAAAwoSgBAAAAgAlFCQAAAABMKEoAAAAAYEJRAgAAAAATihIAAAAAmFCUAAAAAMCEogQAAAAAJhQlAAAAADChKAEAAACACUUJAAAAAEwoSgAAAABgQlECAAAAABOKEgAAAACYUJQAAAAAwISiBAAAAAAmFCUAAAAAMKEoAQAAAIAJRQkAAAAATChKAAAAAGBCUQIAAAAAE4oSAAAAAJhQlAAAAADAhKIEAAAAACYUJQAAAAAwoSgBAAAAgAlFCQAAAABMKEoAAAAAYEJRAgAAAAATihIAAAAAmFCUAAAAAMCEogQAAAAAJv5WBwAAVB45OTnKyMiwZNvp6eluX60QExOjoKAgy7YPACg9ihIAwGsyMjI0ZswYSzMkJiZatu2kpCTFxcVZtn0AQOlRlAAAXhMTE6OkpCSrY1gmJibG6ggAgFKytCjNmzdP69ev17///W8FBwerQ4cOWrBggRo3blzi+EceeURJSUl66aWX9MQTT3g3LADgFwsKCuKMCgDghmDpZA5paWkaN26cdu3apa1bt+rKlSvq2bOnLl68WGzs+++/r08//VR169a1ICkAAACAysTSM0rJycluz5cvX67atWvr888/V6dOnVzLv//+e40fP15///vf1a9fP2/HBAAAAFDJVKh7lJxOpyQpIiLCtaywsFAJCQl6+umn1bx5859dR25urnJzc13Ps7Kyyj4oAAAAAJ9WYT5HyTAMTZ48WR07dlSLFi1cyxcsWCB/f389/vjjpVrPvHnz5HA4XI/o6OjyigwAAADAR1WYojR+/HgdOHBA7777rmvZ559/roULF+rNN9+UzWYr1XqmTZsmp9Ppepw4caK8IgMAAADwURWiKE2YMEGbNm1SSkqK6tWr51r+r3/9S2fOnFFMTIz8/f3l7++v9PR0Pfnkk6pfv36J67Lb7QoPD3d7AAAAAIAnLL1HyTAMTZgwQRs2bFBqaqoaNGjg9npCQoK6d+/utqxXr15KSEjQQw895M2oAAAAACoRS4vSuHHjtGrVKm3cuFFhYWE6ffq0JMnhcCg4OFg1atRQjRo13L4nICBAUVFRV/2sJQAAAAD4pSwtSosXL5YkdenSxW358uXLNXLkSO8HAgAAwA0pMzPTNYNyZZGenu72tTJxOByKjIws123YDMMwynULFsvKypLD4ZDT6eR+JQAAAB+UmZmpBxOGKz8v9+cHwycEBNr1zoq3PS5LnnSDCvU5SgAAAICnnE6n8vNydblhZxUGOayOg3Lml+OUvk2T0+ks17NKFCUAAAD4hMIghwpDalodAz6iQkwPDgAAAAAVCUUJAAAAAEwoSgAAAABgQlECAAAAABOKEgAAAACYUJQAAAAAwISiBAAAAAAmFCUAAAAAMKEoAQAAAIAJRQkAAAAATChKAAAAAGBCUQIAAAAAE4oSAAAAAJhQlAAAAADAhKIEAAAAACYUJQAAAAAwoSgBAAAAgAlFCQAAAABMKEoAAAAAYEJRAgAAAAATihIAAAAAmFCUAAAAAMCEogQAAAAAJhQlAAAAADChKAEAAACACUUJAAAAAEwoSgAAAABgQlECAAAAABOKEgAAAACYUJQAAAAAwMTf6gAAAABAWfC7fN7qCPACb73PFCUAAAD4hOBj262OAB9CUQIAAIBPuNygkwqDq1kdA+XM7/J5r5RiihIAAAB8QmFwNRWG1LQ6BnwEkzkAAAAAgAlFCQAAAABMKEoAAAAAYEJRAgAAAAATihIAAAAAmFCUAAAAAMCEogQAAAAAJhQlAAAAADChKAEAAACACUUJAAAAAEwsLUrz5s1Tu3btFBYWptq1a+vuu+/W4cOHXa/n5+dr6tSpatmypUJCQlS3bl0NHz5cJ0+etDA1AAAAAF9naVFKS0vTuHHjtGvXLm3dulVXrlxRz549dfHiRUnSpUuXtHfvXs2cOVN79+7V+vXrdeTIEQ0cONDK2AAAAAB8nL+VG09OTnZ7vnz5ctWuXVuff/65OnXqJIfDoa1bt7qNefXVV3XbbbcpIyNDMTEx3owLAAAAoJKwtCiZOZ1OSVJERMQ1x9hsNlWrVq3E13Nzc5Wbm+t6npWVVaYZAQAAAPi+CjOZg2EYmjx5sjp27KgWLVqUOCYnJ0fPPPOMhg0bpvDw8BLHzJs3Tw6Hw/WIjo4uz9gAAAAAfFCFKUrjx4/XgQMH9O6775b4en5+voYMGaLCwkItWrToquuZNm2anE6n63HixInyigwAAADAR1WIS+8mTJigTZs2afv27apXr16x1/Pz83X//ffr2LFj2rZt21XPJkmS3W6X3W4vz7gAAAAAfJylRckwDE2YMEEbNmxQamqqGjRoUGxMUUn65ptvlJKSoho1aliQFAAAAEBlYmlRGjdunFatWqWNGzcqLCxMp0+fliQ5HA4FBwfrypUrGjx4sPbu3asPPvhABQUFrjEREREKDAy0Mj4AAAAqEL8cp9UR4AXeep8tLUqLFy+WJHXp0sVt+fLlyzVy5Eh999132rRpkySpTZs2bmNSUlKKfR8AAAAqH4fDoYBAu/RtmtVR4CUBgXY5HI5y3YbNMAyjXLdgsaysLDkcDjmdzmve2wQAAIAbV2ZmpuujZiqL9PR0JSYmasaMGYqNjbU6jlc5HA5FRkZ6/H2edIMKMZkDAAAA8EtERkZe1y/OviA2NlZxcXFWx/A5FWZ6cAAAAACoKChKAAAAAGBCUQIAAAAAE4oSAAAAAJhQlAAAAADAhKIEAAAAACYUJQAAAAAwoSgBAAAAgAlFCQAAAABMKEoAAAAAYEJRAgAAAAATihIAAAAAmFCUAAAAAMCEogQAAAAAJhQlAAAAADChKAEAAACACUUJAAAAAEwoSgAAAABgQlECAAAAABOKEgAAAACYUJQAAAAAwISiBAAAAAAmFCUAAAAAMKEoAQAAAIAJRQkAAAAATPytDgAAAADcqHJycpSRkWHJttPT092+WiEmJkZBQUGWbb88UZQAAACA65SRkaExY8ZYmiExMdGybSclJSkuLs6y7ZcnihIAAABwnWJiYpSUlGR1DMvExMRYHaHcUJQAAACA6xQUFOSzZ1QqOyZzAAAAAAATihIAAAAAmFCUAAAAAMCEogQAAAAAJhQlAAAAADChKAEAAACACUUJAAAAAEwoSgAAAABgQlECAAAAABOKEgAAAACYUJQAAAAAwISiBAAAAAAmFCUAAAAAMKEoAQAAAIAJRQkAAAAATChKAAAAAGBCUQIAAAAAE3+rA5Q3wzAkSVlZWRYnAQAAAGClok5Q1BGuxeeLUnZ2tiQpOjra4iQAAAAAKoLs7Gw5HI5rjrEZpalTN7DCwkKdPHlSYWFhstlsVse5YWRlZSk6OlonTpxQeHi41XHgwzjW4C0ca/AWjjV4C8ea5wzDUHZ2turWrSs/v2vfheTzZ5T8/PxUr149q2PcsMLDw/mDB6/gWIO3cKzBWzjW4C0ca575uTNJRZjMAQAAAABMKEoAAAAAYEJRQonsdrtmzZolu91udRT4OI41eAvHGryFYw3ewrFWvnx+MgcAAAAA8BRnlAAAAADAhKIEAAAAACYUJQAAAAAwoSgBAAAAgAlFyUfNmzdP7dq1U1hYmGrXrq27775bhw8fdhtjGIZmz56tunXrKjg4WF26dNGhQ4dcr587d04TJkxQ48aNVbVqVcXExOjxxx+X0+l0W8///vc/JSQkyOFwyOFwKCEhQefPn/fGbqIC8OaxlpiYqA4dOqhq1aqqVq2aN3YPFYi3jrXjx4/r4YcfVoMGDRQcHKybb75Zs2bNUl5entf2Fdby5t9rAwcOVExMjIKCglSnTh0lJCTo5MmTXtlPWM+bx1qR3NxctWnTRjabTfv37y/P3bvhUZR8VFpamsaNG6ddu3Zp69atunLlinr27KmLFy+6xjz33HN68cUX9ec//1m7d+9WVFSUevTooezsbEnSyZMndfLkSf3pT3/SwYMH9eabbyo5OVkPP/yw27aGDRum/fv3Kzk5WcnJydq/f78SEhK8ur+wjjePtby8PP3mN7/Ro48+6tV9RMXgrWPt3//+twoLC7V06VIdOnRIL730kpYsWaLp06d7fZ9hDW/+vda1a1etWbNGhw8f1rp163T06FENHjzYq/sL63jzWCsyZcoU1a1b1yv7d8MzUCmcOXPGkGSkpaUZhmEYhYWFRlRUlDF//nzXmJycHMPhcBhLliy56nrWrFljBAYGGvn5+YZhGMZXX31lSDJ27drlGrNz505DkvHvf/+7nPYGFVl5HWs/tXz5csPhcJR5dtxYvHGsFXnuueeMBg0alF143FC8eaxt3LjRsNlsRl5eXtntAG4Y5X2sbdmyxWjSpIlx6NAhQ5Kxb9++ctkPX8EZpUqi6PRrRESEJOnYsWM6ffq0evbs6Rpjt9vVuXNnffLJJ9dcT3h4uPz9/SVJO3fulMPhUPv27V1jbr/9djkcjmuuB76rvI41wMybx5rT6XRtB5WPt461c+fOaeXKlerQoYMCAgLKcA9woyjPYy0zM1O/+93vtGLFClWtWrWc9sC3UJQqAcMwNHnyZHXs2FEtWrSQJJ0+fVqSFBkZ6TY2MjLS9ZrZ2bNn9cc//lGPPPKIa9np06dVu3btYmNr16591fXAd5XnsQb8lDePtaNHj+rVV1/V2LFjyyg9biTeONamTp2qkJAQ1ahRQxkZGdq4cWMZ7wVuBOV5rBmGoZEjR2rs2LFq27ZtOe2B76EoVQLjx4/XgQMH9O677xZ7zWazuT03DKPYMknKyspSv3791KxZM82aNeua67jWeuDbyvtYA4p461g7efKkevfurd/85jcaPXp02YTHDcUbx9rTTz+tffv26aOPPlKVKlU0fPhwGYZRdjuBG0J5HmuvvvqqsrKyNG3atLIP7sMoSj5uwoQJ2rRpk1JSUlSvXj3X8qioKEkq9q8RZ86cKfavFtnZ2erdu7dCQ0O1YcMGt8sBoqKilJmZWWy7P/zwQ7H1wLeV97EGFPHWsXby5El17dpV8fHxSkpKKoc9QUXnrWOtZs2aiouLU48ePbR69Wpt2bJFu3btKoc9QkVV3sfatm3btGvXLtntdvn7+6tRo0aSpLZt22rEiBHltVs3PIqSjzIMQ+PHj9f69eu1bds2NWjQwO31Bg0aKCoqSlu3bnUty8vLU1pamjp06OBalpWVpZ49eyowMFCbNm1SUFCQ23ri4+PldDr12WefuZZ9+umncjqdbuuB7/LWsQZ481j7/vvv1aVLF916661avny5/Pz432VlYuXfa0VnknJzc8tob1CReetYe+WVV/TFF19o//792r9/v7Zs2SJJ+utf/6rExMRy3MMbnJcnj4CXPProo4bD4TBSU1ONU6dOuR6XLl1yjZk/f77hcDiM9evXGwcPHjSGDh1q1KlTx8jKyjIMwzCysrKM9u3bGy1btjT+85//uK3nypUrrvX07t3baNWqlbFz505j586dRsuWLY3+/ft7fZ9hDW8ea+np6ca+ffuMOXPmGKGhoca+ffuMffv2GdnZ2V7fb3ift46177//3mjUqJFx1113Gd99953bGFQO3jrWPv30U+PVV1819u3bZxw/ftzYtm2b0bFjR+Pmm282cnJyLNl3eJc3/x/6U8eOHWPWu1KgKPkoSSU+li9f7hpTWFhozJo1y4iKijLsdrvRqVMn4+DBg67XU1JSrrqeY8eOucadPXvWeOCBB4ywsDAjLCzMeOCBB4z//e9/3ttZWMqbx9qIESNKHJOSkuK9HYZlvHWsLV++/KpjUDl461g7cOCA0bVrVyMiIsKw2+1G/fr1jbFjxxrfffedl/cYVvHm/0N/iqJUOjbD4G5BAAAAAPgpLroGAAAAABOKEgAAAACYUJQAAAAAwISiBAAAAAAmFCUAAAAAMKEoAQAAAIAJRQkAAAAATChKAAAAAGBCUQIAAAAAE4oSAOCGYhiGunfvrl69ehV7bdGiRXI4HMrIyLAgGQDAl1CUAAA3FJvNpuXLl+vTTz/V0qVLXcuPHTumqVOnauHChYqJiSnTbebn55fp+gAAFR9FCQBww4mOjtbChQv11FNP6dixYzIMQw8//LC6deum2267TX379lVoaKgiIyOVkJCg//73v67vTU5OVseOHVWtWjXVqFFD/fv319GjR12vHz9+XDabTWvWrFGXLl0UFBSkd955x4rdBABYyGYYhmF1CAAArsfdd9+t8+fP67777tMf//hH7d69W23bttXvfvc7DR8+XJcvX9bUqVN15coVbdu2TZK0bt062Ww2tWzZUhcvXtTvf/97HT9+XPv375efn5+OHz+uBg0aqH79+nrhhRd0yy23yG63q27duhbvLQDAmyhKAIAb1pkzZ9SiRQudPXtW7733nvbt26dPP/1Uf//7311jvvvuO0VHR+vw4cOKi4srto4ffvhBtWvX1sGDB9WiRQtXUXr55Zc1ceJEb+4OAKAC4dI7AMANq3bt2hozZoyaNm2qe+65R59//rlSUlIUGhrqejRp0kSSXJfXHT16VMOGDVPDhg0VHh6uBg0aSFKxCSDatm3r3Z0BAFQo/lYHAADgl/D395e//4//OyssLNSAAQO0YMGCYuPq1KkjSRowYICio6P1l7/8RXXr1lVhYaFatGihvLw8t/EhISHlHx4AUGFRlAAAPuPWW2/VunXrVL9+fVd5+qmzZ8/q66+/1tKlS3XnnXdKknbs2OHtmACAGwCX3gEAfMa4ceN07tw5DR06VJ999pm+/fZbffTRRxo1apQKCgpUvXp11ahRQ0lJSfrPf/6jbdu2afLkyVbHBgBUQBQlAIDPqFu3rj7++GMVFBSoV69eatGihSZOnCiHwyE/Pz/5+flp9erV+vzzz9WiRQtNmjRJzz//vNWxAQAVELPeAQAAAIAJZ5QAAAAAwISiBAAAAAAmFCUAAAAAMKEoAQAAAIAJRQkAAAAATChKAAAAAGBCUQIAAAAAE4oSAAAAAJhQlAAAAADAhKIEAAAAACYUJQAAAAAw+X8i4KqdChPshgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "#Visualizations\n", "# Boxplot of Weather Data\n", @@ -1726,29 +1514,29 @@ "sns.boxplot(x='Year', y='TrackTemp', data=weather_data_combined)\n", "plt.title('Temperature Distribution by Year')\n", "plt.show()\n" - ], - "outputs": [ - { - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0kAAAIjCAYAAADWYVDIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABI9klEQVR4nO3de3QU9eH+8SchyW7IZWOABCjZcDMoBFCprQEkyCWIFKGlUlFuVgqUAAJVNIINiGm09UYrF1MtqMhRw6WgVZAWCKJgAbECKmiAxP6AINJsuCVAdn5/eLLfWRMkidmdsHm/ztkTd2Yy80x2IvtkZj4bZBiGIQAAAACAJCnY6gAAAAAAUJ9QkgAAAADAhJIEAAAAACaUJAAAAAAwoSQBAAAAgAklCQAAAABMKEkAAAAAYEJJAgAAAAATShIAAAAAmFCSAABXrNatW2vs2LE+387hw4cVFBSkpUuXeqaNHTtWkZGRPt92haCgIM2ZM8dv26vg7/0EgPqAkgQgYAQFBVXrsXnzZqujWmbhwoVeb/Trk969e3teo+DgYEVHR6tDhw4aNWqUNmzYUGfbefvtty0pG9VRn7P5yrZt2xQcHKyMjIwq5z/xxBMKCgrSP/7xDz8nA9CQBRmGYVgdAgDqwrJly7yev/zyy9qwYYNeeeUVr+n9+/dXfHy8P6PVG8nJyWratGm9LIq9e/dWfn6+srOzJUlnzpzRl19+qVWrVungwYMaPny4li1bptDQUM/3lJWVKTg42Gva5UyePFkLFixQTf75MwxDZWVlCg0NVaNGjSR9e4ZlxYoVOn36dLXX80OylZaWKiQkRCEhIXW2verwxX5+129/+1u9+OKL2r17tzp16uSZXlBQoI4dO2rQoEF64403fLZ9APgu//6fFgB8aOTIkV7Pt2/frg0bNlSaHigMw1BpaanCw8MDJofD4aj0ej3++OOaOnWqFi5cqNatW+uJJ57wzLPZbD94m9/n4sWLcrvdCgsLk91u9+m2Lsfq7fvS448/rjVr1mjChAl67733FBQUJEmaMmWKQkNDNX/+fL/kOHv2rBo3buyXbQGo37jcDkCD4na79eyzz6pTp06y2+2Kj4/XhAkT9L///c9rudatW+tnP/uZNm/erB//+McKDw9X586dPWdgVq1apc6dO8tut6tbt27avXu31/dX3Mdx8OBBDRgwQBEREWrZsqUeffTRSmcJappp/fr1nkzPP/+8JGnJkiXq06eP4uLiZLPZ1LFjRy1atKjS9+/bt095eXmey9p69+4tSZozZ47njanZ0qVLFRQUpMOHD1crR3FxsaZNm6aEhATZbDa1b99eTzzxhNxud/VeoCo0atRIf/7zn9WxY0c999xzcrlcXlnM9yRduHBBc+fO1dVXXy273a4mTZqoZ8+ensv1xo4dqwULFkjyvjxT+r/7jp588kk9++yzateunWw2mz799NMq70mqcLnXePPmzVVe5vnddX5ftopp370Ub/fu3Ro4cKCio6MVGRmpvn37avv27V7LVLyG77//vmbMmKFmzZopIiJCP//5z/X1119f/gWoxn4ahqHWrVtryJAhlb6vtLRUDodDEyZMuOS6HQ6H5s+fr/fff18vvPCCJGn16tV688039fjjj6tFixbV/j1Zs2aNBg0apJYtW8pms6ldu3aaN2+eysvLvZbr3bu3kpOTtWvXLvXq1UuNGzfWww8/XO2fB4DAxpkkAA3KhAkTtHTpUt1zzz2aOnWqDh06pOeee067d+/W+++/73XZ1pdffqm77rpLEyZM0MiRI/Xkk09q8ODBWrx4sR5++GFNmjRJkpSdna3hw4dr//79Cg7+v789lZeX69Zbb9VNN92kP/7xj1q3bp0yMzN18eJFPfroo7XKtH//fo0YMUITJkzQb37zG3Xo0EGStGjRInXq1Em33367QkJC9Oabb2rSpElyu91KT0+XJD377LOaMmWKIiMjNWvWLEmq9WWHVeU4e/asUlNT9f/+3//ThAkT5HQ69cEHHygjI0NHjx7Vs88+W6ttSd8WpREjRuiRRx7R1q1bNWjQoCqXmzNnjrKzszVu3Dj95Cc/UUlJiXbu3KmPPvpI/fv314QJE3TkyJEqL8OssGTJEpWWlmr8+PGy2WyKjY29ZMmr7mtcHdXJZrZv3z7dfPPNio6O1syZMxUaGqrnn39evXv3Vl5enn760596LT9lyhRdddVVyszM1OHDh/Xss89q8uTJev311y+7rcvtZ1BQkEaOHKk//vGPOnnypGJjYz3f++abb6qkpOSyZ3TvuOMODRo0SA8++KD69u2r++67T927d/eUq+r+nixdulSRkZGaMWOGIiMjtXHjRv3+979XSUmJ/vSnP3lt85tvvtHAgQN15513auTIkQ32MlwAVTAAIEClp6cb5v/Nvffee4Yk49VXX/Vabt26dZWmJyYmGpKMDz74wDNt/fr1hiQjPDzcKCgo8Ex//vnnDUnGpk2bPNPGjBljSDKmTJnimeZ2u41BgwYZYWFhxtdff13rTOvWrau0r2fPnq00bcCAAUbbtm29pnXq1MlITU2ttGxmZqZR1T8JS5YsMSQZhw4dumyOefPmGREREcaBAwe8pj/00ENGo0aNjMLCwkrrN0tNTTU6dep0yfmrV682JBnz58/3yjJmzBjP865duxqDBg363u1897iocOjQIUOSER0dbRw/frzKeUuWLPFMq+5rvGnTpkrHx6XWealshmEYkozMzEzP86FDhxphYWFGfn6+Z9qRI0eMqKgoo1evXp5pFa9hv379DLfb7Zk+ffp0o1GjRkZxcXGV26vpfu7fv9+QZCxatMjr+2+//XajdevWXtu+lMOHDxsRERFGbGysERoaauzZs8cwjJr9nlT1uzBhwgSjcePGRmlpqWdaamqqIclYvHjxZXMBaHi43A5Ag5GbmyuHw6H+/fvrxIkTnke3bt0UGRmpTZs2eS3fsWNHpaSkeJ5X/GW+T58+cjqdlaYfPHiw0jYnT57s+e+goCBNnjxZ58+f1z//+c9aZWrTpo0GDBhQaTvm+4FcLpdOnDih1NRUHTx40OvytLpSVY7c3FzdfPPNuuqqq7z2pV+/fiovL9eWLVt+0DYrhqE+derUJZeJiYnRvn379MUXX9R6O8OGDVOzZs2qvfzlXmNfKC8v17vvvquhQ4eqbdu2nuktWrTQXXfdpa1bt6qkpMTre8aPH+91+d7NN9+s8vJyFRQUVGubl9vPpKQk/fSnP9Wrr77qWe7kyZN65513dPfdd1d5Oed3JSYmKjMzUydPntSMGTOUnJwsqWa/J+bfhVOnTunEiRO6+eabdfbsWX3++ede27PZbLrnnnuqtf8AGhYutwPQYHzxxRdyuVyKi4urcv7x48e9npuLkPTtfROSlJCQUOX0794bERwc7PUGVvr2jaQkzz0+Nc3Upk2bKpd7//33lZmZqW3btuns2bNe81wulydjXakqxxdffKFPPvnkkgXju/tSUxWjq0VFRV1ymUcffVRDhgxRUlKSkpOTdeutt2rUqFHq0qVLtbdzqZ9xVarzGvvC119/rbNnz3outzS79tpr5Xa79dVXX3mNFPfd4/mqq66SVPm4rUp193P06NGaPHmyCgoKlJiYqNzcXF24cEGjRo2q9r7deOONkqQf//jHnmk1+T3Zt2+fZs+erY0bN1Yqit/9g8GPfvQjhYWFVTsbgIaDkgSgwXC73YqLi/P6S7fZd9/cVwz1/F2Xmm7U4hMVapqpqhHk8vPz1bdvX11zzTV6+umnlZCQoLCwML399tt65plnqjVowqX+yv/dm92/L4fb7Vb//v01c+bMKr+n4k11be3du1eS1L59+0su06tXL+Xn52vNmjV699139cILL+iZZ57R4sWLNW7cuGptp65HC6zpz9ZX6vK4vZQ777xT06dP16uvvqqHH35Yy5Yt049//OMqy1xNVPf3pLi4WKmpqYqOjtajjz6qdu3ayW6366OPPtKDDz5Y6XfB6pEhAdRflCQADUa7du30z3/+Uz169PDLmyO3262DBw96lYMDBw5I+nZUtrrK9Oabb6qsrExr1671Olvw3Uv1pEu/Ya84q1BcXKyYmBjP9OpeiiV9uy+nT59Wv379qv091VVeXq7ly5ercePG6tmz5/cuGxsbq3vuuUf33HOPTp8+rV69emnOnDmeklSdy76qqzqvsflna1bVz7a62Zo1a6bGjRtr//79leZ9/vnnCg4OrnTG84eozn5K3/7sBw0apFdffVV333233n///R80YEeF6v6ebN68Wd98841WrVqlXr16eaYfOnToB2cA0LBwTxKABmP48OEqLy/XvHnzKs27ePFipTexdeG5557z/LdhGHruuecUGhqqvn371lmmijME5jMCLpdLS5YsqbRsRERElets166dJHndN3TmzBm99NJLl91+heHDh2vbtm1av359pXnFxcW6ePFitddlVl5erqlTp+qzzz7T1KlTFR0dfcllv/nmG6/nkZGRat++vcrKyjzTIiIiPJnqwuVe48TERDVq1KjSPVkLFy6stK7qZmvUqJHS0tK0Zs0ar8vdioqKtHz5cvXs2fN7f061cbn9rDBq1Ch9+umneuCBB9SoUSPdeeedP3jb1f09qep34fz581X+rAHg+3AmCUCDkZqaqgkTJig7O1sff/yx0tLSFBoaqi+++EK5ubmaP3++fvnLX9bZ9ux2u9atW6cxY8bopz/9qd555x394x//0MMPP+y5PKguMqWlpSksLEyDBw/WhAkTdPr0af31r39VXFycjh496rVst27dtGjRIj322GNq37694uLi1KdPH6WlpcnpdOree+/1vLn929/+pmbNmqmwsLBa+/vAAw9o7dq1+tnPfqaxY8eqW7duOnPmjPbs2aMVK1bo8OHDatq06feuw+VyadmyZZK+/WDPL7/8UqtWrVJ+fr7uvPPOKt8km3Xs2FG9e/dWt27dFBsbq507d2rFihVegw5069ZNkjR16lQNGDDgB72Rr85r7HA4dMcdd+gvf/mLgoKC1K5dO7311ltV3qNVk2yPPfaYNmzYoJ49e2rSpEkKCQnR888/r7KyMv3xj3+s1f78kP2sMGjQIDVp0kS5ubkaOHDgJe8jqonq/p50795dV111lcaMGaOpU6cqKChIr7zySp1eUgiggbBuYD0A8K1LDaeck5NjdOvWzQgPDzeioqKMzp07GzNnzjSOHDniWSYxMbHKoaQlGenp6V7TKoZy/tOf/uSZNmbMGCMiIsLIz8830tLSjMaNGxvx8fFGZmamUV5eXqeZDMMw1q5da3Tp0sWw2+1G69atjSeeeML429/+Vmn47mPHjhmDBg0yoqKiDElew4Hv2rXL+OlPf2qEhYUZTqfTePrppy85BPilcpw6dcrIyMgw2rdvb4SFhRlNmzY1unfvbjz55JPG+fPnq/yeChVDMlc8IiMjjauvvtoYOXKk8e6771b5Pd8dAvyxxx4zfvKTnxgxMTFGeHi4cc011xhZWVle27548aIxZcoUo1mzZkZQUJDnGKnqdaxwqSHAq/saf/3118awYcOMxo0bG1dddZUxYcIEY+/evZXWealshlF5CHDDMIyPPvrIGDBggBEZGWk0btzYuOWWW7yGrTeM/xsCfMeOHV7TLzU0+XfV9Fg2DMOYNGmSIclYvnz59667KhW5cnNzK82rzu/J+++/b9x0001GeHi40bJlS2PmzJme4fvN+3q5IecBNGxBhsGfVwCgro0dO1YrVqzwjMgGNCTTp0/Xiy++qGPHjqlx48ZWxwGAGuOeJAAAUGdKS0u1bNkyDRs2jIIE4IrFPUkAAOAHO378uP75z39qxYoV+uabb3TfffdZHQkAao2SBAAAfrBPP/1Ud999t+Li4vTnP/9Z1113ndWRAKDWuCcJAAAAAEy4JwkAAAAATChJAAAAAGAS8Pckud1uHTlyRFFRUQoKCrI6DgAAAACLGIahU6dOqWXLlgoOvvT5ooAvSUeOHFFCQoLVMQAAAADUE1999ZVatWp1yfkBX5KioqIkffuDiI6OtjgNAAAAAKuUlJQoISHB0xEuJeBLUsUldtHR0ZQkAAAAAJe9DYeBGwAAAADAhJIEAAAAACaWlqRFixapS5cunkvhUlJS9M4773gts23bNvXp00cRERGKjo5Wr169dO7cOYsSAwAAAAh0lpakVq1a6fHHH9euXbu0c+dO9enTR0OGDNG+ffskfVuQbr31VqWlpenf//63duzYocmTJ3/vcH0AAAAA8EMEGYZhWB3CLDY2Vn/6059077336qabblL//v01b968Wq+vpKREDodDLpeLgRsAAACABqy63aDenJIpLy/Xa6+9pjNnziglJUXHjx/Xhx9+qLi4OHXv3l3x8fFKTU3V1q1bv3c9ZWVlKikp8XoAAAAAQHVZXpL27NmjyMhI2Ww2TZw4UatXr1bHjh118OBBSdKcOXP0m9/8RuvWrdMNN9ygvn376osvvrjk+rKzs+VwODwPPkgWAAAAQE1Yfrnd+fPnVVhYKJfLpRUrVuiFF15QXl6eiouL1aNHD2VkZOgPf/iDZ/kuXbpo0KBBys7OrnJ9ZWVlKisr8zyv+MAoLrcDAAAAGrbqXm5n+YfJhoWFqX379pKkbt26aceOHZo/f74eeughSVLHjh29lr/22mtVWFh4yfXZbDbZbDbfBQYAAAAQ0Cy/3O673G63ysrK1Lp1a7Vs2VL79+/3mn/gwAElJiZalA4AAABAoLP0TFJGRoYGDhwop9OpU6dOafny5dq8ebPWr1+voKAgPfDAA8rMzFTXrl113XXX6aWXXtLnn3+uFStWWBkbAAAAQACztCQdP35co0eP1tGjR+VwONSlSxetX79e/fv3lyRNmzZNpaWlmj59uk6ePKmuXbtqw4YNateunZWxAQAAAAQwywdu8DU+JwkAAACAdAV+ThIAAAAA1AeUJAAAAAAwoSQBAAAAgAklCQAAAABMLP8wWQDWKi0t/d4PaA50TqdTdrvd6hgAAKAeoSQBDVxhYaHGjx9vdQzL5OTkKCkpyeoYAACgHqEkAQ2c0+lUTk6OJdsuKChQVlaWZs2apcTEREsyOJ1OS7YLAADqL0oS0MDZ7XbLz6QkJiZangEAAKACAzcAAAAAgAklCQAAAABMKEkAAAAAYEJJAgAAAAATShIAAAAAmFCSAAAAAMCEIcABAADqQHl5uT755BOdPHlSsbGx6tKlixo1amR1LAC1QEkCAAD4gbZs2aKFCxfq2LFjnmnNmzfXpEmT1KtXLwuTAagNLrcDAAD4AbZs2aLMzEy1bdtWCxYs0Ntvv60FCxaobdu2yszM1JYtW6yOCKCGKEkAAAC1VF5eroULFyolJUVz587V+fPntW3bNp0/f15z585VSkqKFi1apPLycqujAqgBLrcDAACopU8++UTHjh3T4MGDNWrUqEqX2w0ePFgffPCBPvnkE11//fUWJgVQE5QkAACAWjp58qQk6YUXXlBKSooeeeQRtWnTRocOHdKrr76qF154wWs5AFcGLrcDAACopZiYGElScnKyHnvsMXXq1EmNGzdWp06d9Nhjjyk5OdlrOQBXBkoSAAAAAJhQkgAAAGqpuLhYkrRnzx7Nnj1b+/bt09mzZ7Vv3z7Nnj1be/bs8VoOwJWBe5IAAABqKTY2VpL0m9/8Rm+++abS09M981q0aKFx48bphRde8CwH4MpASQIAAAGltLRUhYWFftlWeHi4mjRpog8//FC///3vlZ+fL5fLJYfDoXbt2mnx4sVq2rSpwsPDdeDAAb9kcjqdstvtftkWEKgoSQAAIKAUFhZq/Pjxft3mN998o0mTJl1y/sSJE/2WJScnR0lJSX7bHhCIKEkAACCgOJ1O5eTk+HWbH330kXJzc/XNN994pjVt2lS//OUvdcMNN/g1i9Pp9Ov2gEBESQIAAAHFbrf7/UxKUlKS7rjjDr399tt66qmn9Lvf/U633XabGjVq5NccAOoGo9sBAADUgUaNGqlDhw6SpA4dOlCQgCsYJQkAAAAATChJAAAAAGBCSQIAAAAAE0oSAAAAAJhQkgAAAADAhJIEAAAAACaUJAAAAAAwoSQBAAAAgAklCQAAAABMKEkAAAAAYEJJAgAAAAATShIAAAAAmFCSAAAAAMCEkgQAAAAAJpQkAAAAADChJAEAAACACSUJAAAAAEwsLUmLFi1Sly5dFB0drejoaKWkpOidd96ptJxhGBo4cKCCgoL097//3f9BAQAAADQYlpakVq1a6fHHH9euXbu0c+dO9enTR0OGDNG+ffu8lnv22WcVFBRkUUoAAAAADUmIlRsfPHiw1/OsrCwtWrRI27dvV6dOnSRJH3/8sZ566int3LlTLVq0sCImAAAAgAbE0pJkVl5ertzcXJ05c0YpKSmSpLNnz+quu+7SggUL1Lx582qtp6ysTGVlZZ7nJSUlPskLAAAAIDBZPnDDnj17FBkZKZvNpokTJ2r16tXq2LGjJGn69Onq3r27hgwZUu31ZWdny+FweB4JCQm+ig4AAAAgAFl+JqlDhw76+OOP5XK5tGLFCo0ZM0Z5eXn68ssvtXHjRu3evbtG68vIyNCMGTM8z0tKSihKAAAAAKrN8pIUFham9u3bS5K6deumHTt2aP78+QoPD1d+fr5iYmK8lh82bJhuvvlmbd68ucr12Ww22Ww2H6cGAAAAEKgsL0nf5Xa7VVZWprlz52rcuHFe8zp37qxnnnmm0oAPAAAAAFBXLC1JGRkZGjhwoJxOp06dOqXly5dr8+bNWr9+vZo3b17lYA1Op1Nt2rSxIC0AAACAhsDSknT8+HGNHj1aR48elcPhUJcuXbR+/Xr179/fylgAAAAAGjBLS9KLL75Yo+UNw/BREgAAAAD4luVDgAMAAABAfUJJAgAAAAATShIAAAAAmFCSAAAAAMCEkgQAAAAAJpQkAAAAADChJAEAAACACSUJAAAAAEwoSQAAAABgQkkCAAAAABNKEgAAAACYUJIAAAAAwISSBAAAAAAmlCQAAAAAMKEkAQAAAIAJJQkAAAAATChJAAAAAGBCSQIAAAAAE0oSAAAAAJhQkgAAAADAhJIEAAAAACaUJAAAAAAwoSQBAAAAgEmI1QEAfKuoqEgul8vqGH5VUFDg9bUhcTgcio+PtzoGAACoAiUJqAeKioo0ctRoXThfZnUUS2RlZVkdwe9Cw2xa9srLFCUAAOohShJQD7hcLl04X6ZzbVPltjusjgMfCy51SQfz5HK5KEkAANRDlCSgHnHbHXJHNLU6BgAAQIPGwA0AAAAAYEJJAgAAAAATShIAAAAAmFCSAAAAAMCEkgQAAAAAJpQkAAAAADChJAEAAACACSUJAAAAAEwoSQAAAABgQkkCAAAAABNKEgAAAACYUJIAAAAAwISSBAAAAAAmIVYHAAA0DKWlpSosLLQ6hmWcTqfsdrvVMQAA1UBJAgD4RWFhocaPH291DMvk5OQoKSnJ6hgAgGqgJAEA/MLpdConJ8eSbRcUFCgrK0uzZs1SYmKiJRmcTqcl2wUA1BwlCQDgF3a73fIzKYmJiZZnAADUfwzcAAAAAAAmlCQAAAAAMLG0JC1atEhdunRRdHS0oqOjlZKSonfeeUeSdPLkSU2ZMkUdOnRQeHi4nE6npk6dKpfLZWVkAAAAAAHO0nuSWrVqpccff1xXX321DMPQSy+9pCFDhmj37t0yDENHjhzRk08+qY4dO6qgoEATJ07UkSNHtGLFCitjAwAAAAhglpakwYMHez3PysrSokWLtH37dt17771auXKlZ167du2UlZWlkSNH6uLFiwoJYcwJAAAAAHWv3jSN8vJy5ebm6syZM0pJSalyGZfLpejo6O8tSGVlZSorK/M8LykpqfOsAAAAAAKX5QM37NmzR5GRkbLZbJo4caJWr16tjh07VlruxIkTmjdv3mU/iDA7O1sOh8PzSEhI8FV0AAAAAAHI8pLUoUMHffzxx/rwww/129/+VmPGjNGnn37qtUxJSYkGDRqkjh07as6cOd+7voyMDLlcLs/jq6++8mF6AAAAAIHG8svtwsLC1L59e0lSt27dtGPHDs2fP1/PP/+8JOnUqVO69dZbFRUVpdWrVys0NPR712ez2WSz2XyeGwAAAEBgsvxM0ne53W7PPUUlJSVKS0tTWFiY1q5dK7vdbnE6AAAAAIHO0jNJGRkZGjhwoJxOp06dOqXly5dr8+bNWr9+vacgnT17VsuWLVNJSYlnEIZmzZqpUaNGVkYHAAAAEKAsLUnHjx/X6NGjdfToUTkcDnXp0kXr169X//79tXnzZn344YeS5Lkcr8KhQ4fUunVrCxIDAAAACHSWlqQXX3zxkvN69+4twzD8mAYAAAAA6uE9SQAAAABgJUoSAAAAAJhQkgAAAADAhJIEAAAAACaUJAAAAAAwoSQBAAAAgAklCQAAAABMKEkAAAAAYEJJAgAAAAATShIAAAAAmFCSAAAAAMCEkgQAAAAAJpQkAAAAADChJAEAAACACSUJAAAAAExCrA4AAAACU1FRkVwul9Ux/KqgoMDra0PicDgUHx9vdQygTlCSAABAnSsqKtLIUaN14XyZ1VEskZWVZXUEvwsNs2nZKy9TlBAQKEkAAKDOuVwuXThfpnNtU+W2O6yOAx8LLnVJB/PkcrkoSQgIlCQAAOAzbrtD7oimVscAgBph4AYAAAAAMKEkAQAAAIAJJQkAAAAATChJAAAAAGBCSQIAAAAAE0oSAAAAAJhQkgAAAADAhJIEAAAAACaUJAAAAAAwoSQBAAAAgAklCQAAAABMKEkAAAAAYEJJAgAAAAATShIAAAAAmFCSAAAAAMCEkgQAAAAAJpQkAAAAADChJAEAAACACSUJAAAAAEwoSQAAAABgQkkCAAAAABNKEgAAAACYUJIAAAAAwISSBAAAAAAmlCQAAAAAMKEkAQAAAIBJiNUBUL+cP39ea9as0ZEjR9SyZUsNGTJEYWFhVscCAAAA/MbSM0mLFi1Sly5dFB0drejoaKWkpOidd97xzC8tLVV6erqaNGmiyMhIDRs2TEVFRRYmDmyLFy/WwIEDtWDBAq1evVoLFizQwIEDtXjxYqujAQAAAH5jaUlq1aqVHn/8ce3atUs7d+5Unz59NGTIEO3bt0+SNH36dL355pvKzc1VXl6ejhw5ol/84hdWRg5Yixcv1muvvabo6Gjdf//9Wrlype6//35FR0frtddeoygBAACgwbD0crvBgwd7Pc/KytKiRYu0fft2tWrVSi+++KKWL1+uPn36SJKWLFmia6+9Vtu3b9dNN91kReSAdP78eeXm5uqqq65Sbm6uQkK+PSx+9rOf6dZbb9Udd9yh3Nxc/frXv+bSOwAAAAS8ejNwQ3l5uV577TWdOXNGKSkp2rVrly5cuKB+/fp5lrnmmmvkdDq1bdu2S66nrKxMJSUlXg98vzVr1qi8vFz33nuvpyBVCAkJ0a9//WuVl5drzZo1FiUEAAAA/MfykrRnzx5FRkbKZrNp4sSJWr16tTp27Khjx44pLCxMMTExXsvHx8fr2LFjl1xfdna2HA6H55GQkODjPbjyHTlyRJKUkpJS5fyK6RXLAQAAAIHM8tHtOnTooI8//lgul0srVqzQmDFjlJeXV+v1ZWRkaMaMGZ7nJSUlV2RRKi0tVWFhoV+2FRoaKkn6+9//rptvvrnS/C1btniWO3DggF8yOZ1O2e12v2wLAAAAMLO8JIWFhal9+/aSpG7dumnHjh2aP3++fvWrX+n8+fMqLi72OptUVFSk5s2bX3J9NptNNpvN17F9rrCwUOPHj/frNl955RW98sorl5z/xhtv6I033vBLlpycHCUlJfllWwAAAICZ5SXpu9xut8rKytStWzeFhobqX//6l4YNGyZJ2r9/vwoLCy95WVggcTqdysnJ8dv2VqxYoXfffVdRUVHq2bOn3nnnHQ0cOFBbt27VqVOnlJaWpl/+8pd+y+N0Ov22LQAAAMDM0pKUkZGhgQMHyul06tSpU1q+fLk2b96s9evXy+Fw6N5779WMGTMUGxur6OhoTZkyRSkpKQ1iZDu73e7XMykPP/ywYmNjlZub6/msqnfeeUeNGjXSnXfeqYkTJ/otCwAAAGAlS0vS8ePHNXr0aB09elQOh0NdunTR+vXr1b9/f0nSM888o+DgYA0bNkxlZWUaMGCAFi5caGXkgDZx4kT9+te/1gsvvKA33nhDw4cP17hx4xj2GwAAAA2KpSXpxRdf/N75drtdCxYs0IIFC/yUCGFhYerXr5/eeOMN9evXj4IEAACABsfyIcABAAAAoD6hJAEAAACACSUJAAAAAEwoSQAAAABgQkkCAAAAABNKEgAAAACYWDoEOAAACGzB54qtjgA/4HVGoKEkAQAAnwk/tMXqCABQY5QkAADgM+fa9JI7PMbqGPCx4HPFFGIElFqVpP379+svf/mLPvvsM0nStddeqylTpqhDhw51Gg4AAFzZ3OExckc0tToGANRIjQduWLlypZKTk7Vr1y517dpVXbt21UcffaTk5GStXLnSFxkBAAAAwG9qfCZp5syZysjI0KOPPuo1PTMzUzNnztSwYcPqLBwAAAAA+FuNzyQdPXpUo0ePrjR95MiROnr0aJ2EAgAAAACr1Lgk9e7dW++9916l6Vu3btXNN99cJ6EAAAAAwCo1vtzu9ttv14MPPqhdu3bppptukiRt375dubm5mjt3rtauXeu1LACgfikqKpLL5bI6hl8VFBR4fW1IHA6H4uPjrY4BAFeUGpekSZMmSZIWLlyohQsXVjlPkoKCglReXv4D4wEA6lJRUZFGjhqtC+fLrI5iiaysLKsj+F1omE3LXnmZogQANVDjkuR2u32RAwDgBy6XSxfOl+lc21S57Q6r48DHgktd0sE8uVwuShIA1AAfJgsADZDb7uCzawAAuIRalaQdO3Zo06ZNOn78eKUzS08//XSdBAMAAAAAK9S4JP3hD3/Q7Nmz1aFDB8XHxysoKMgzz/zfAAAAAHAlqnFJmj9/vv72t79p7NixPogDAAAAANaq8eckBQcHq0ePHr7IAgAAAACWq3FJmj59uhYsWOCLLAAAAABguRpfbnf//fdr0KBBateunTp27KjQ0FCv+atWraqzcAAAAADgbzUuSVOnTtWmTZt0yy23qEmTJgzWAAAAACCg1LgkvfTSS1q5cqUGDRrkizwAAAAAYKka35MUGxurdu3a+SILAAAAAFiuxiVpzpw5yszM1NmzZ32RBwAAAAAsVePL7f785z8rPz9f8fHxat26daWBGz766KM6CwcAAAAA/lbjkjR06FAfxAAAAIEouNRldQT4Aa8zAk2NS1JmZqYvcgAAgADicDgUGmaTDuZZHQV+Ehpmk8PhsDoGUCdqXJIkqbi4WCtWrFB+fr4eeOABxcbG6qOPPlJ8fLx+9KMf1XVGoMEIPldsdQT4Aa8zGoL4+Hgte+VluVwN6wxDQUGBsrKyNGvWLCUmJlodx68cDofi4+OtjgHUiRqXpE8++UT9+vWTw+HQ4cOH9Zvf/EaxsbFatWqVCgsL9fLLL/siJ9AghB/aYnUEAKgz8fHxDfZNc2JiopKSkqyOAaCWalySZsyYobFjx+qPf/yjoqKiPNNvu+023XXXXXUaDmhozrXpJXd4jNUx4GPB54opxAAA1GM1Lkk7duzQ888/X2n6j370Ix07dqxOQgENlTs8Ru6IplbHAAAAaNBq/DlJNptNJSUllaYfOHBAzZo1q5NQAAAAAGCVapekwsJCud1u3X777Xr00Ud14cIFSVJQUJAKCwv14IMPatiwYT4LCgAAAAD+UO2S1KZNG504cUJPPfWUTp8+rbi4OJ07d06pqalq3769oqKilJWV5cusAAAAAOBz1b4nyTAMSd8O77hhwwZt3bpVn3zyiU6fPq0bbrhB/fr181lIAAAAAPCXGg3cEBQU5Pnvnj17qmfPnnUeCAAAAACsVKOS9Mgjj6hx48bfu8zTTz/9gwLVN0VFRQ3yg/DMXxsSPggPAAAANSpJe/bsUVhY2CXnm880BYKioiKNHDVaF86XWR3FEg3xHrPQMJuWvfIyRQkAAKABq1FJWr16teLi4nyVpd5xuVy6cL5M59qmym13WB0HPhZc6pIO5snlclGSAAAAGrBql6RAO0tUE267gw/4BAAAABqIag8BXjG6HQAAAAAEsmqXpCVLlsjhcKikpOSSy3z55Zd1EgoAAAAArFLtkjRmzBjZbDYNGjRIZWWVBzLYv3+/evfuXaONZ2dn68Ybb1RUVJTi4uI0dOhQ7d+/32uZY8eOadSoUWrevLkiIiJ0ww03aOXKlTXaDgAAAABUV7VLUoXIyEj9/Oc/18WLFz3TPvvsM/Xu3VvDhg2r0bry8vKUnp6u7du3a8OGDbpw4YLS0tJ05swZzzKjR4/W/v37tXbtWu3Zs0e/+MUvNHz4cO3evbum0QEAAADgsmpcklatWiWXy6W7775bhmFo79696t27t0aMGKH58+fXaF3r1q3T2LFj1alTJ3Xt2lVLly5VYWGhdu3a5Vnmgw8+0JQpU/STn/xEbdu21ezZsxUTE+O1jFlZWZlKSkq8HgAAAABQXTUuSeHh4frHP/6h/fv3a/jw4erbt69Gjx5dJx8iW/GhrbGxsZ5p3bt31+uvv66TJ0/K7XbrtddeU2lp6SUv7cvOzpbD4fA8EhISfnAuAAAAAA1HtUrSd8/MBAcH6/XXX9eHH36oYcOG6ZFHHvnBZ23cbremTZumHj16KDk52TP9jTfe0IULF9SkSRPZbDZNmDBBq1evVvv27atcT0ZGhlwul+fx1Vdf1ToTAAAAgIanWp+TFBMTU+XnJBmGocWLF+v555+XYRgKCgpSeXl5rYKkp6dr79692rp1q9f0Rx55RMXFxfrnP/+ppk2b6u9//7uGDx+u9957T507d660HpvNJpvNVqsMAAAAAFCtkrRp0yafhpg8ebLeeustbdmyRa1atfJMz8/P13PPPae9e/eqU6dOkqSuXbvqvffe04IFC7R48WKf5gIAAADQ8FSrJKWmpvpk44ZhaMqUKVq9erU2b96sNm3aeM0/e/asJCk42PuqwEaNGsntdvskEwAAAICGrcYDNyxZskS5ubmVpufm5uqll16q0brS09O1bNkyLV++XFFRUTp27JiOHTumc+fOSZKuueYatW/fXhMmTNC///1v5efn66mnntKGDRs0dOjQmkYHAAAAgMuqcUnKzs5W06ZNK02Pi4vTH/7whxqta9GiRXK5XOrdu7datGjhebz++uuSpNDQUL399ttq1qyZBg8erC5duujll1/WSy+9pNtuu62m0QEAAADgsqp1uZ1ZYWFhpcviJCkxMVGFhYU1WpdhGJdd5uqrr9bKlStrtF4AAAAAqK0an0mKi4vTJ598Umn6f/7zHzVp0qROQgEAAACAVWp8JmnEiBGaOnWqoqKi1KtXL0lSXl6e7rvvPt155511HrA+CD5XbHUE+AGvMwAAAKRalKR58+bp8OHD6tu3r0JCvv12t9ut0aNH1/iepCtF+KEtVkcAAAAA4Cc1LklhYWF6/fXXNW/ePP3nP/9ReHi4OnfurMTERF/kqxfOtekld3iM1THgY8HniinEAAAAqHlJqpCUlKSkpKS6zFJvucNj5I6oPKIfAAAAgMBTq5L03//+V2vXrlVhYaHOnz/vNe/pp5+uk2AAAAAAYIUal6R//etfuv3229W2bVt9/vnnSk5O1uHDh2UYhm644QZfZAQAAAAAv6nxEOAZGRm6//77tWfPHtntdq1cuVJfffWVUlNTdccdd/giIwAAAAD4TY1L0meffabRo0dLkkJCQnTu3DlFRkbq0Ucf1RNPPFHnAQEAAADAn2pckiIiIjz3IbVo0UL5+fmeeSdOnKi7ZAAAAABggRrfk3TTTTdp69atuvbaa3Xbbbfpd7/7nfbs2aNVq1bppptu8kVGAAAAAPCbGpekp59+WqdPn5YkzZ07V6dPn9brr7+uq6++mpHtAAAAAFzxalSSysvL9d///lddunSR9O2ld4sXL/ZJMAAAAACwQo3uSWrUqJHS0tL0v//9z1d5AAAAAMBSNb7cLjk5WQcPHlSbNm18kadeCi51WR0BfsDrDAAAAKkWJemxxx7T/fffr3nz5qlbt26KiIjwmh8dHV1n4azmcDgUGmaTDuZZHQV+Ehpmk8PhsDoGAAAALFTtkvToo4/qd7/7nW677TZJ0u23366goCDPfMMwFBQUpPLy8rpPaZH4+Hgte+VluVwN6wxDQUGBsrKyNGvWLCUmJlodx68cDofi4+OtjgEAAAALVbskzZ07VxMnTtSmTZt8mafeiY+Pb7BvmhMTE5WUlGR1DAA+EHyu2OoI8ANeZwConWqXJMMwJEmpqak+CwM0dNwX1TDUh9c5/NAWqyMAAFBv1eieJPPldQDqDve/NTxW3/92rk0vucNjLNs+/CP4XDGFGABqoUYlKSkp6bJF6eTJkz8oENAQcf8b97/5mzs8Ru6IppZtHwCA+qxGJWnu3LmM/AX4CPe/cf8bAACoH2pUku68807FxcX5KgsAAAAAWC64ugtyPxIAAACAhqDaJalidDsAAAAACGTVvtzO7Xb7MgcAAAAA1AvVPpMEAAAAAA0BJQkAAAAATChJAAAAAGBCSQIAAAAAE0oSAAAAAJjU6MNkAQAA6rvS0lIVFhZasu2CggKvr1ZwOp2y2+2WbR8IBJQkAAAQUAoLCzV+/HhLM2RlZVm27ZycHCUlJVm2fSAQUJIAAEBAcTqdysnJsTqGZZxOp9URgCseJQkAAAQUu93OmRT4hZWXdtYHgXxpJyUJAAAAqIX6cGmnlQL50k5KEgAAAFALVl7aWVBQoKysLM2aNUuJiYmWZAjkSzspSQAAAEAt1IdLOxMTEy3PEIj4nCQAAAAAMKEkAQAAAIAJJQkAAAAATChJAAAAAGBCSQIAAAAAE0oSAAAAAJhQkgAAAADAxNKSlJ2drRtvvFFRUVGKi4vT0KFDtX///krLbdu2TX369FFERISio6PVq1cvnTt3zoLEAAAAAAKdpSUpLy9P6enp2r59uzZs2KALFy4oLS1NZ86c8Syzbds23XrrrUpLS9O///1v7dixQ5MnT1ZwMCfBAAAAANS9ECs3vm7dOq/nS5cuVVxcnHbt2qVevXpJkqZPn66pU6fqoYce8izXoUMHv+YEAAAA0HBYWpK+y+VySZJiY2MlScePH9eHH36ou+++W927d1d+fr6uueYaZWVlqWfPnlWuo6ysTGVlZZ7nJSUlvg/uA6WlpSosLLRk2wUFBV5freB0OmW32y3bfkPCsdYwj7XgUpfVEeAHvM4AUDv1piS53W5NmzZNPXr0UHJysiTp4MGDkqQ5c+boySef1HXXXaeXX35Zffv21d69e3X11VdXWk92drbmzp3r1+y+UFhYqPHjx1uaISsry7Jt5+TkKCkpybLtNyQcaw3rWHM4HAoNs0kH86yOAj8JDbPJ4XBYHQMArij1piSlp6dr79692rp1q2ea2+2WJE2YMEH33HOPJOn666/Xv/71L/3tb39TdnZ2pfVkZGRoxowZnuclJSVKSEjwcfq653Q6lZOTY3UMyzidTqsjNBgcaw3rWIuPj9eyV172nLlvKAoKCpSVlaVZs2YpMTHR6jh+5XA4FB8fb3UMALii1IuSNHnyZL311lvasmWLWrVq5ZneokULSVLHjh29lr/22msveXmQzWaTzWbzXVg/sdvtDeqv27AOx1rDEx8f32DfNCcmJnK8AwAuy9Ih4gzD0OTJk7V69Wpt3LhRbdq08ZrfunVrtWzZstKw4AcOHGhwfwkEAAAA4B+WnklKT0/X8uXLtWbNGkVFRenYsWOSvr00IDw8XEFBQXrggQeUmZmprl276rrrrtNLL72kzz//XCtWrLAyOgAAAIAAZWlJWrRokSSpd+/eXtOXLFmisWPHSpKmTZum0tJSTZ8+XSdPnlTXrl21YcMGtWvXzs9pAQAAADQElpYkwzCqtdxDDz3k9TlJAAAAAOArlt6TBAAAAAD1DSUJAAAAAEwoSQAAAABgQkkCAAAAABNKEgAAAACYUJIAAAAAwISSBAAAAAAmlCQAAAAAMKEkAQAAAIAJJQkAAAAATChJAAAAAGBCSQIAAAAAE0oSAAAAAJhQkgAAAADAhJIEAAAAACaUJAAAAAAwoSQBAAAAgAklCQAAAABMKEkAAAAAYEJJAgAAAAATShIAAAAAmFCSAAAAAMCEkgQAAAAAJpQkAAAAADChJAEAAACACSUJAAAAAEwoSQAAAABgQkkCAAAAABNKEgAAAACYUJIAAAAAwISSBAAAAAAmlCQAAAAAMKEkAQAAAIAJJQkAAAAATChJAAAAAGBCSQIAAAAAE0oSAAAAAJhQkgAAAADAhJIEAAAAACaUJAAAAAAwoSQBAAAAgAklCQAAAABMKEkAAAAAYBJidQAAQMNQWlqqwsJCS7ZdUFDg9dUKTqdTdrvdsu0DAKqPkgQA8IvCwkKNHz/e0gxZWVmWbTsnJ0dJSUmWbR8AUH2UJACAXzidTuXk5FgdwzJOp9PqCACAarK0JGVnZ2vVqlX6/PPPFR4eru7du+uJJ55Qhw4dKi1rGIZuu+02rVu3TqtXr9bQoUP9HxgAUGt2u50zKQCAK4KlAzfk5eUpPT1d27dv14YNG3ThwgWlpaXpzJkzlZZ99tlnFRQUZEFKAAAAAA2JpWeS1q1b5/V86dKliouL065du9SrVy/P9I8//lhPPfWUdu7cqRYtWvg7JgAAAIAGpF7dk+RyuSRJsbGxnmlnz57VXXfdpQULFqh58+aXXUdZWZnKyso8z0tKSuo+KAAAAICAVW8+J8ntdmvatGnq0aOHkpOTPdOnT5+u7t27a8iQIdVaT3Z2thwOh+eRkJDgq8gAAAAAAlC9OZOUnp6uvXv3auvWrZ5pa9eu1caNG7V79+5qrycjI0MzZszwPC8pKaEoAQAAAKi2enEmafLkyXrrrbe0adMmtWrVyjN948aNys/PV0xMjEJCQhQS8m2nGzZsmHr37l3lumw2m6Kjo70eAAAAAFBdlp5JMgxDU6ZM0erVq7V582a1adPGa/5DDz2kcePGeU3r3LmznnnmGQ0ePNifUQEAAAA0EJaWpPT0dC1fvlxr1qxRVFSUjh07JklyOBwKDw9X8+bNqxyswel0VipUAAAAAFAXLC1JixYtkqRKl84tWbJEY8eO9X8gAAAAXHGKioo8oyQ3FAUFBV5fGxKHw6H4+HifbiPIMAzDp1uwWElJiRwOh1wuF/cnAQAABJiioiKNHDVaF86XXX5hBITQMJuWvfJyrYpSdbtBvRndDgAAAKgpl8ulC+fLdK5tqtx2h9Vx4GPBpS7pYJ5cLpdPzyZRkgAAAHDFc9sdckc0tToGAkS9GAIcAAAAAOoLShIAAAAAmFCSAAAAAMCEkgQAAAAAJpQkAAAAADChJAEAAACACSUJAAAAAEwoSQAAAABgQkkCAAAAABNKEgAAAACYUJIAAAAAwISSBAAAAAAmlCQAAAAAMKEkAQAAAIAJJQkAAAAATChJAAAAAGBCSQIAAAAAE0oSAAAAAJhQkgAAAADAhJIEAAAAACaUJAAAAAAwoSQBAAAAgAklCQAAAABMKEkAAAAAYEJJAgAAAAATShIAAAAAmFCSAAAAAMCEkgQAAAAAJpQkAAAAADChJAEAAACASYjVAQAAAIAfKvhcsdUR4Af+ep0pSQAAALjihR/aYnUEBBBKEgAAAK5459r0kjs8xuoY8LHgc8V+KcSUJAAAAFzx3OExckc0tToGAgQDNwAAAACACSUJAAAAAEwoSQAAAABgQkkCAAAAABNKEgAAAACYUJIAAAAAwISSBAAAAAAmlCQAAAAAMKEkAQAAAIAJJQkAAAAATCwtSdnZ2brxxhsVFRWluLg4DR06VPv37/fMP3nypKZMmaIOHTooPDxcTqdTU6dOlcvlsjA1AAAAgEBmaUnKy8tTenq6tm/frg0bNujChQtKS0vTmTNnJElHjhzRkSNH9OSTT2rv3r1aunSp1q1bp3vvvdfK2AAAAAACWIiVG1+3bp3X86VLlyouLk67du1Sr169lJycrJUrV3rmt2vXTllZWRo5cqQuXryokBBL4wMAAAAIQPWqZVRcRhcbG/u9y0RHR1+yIJWVlamsrMzzvKSkpG5DAgAAAAho9WbgBrfbrWnTpqlHjx5KTk6ucpkTJ05o3rx5Gj9+/CXXk52dLYfD4XkkJCT4KjIAAACAAFRvSlJ6err27t2r1157rcr5JSUlGjRokDp27Kg5c+Zccj0ZGRlyuVyex1dffeWjxAAAAAACUb243G7y5Ml66623tGXLFrVq1arS/FOnTunWW29VVFSUVq9erdDQ0Euuy2azyWaz+TIuAAAAgABm6ZkkwzA0efJkrV69Whs3blSbNm0qLVNSUqK0tDSFhYVp7dq1stvtFiQFAAAA0FBYeiYpPT1dy5cv15o1axQVFaVjx45JkhwOh8LDwz0F6ezZs1q2bJlKSko8AzE0a9ZMjRo1sjI+AAAA6ongUj5HsyHw1+tsaUlatGiRJKl3795e05csWaKxY8fqo48+0ocffihJat++vdcyhw4dUuvWrf0REwAAAPWUw+FQaJhNOphndRT4SWiYTQ6Hw6fbCDIMw/DpFixWUlIih8PhGTocAAAAgaWoqMjzUTINRUFBgbKysjRr1iwlJiZaHcevHA6H4uPja/W91e0G9WLgBgAAAKC24uPja/2m+UqXmJiopKQkq2MEnHozBDgAAAAA1AeUJAAAAAAwoSQBAAAAgAklCQAAAABMKEkAAAAAYEJJAgAAAAATShIAAAAAmFCSAAAAAMCEkgQAAAAAJpQkAAAAADChJAEAAACACSUJAAAAAEwoSQAAAABgQkkCAAAAABNKEgAAAACYUJIAAAAAwISSBAAAAAAmlCQAAAAAMKEkAQAAAIAJJQkAAAAATChJAAAAAGBCSQIAAAAAE0oSAAAAAJhQkgAAAADAhJIEAAAAACYhVgcAAAAArkSlpaUqLCy0ZNsFBQVeX63gdDplt9st274vUZIAAACAWigsLNT48eMtzZCVlWXZtnNycpSUlGTZ9n2JkgQAAADUgtPpVE5OjtUxLON0Oq2O4DOUJAAAAKAW7HZ7wJ5JaegYuAEAAAAATChJAAAAAGBCSQIAAAAAE0oSAAAAAJhQkgAAAADAhJIEAAAAACaUJAAAAAAwoSQBAAAAgAklCQAAAABMKEkAAAAAYEJJAgAAAAATShIAAAAAmFCSAAAAAMCEkgQAAAAAJpQkAAAAADChJAEAAACACSUJAAAAAExCrA7ga4ZhSJJKSkosTgIAAADAShWdoKIjXErAl6RTp05JkhISEixOAgAAAKA+OHXqlBwOxyXnBxmXq1FXOLfbrSNHjigqKkpBQUFWx7kilJSUKCEhQV999ZWio6OtjoMAxrEGf+FYg79wrMFfONZqxzAMnTp1Si1btlRw8KXvPAr4M0nBwcFq1aqV1TGuSNHR0fzSwS841uAvHGvwF441+AvHWs193xmkCgzcAAAAAAAmlCQAAAAAMKEkoRKbzabMzEzZbDaroyDAcazBXzjW4C8ca/AXjjXfCviBGwAAAACgJjiTBAAAAAAmlCQAAAAAMKEkAQAAAIAJJQkAAAAATChJASo7O1s33nijoqKiFBcXp6FDh2r//v1ey5SWlio9PV1NmjRRZGSkhg0bpqKiIs/8//znPxoxYoQSEhIUHh6ua6+9VvPnz6+0rc2bN+uGG26QzWZT+/bttXTpUl/vHuoRfx1rR48e1V133aWkpCQFBwdr2rRp/tg91CP+OtZWrVql/v37q1mzZoqOjlZKSorWr1/vl31E/eCvY23r1q3q0aOHmjRpovDwcF1zzTV65pln/LKPqB/8+X6twvvvv6+QkBBdd911vtqtgEBJClB5eXlKT0/X9u3btWHDBl24cEFpaWk6c+aMZ5np06frzTffVG5urvLy8nTkyBH94he/8MzftWuX4uLitGzZMu3bt0+zZs1SRkaGnnvuOc8yhw4d0qBBg3TLLbfo448/1rRp0zRu3DjeUDQg/jrWysrK1KxZM82ePVtdu3b16z6ifvDXsbZlyxb1799fb7/9tnbt2qVbbrlFgwcP1u7du/26v7COv461iIgITZ48WVu2bNFnn32m2bNna/bs2crJyfHr/sI6/jrWKhQXF2v06NHq27evX/bvimagQTh+/LghycjLyzMMwzCKi4uN0NBQIzc317PMZ599Zkgytm3bdsn1TJo0ybjllls8z2fOnGl06tTJa5lf/epXxoABA+p4D3Cl8NWxZpaammrcd999dZobVx5/HGsVOnbsaMydO7duguOK489j7ec//7kxcuTIugmOK46vj7Vf/epXxuzZs43MzEyja9eudZ4/kHAmqYFwuVySpNjYWEnf/tXhwoUL6tevn2eZa665Rk6nU9u2bfve9VSsQ5K2bdvmtQ5JGjBgwPeuA4HNV8ca8F3+OtbcbrdOnTrF8diA+etY2717tz744AOlpqbWUXJcaXx5rC1ZskQHDx5UZmamD5IHnhCrA8D33G63pk2bph49eig5OVmSdOzYMYWFhSkmJsZr2fj4eB07dqzK9XzwwQd6/fXX9Y9//MMz7dixY4qPj6+0jpKSEp07d07h4eF1uzOo13x5rAFm/jzWnnzySZ0+fVrDhw+vs/y4cvjjWGvVqpW+/vprXbx4UXPmzNG4cePqfD9Q//nyWPviiy/00EMP6b333lNICG//q4OfUgOQnp6uvXv3auvWrbVex969ezVkyBBlZmYqLS2tDtMhkHCswV/8dawtX75cc+fO1Zo1axQXF1frbeHK5Y9j7b333tPp06e1fft2PfTQQ2rfvr1GjBjxQ2LjCuSrY628vFx33XWX5s6dq6SkpLqKG/AoSQFu8uTJeuutt7Rlyxa1atXKM7158+Y6f/68iouLvf46UVRUpObNm3ut49NPP1Xfvn01fvx4zZ4922te8+bNvUZYqVhHdHQ0Z5EaGF8fa0AFfx1rr732msaNG6fc3NxKlxWjYfDXsdamTRtJUufOnVVUVKQ5c+ZQkhoYXx5rp06d0s6dO7V7925NnjxZ0rdnrQzDUEhIiN5991316dPHtzt4JbL6pij4htvtNtLT042WLVsaBw4cqDS/4kbAFStWeKZ9/vnnlW4E3Lt3rxEXF2c88MADVW5n5syZRnJyste0ESNGMHBDA+KvY82MgRsaJn8ea8uXLzfsdrvx97//vW53AlcEK/6/VmHu3LlGYmLiD8qPK4c/jrXy8nJjz549Xo/f/va3RocOHYw9e/YYp0+f9s3OXeEoSQHqt7/9reFwOIzNmzcbR48e9TzOnj3rWWbixImG0+k0Nm7caOzcudNISUkxUlJSPPP37NljNGvWzBg5cqTXOo4fP+5Z5uDBg0bjxo2NBx54wPjss8+MBQsWGI0aNTLWrVvn1/2Fdfx1rBmGYezevdvYvXu30a1bN+Ouu+4ydu/ebezbt89v+wpr+etYe/XVV42QkBBjwYIFXssUFxf7dX9hHX8da88995yxdu1a48CBA8aBAweMF154wYiKijJmzZrl1/2Fdfz5b6gZo9tdHiUpQEmq8rFkyRLPMufOnTMmTZpkXHXVVUbjxo2Nn//858bRo0c98zMzM6tcx3f/wrVp0ybjuuuuM8LCwoy2bdt6bQOBz5/HWnWWQeDy17GWmppa5TJjxozx387CUv461v785z8bnTp1Mho3bmxER0cb119/vbFw4UKjvLzcj3sLK/nz31AzStLlBRmGYfyQy/UAAAAAIJDwOUkAAAAAYEJJAgAAAAATShIAAAAAmFCSAAAAAMCEkgQAAAAAJpQkAAAAADChJAEAAACACSUJAAAAAEwoSQAAAABgQkkCAFxRDMNQv379NGDAgErzFi5cqJiYGP33v/+1IBkAIFBQkgAAV5SgoCAtWbJEH374oZ5//nnP9EOHDmnmzJn6y1/+olatWtXpNi9cuFCn6wMA1G+UJADAFSchIUHz58/X/fffr0OHDskwDN17771KS0vT9ddfr4EDByoyMlLx8fEaNWqUTpw44fnedevWqWfPnoqJiVGTJk30s5/9TPn5+Z75hw8fVlBQkF5//XWlpqbKbrfr1VdftWI3AQAWCTIMw7A6BAAAtTF06FC5XC794he/0Lx587Rv3z516tRJ48aN0+jRo3Xu3Dk9+OCDunjxojZu3ChJWrlypYKCgtSlSxedPn1av//973X48GF9/PHHCg4O1uHDh9WmTRu1bt1aTz31lK6//nrZ7Xa1aNHC4r0FAPgLJQkAcMU6fvy4OnXqpJMnT2rlypXau3ev3nvvPa1fv96zzH//+18lJCRo//79SkpKqrSOEydOqFmzZtqzZ4+Sk5M9JenZZ5/Vfffd58/dAQDUE1xuBwC4YsXFxWnChAm69tprNXToUP3nP//Rpk2bFBkZ6Xlcc801kuS5pO6LL77QiBEj1LZtW0VHR6t169aSpMLCQq91//jHP/brvgAA6o8QqwMAAPBDhISEKCTk23/OTp8+rcGDB+uJJ56otFzF5XKDBw9WYmKi/vrXv6ply5Zyu91KTk7W+fPnvZaPiIjwfXgAQL1ESQIABIwbbrhBK1euVOvWrT3Fyeybb77R/v379de//lU333yzJGnr1q3+jgkAqOe43A4AEDDS09N18uRJjRgxQjt27FB+fr7Wr1+ve+65R+Xl5brqqqvUpEkT5eTk6Msvv9TGjRs1Y8YMq2MDAOoZShIAIGC0bNlS77//vsrLy5WWlqbOnTtr2rRpiomJUXBwsIKDg/Xaa69p165dSk5O1vTp0/WnP/3J6tgAgHqG0e0AAAAAwIQzSQAAAABgQkkCAAAAABNKEgAAAACYUJIAAAAAwISSBAAAAAAmlCQAAAAAMKEkAQAAAIAJJQkAAAAATChJAAAAAGBCSQIAAAAAE0oSAAAAAJj8f8rUCOv2+gegAAAAAElFTkSuQmCC" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "execution_count": 52 + ] }, { + "cell_type": "code", + "execution_count": 10, "metadata": { "ExecuteTime": { "end_time": "2024-11-20T04:00:21.344518Z", "start_time": "2024-11-20T04:00:21.181130Z" } }, - "cell_type": "code", + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAIhCAYAAACizkCYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAChSUlEQVR4nOzdeXxU9b0//teZ7cy+ZM8kgSAg+ypocQOkiGu1bhXaW6m2bqBtY29/0lqL3lbaammt2+23vYXeK+6C1dZaEVS0oqxhV2QJWSfrLJl9O78/JhmSkEDmJGEyyev5eEQzZ84585ksZN7zOu/PR5AkSQIRERERERH1iSLdAyAiIiIiIhoKWFwRERERERH1AxZXRERERERE/YDFFRERERERUT9gcUVERERERNQPWFwRERERERH1AxZXRERERERE/YDFFRERERERUT9gcUVERERERNQPWFwREaXB2rVrIQhCtx8/+tGP+vWxPvnkE6xcuRIul6tfz9vVs88+i7Vr1/Z6/9LSUlxzzTUDN6BeqKio6PH70PWjoqIC8+bNw7x589I65lQtXboURqNxwM5//PhxmEwm3Hjjjd3e/8ILL0AQBPzxj38csDEQEQ0WqnQPgIhoOFuzZg3Gjx/faZvdbu/Xx/jkk0/wyCOPYOnSpbBarf167o6effZZ5OTkYOnSpQP2GP2tsLAQW7du7bTt3nvvhdvtxrp1607Z99lnnz2bw8sIo0aNwurVq3HnnXfihRdewJIlS5L3ORwO3HfffVi0aBHuuuuuNI6SiOjsYHFFRJRGkydPxqxZs9I9jGFLFEV85Stf6bTNbDYjHA6fsh0AJk6ceLaGllG+973vYcOGDbjvvvswf/58FBYWAgDuuusuSJKE//mf/zkr4/D7/dDr9WflsYiIusPLAomIBqEjR47gO9/5DsaOHQu9Xo+ioiJce+212LdvX6f94vE4fvGLX2DcuHHQ6XSwWq2YOnUqnnzySQDAypUr8Z//+Z8AEglD+yVuH3zwQfIcL7/8MubMmQODwQCj0YhFixZh9+7dnR7n2LFjuPXWW2G32yGKIvLz87FgwQKUl5cDSFzid+DAAXz44YfJxygtLe3z12Hjxo247rrrUFxcDK1WizFjxuCuu+5CU1NTp/1WrlwJQRCwe/du3HDDDTCbzbBYLPjWt76FxsbGPo+jXdfLAtsvK3z88cfx61//GqWlpdDpdJg3bx4OHz6MSCSCBx98EHa7HRaLBV//+tfR0NBwynn743twJgcOHMCCBQtgMBiQm5uL5cuXw+/3J+9fsGABxo8fD0mSOh0nSRLGjBmDq6+++rTnby+g7rzzTgDA//3f/+HNN9/E008/jaKiIkiShGeffRbTp0+HTqeDzWbDTTfdhGPHjnU6T6rf8127duGmm26CzWbD6NGje/W1ICIaKEyuiIjSKBaLIRqNdtqmUqlQW1uL7Oxs/OpXv0Jubi5aWlrw17/+FRdccAF2796NcePGAQB+85vfYOXKlXjooYdw6aWXIhKJ4PPPP0/2V333u99FS0sLnnrqKaxfvz6ZKLQnMI899hgeeughfOc738FDDz2EcDiMxx9/HJdccgm2bduW3O+qq65CLBbDb37zG4wYMQJNTU345JNPko+zYcMG3HTTTbBYLMlL50RR7PPX5+jRo5gzZw6++93vwmKxoKKiAqtXr8bFF1+Mffv2Qa1Wd9r/61//Om655RbcfffdOHDgAH72s5/h4MGD+Oyzz07Ztz8988wzmDp1Kp555hm4XC488MADuPbaa3HBBRdArVbjL3/5C06cOIEf/ehH+O53v4s333wzeWx/fQ9OJxKJ4KqrrsJdd92FBx98EJ988gl+8Ytf4MSJE3jrrbcAAN///vdx3XXXYdOmTfjqV7+aPPaf//wnjh49ij/84Q+nfYzCwkI888wzWLx4MVatWoXHH38cN954Y/Iywbvuugtr167F/fffj1//+tdoaWnBo48+igsvvBB79uxBfn4+gNS/5zfccANuvfVW3H333fD5fGf+ZhERDSSJiIjOujVr1kgAuv2IRCKn7B+NRqVwOCyNHTtW+uEPf5jcfs0110jTp08/7WM9/vjjEgDp+PHjnbZXVlZKKpVKuu+++zptb21tlQoKCqRbbrlFkiRJampqkgBIv//970/7OJMmTZLmzp172n06GjlypHT11Vf3ev94PC5FIhHpxIkTEgDpb3/7W/K+n//85xKATl8bSZKkdevWSQCk559/vtePM3fuXGnSpEk93tfxOR4/flwCIE2bNk2KxWLJ7b///e8lANLXvva1Tsf/4Ac/kABIbrdbkqT+/x5057bbbpMASE8++WSn7b/85S8lANLHH38sSZIkxWIx6ZxzzpGuu+66TvtdeeWV0ujRo6V4PN6rx7vlllskAFJ+fr7U2NgoSZIkbd26VQIg/fa3v+20b1VVlaTT6aQf//jH3Z6rN9/zhx9+uFfjIiI6G3hZIBFRGv3v//4vtm/f3ulDpVIhGo3isccew8SJE6HRaKBSqaDRaPDll1/i0KFDyePPP/987NmzB/feey/+9a9/wePx9Pqx//WvfyEajeLb3/42otFo8kOr1WLu3LnJSwezsrIwevRoPP7441i9ejV2796NeDze31+KbjU0NODuu+9GSUkJVCoV1Go1Ro4cCQCdvg7tvvnNb3a6fcstt0ClUuH9998f0HFeddVVUChO/kmdMGECAJxyKV379srKSgBn93vQ9WvTnii1f20UCgWWL1+Ov//978nxHT16FO+88w7uvfdeCILQq8d59NFHAQD3338/cnJyAAB///vfIQgCvvWtb3V6ngUFBZg2bVqny1RT/Z73NEshEVE6sLgiIkqjCRMmYNasWZ0+AKCsrAw/+9nPcP311+Ott97CZ599hu3bt2PatGkIBALJ41esWIEnnngCn376Ka688kpkZ2djwYIF2LFjxxkfu76+HgAwe/ZsqNXqTh8vv/xyssdFEARs2rQJixYtwm9+8xvMnDkTubm5uP/++9Ha2joAX5WEeDyOyy+/HOvXr8ePf/xjbNq0Cdu2bcOnn34KAJ2+Du0KCgo63VapVMjOzkZzc/OAjRNIFD8daTSa024PBoMAzt73oP3r0FH716rj1+b222+HTqfDf//3fwNIXO6o0+lw++239+4LgZOXg7Y/1/bnKUkS8vPzT3men376afJ5yvmet1/qSkQ0GLDniohoEHr++efx7W9/G4899lin7U1NTZ2mU1epVCgrK0NZWRlcLhfee+89/OQnP8GiRYtQVVV12pnT2lOF1157LZkM9GTkyJHJCQsOHz6MV155BStXrkQ4HE6+EO9v+/fvx549e7B27Vrcdtttye1Hjhzp8RiHw4GioqLk7Wg0iubm5lMKi8HibH0Puvs6OBwOAOi0zWKx4LbbbsOf//xn/OhHP8KaNWuwZMmSPk/hn5OTA0EQ8NFHH3Xbi9e+Tc73vLeJGhHR2cDiiohoEBIE4ZQXof/4xz9QU1ODMWPGdHuM1WrFTTfdhJqaGvzgBz9ARUUFJk6cmDxP13f9Fy1aBJVKhaNHj6Z0adW5556Lhx56CK+//jp27dqV3C6KYrfJglztL5q7fh1OtxjtunXrcN555yVvv/LKK4hGo4N24d/+/h6czrp163D//fcnb7/wwgsAcMrX5v7778ezzz6Lm266CS6XC8uXL+/1uHpyzTXX4Fe/+hVqampwyy239LifnO85EdFgwuKKiGgQuuaaa7B27VqMHz8eU6dOxc6dO/H444+juLi4037XXnttcq2s3NxcnDhxAr///e8xcuRIjB07FgAwZcoUAMCTTz6J2267DWq1GuPGjUNpaSkeffRR/PSnP8WxY8dwxRVXwGazob6+Htu2bYPBYMAjjzyCvXv3Yvny5bj55psxduxYaDQabN68GXv37sWDDz6YHMuUKVPw0ksv4eWXX8Y555wDrVabfOyeOBwOvPbaa6dsLy0txbRp0zB69Gg8+OCDkCQJWVlZeOutt7Bx48Yez7d+/XqoVCosXLgwOVvgtGnTTvuCPp36+3vQE41Gg9/+9rfwer2YPXt2crbAK6+8EhdffHGnfc8991xcccUV+Oc//4mLL74Y06ZN6/PzvOiii3DnnXfiO9/5Dnbs2IFLL70UBoMBdXV1+PjjjzFlyhTcc889GD9+fMrfcyKiQSXNE2oQEQ1L7bMFbt++vdv7nU6ndMcdd0h5eXmSXq+XLr74Yumjjz46Zba63/72t9KFF14o5eTkSBqNRhoxYoR0xx13SBUVFZ3Ot2LFCslut0sKhUICIL3//vvJ+9544w1p/vz5ktlslkRRlEaOHCnddNNN0nvvvSdJkiTV19dLS5culcaPHy8ZDAbJaDRKU6dOlX73u99J0Wg0eZ6Kigrp8ssvl0wmkwRAGjly5Gm/BiNHjuxxxsTbbrtNkiRJOnjwoLRw4ULJZDJJNptNuvnmm6XKykoJgPTzn/88ea72meN27twpXXvttZLRaJRMJpO0ePFiqb6+/szfkA7kzBb4+OOPd9rv/ffflwBIr776aqftPX3f++t70J3bbrtNMhgM0t69e6V58+ZJOp1OysrKku655x7J6/V2e8zatWslANJLL7102nN3p6eviSRJ0l/+8hfpggsukAwGg6TT6aTRo0dL3/72t6UdO3Yk90n1e94+IyER0WAgSFKX1QKJiIgyzMqVK/HII4+gsbEx2cdE8t1444349NNPUVFRMaDrgxERDTW8LJCIiIgQCoWwa9cubNu2DRs2bMDq1atZWBERpYjFFREREaGurg4XXnghzGYz7rrrLtx3333pHhIRUcbhZYFERERERET9gIsIExERERER9QMWV0RERERERP2AxRUREREREVE/4IQWPYjH46itrYXJZEquGE9ERERERMOPJElobW2F3W6HQtFzPsXiqge1tbUoKSlJ9zCIiIiIiGiQqKqqQnFxcY/3s7jqgclkApD4AprN5jSPhoiIiIiI0sXj8aCkpCRZI/SExVUP2i8FNJvNLK6IiIiIiOiM7UKc0IKIiIiIiKgfsLgiIiIiIiLqByyuiIiIiIiI+gGLKyIiIiIion7A4oqIiIiIiKgfsLgiIiIiIiLqByyuiIiIiIiI+gGLKyIiIiIion7A4oqIiIiIiKgfsLgiIiIiIiLqByyuiIiIiIiI+gGLKyIiIiIion7A4oqIiIiIiKgfsLgiIiIiIiLqByyuiIiIiIiI+gGLKyIiIiIion6Q1uJqy5YtuPbaa2G32yEIAt54443T7r9nzx4sXrwYJSUl0Ol0mDBhAp588slT9tu3bx/mzp0LnU6HoqIiPProo5AkaYCeBREREREREaBK54P7fD5MmzYN3/nOd3DjjTeecf+dO3ciNzcXzz//PEpKSvDJJ5/gzjvvhFKpxPLlywEAHo8HCxcuxPz587F9+3YcPnwYS5cuhcFgwAMPPDDQT4mIuojHJbgDEVh0aigUQrqHQ0RERDRgBGmQRDqCIGDDhg24/vrrUzpu2bJlOHToEDZv3gwAeO6557BixQrU19dDFEUAwK9+9Ss89dRTqK6uhiD07sWdx+OBxWKB2+2G2WxOaUxEdJLDHcTnDg+yDBqU5hhg1qrTPSQiIiKilPS2NhjUPVcrV65EaWnpafdxu93IyspK3t66dSvmzp2bLKwAYNGiRaitrUVFRUWP5wmFQvB4PJ0+iKhvorE4qpx+xGIS6txB7K50oqLJi3A0nu6hEREREfW7QV1c5eTkYPTo0T3ev3XrVrzyyiu46667ktscDgfy8/M77dd+2+Fw9HiuVatWwWKxJD9KSkr6OHoiavSG0OILI9sowm7RQaNQ4nNHK/ZUu9DYGmIvJBEREQ0pg7q4Wr58OTZt2tTtfQcOHMB1112Hhx9+GAsXLux0X9dL/9pfwJ3uksAVK1bA7XYnP6qqqvo4eqLhLRKLo6rFD1GpgLKt18qoVaHArIMnEMGeKhc+d3jgD0fTPFIiIiKi/pHWCS3kOnjwIC677DJ873vfw0MPPdTpvoKCglMSqoaGBgA4JdHqSBTFTpcSElHfNHlDaPFFUGDWdtquVAjIM2kRjMRQ0exHsy+CUTkGFJi1ySKMiIiIKBMN6uSqOwcOHMD8+fNx22234Ze//OUp98+ZMwdbtmxBOBxObnv33Xdht9vP2L9FRP2jPbXSqZU9FkxatRJFFh2kuIT9NW7sq3bB5Q93uy8RERFRJkhrceX1elFeXo7y8nIAwPHjx1FeXo7KykoAwNNPP40FCxYk928vrBYuXIiysjI4HA44HA40NjYm91myZAlEUcTSpUuxf/9+bNiwAY899hjKysp6PVMgEfVNY2sitbLoTj8zoCAIsOo1yDOKaPKGUV7pwpGGVgQjsbM0UiIiIqL+k9biaseOHZgxYwZmzJgBACgrK8OMGTPw8MMPAwCamppw9OjR5P6vvvoqGhsbsW7dOhQWFiY/Zs+endzHYrFg48aNqK6uxqxZs3DvvfeirKwMZWVlZ/fJEQ1TkVgclWdIrbpSKRXIN2uhVStxpMGL8ioX6j1BxOOc8IKIiIgyx6BZ52qw4TpXRPLUugLYV+NCvkknq4cqLklw+sKIxOMotOgwMlsPE9fGIiIiojTqbW2QkRNaENHgFI62pVYqlezJKRSCgGyjiHA0jhpnAC2+MEqz9Si06qBWZlybKBEREQ0jfKVCRP2m0RuCOxCG+Qy9Vr2hUSlgt+qgFAQcrPNgb7ULzV6ujUVERESDF4srIuoX4WjbDIF9SK26Y9apUWDWweWLYHeVC4frWxEIc8ILIiIiGnxYXBFRv2hoDcLlD8Oi7//+KKVCQJ5ZC7OoxvFGH3ZVOlHrCiDGCS+IiIhoEGFxRUR9ForGUN0SgF6jgmIAlzzQaZSwW3WIxSXsq3Zhf40bbn9kwB6PiIiIKBWc0IKI+qyxNdFrVWDRDfhjCYIAm14Do6hCQ2sQTn8YI7L0KLLpIKqUA/74RERERD1hckVEfXK2Uquu1EoFCsyJgupwvRd7qlxoaA1ywgsiIiJKGxZXRNQnDZ4gXP00Q6AcRlGFQosWvlAMe6rcOFTngTcUTctYiIiIaHjjZYFEJFsoGkNVSwCGs5xadaUQBOQYRYSiMVS2+NHcvjaWRQcV18YiIiKis4SvOohItgZPEJ5gJG2pVVeiSokiqx4CBByo9WBfjRstvnC6h0VERETDBJMrIpIlGImhsiUAo6hOa2rVHYtODaOoQpM3BKc/jBKbHiVZemjVnPCCiIiIBg6TKyKSpcETRGswCrN2cL5Ho1QIyDdrYdCocLTRi/JKFxzuIOJcG4uIiIgGCIsrIkpZMBJDlTMAo6iCMMhSq670GhXsFh1C0Tj2Vruwv9YNT5BrYxEREVH/G5xvORPRoFbfllrZLdp0D6VXBEFAlkGDSCyOOncQTl8YI7P1sFv10Kj4HhMRERH1D76qIKKUZFJq1ZVaqYDdooNGqcTnjlbsqXahsTXEtbGIiIioX7C4IqKU1HuC8AYjg7bXqjeMWhUKzDq0BqLYU+XC5w4P/GGujUVERER9k7mvjojorGtPrUyiOuNSq66UCgG5JhHBSAwVzX40+yLJtbGUisx+bkRERJQeTK6IqNcc7gC8wQhMGZxadaVVK1Fk0QESsL/Gg33VLrj8XBuLiIiIUjd0XiER0YAKhGOoHiKpVVeCIMCiU8OgUaLJG06sjZWlR7GNa2MRERFR7zG5IqJecbgDaA1Gh1Rq1ZVKqUC+WQu9RoUjDV6UV7lQ7+HaWERERNQ7Q/dVEhH1m0A4hmpXABZdaqmVLxTFI28dgKhW4nuXnIMRWfoBHGX/0WtU0KqVcPrC2FPlgt2qw8hsPUxadbqHRkRERIMYkysiOqM6dwC+UBRGMbX3Y97aW4tDjlaUV7nw/Zd248VtlYjE4gM0yv6lEARkG0VkG0TUOAPYVenEiWZfxoyfiIiIzj4WV0R0Wv5wFDWuAMza1FIrfziKv5XXAgBKs/WIxiW8sK0SP3i5HJ/XeQZquP1Oo1LAbtVBrVDgUJ0He6pcaPJybSwiIiI6FYsrIjqtOldQVmr197118IaiKLbp8PtvzMB/Xj4OFp0alS1+/Pj1vfjjlqMZtbaUSatGgVkHdyCC8ioXvnC0IhCOpXtYRERENIiwuCKiHrWnVhatJuXU6o3dNQCAb8wqgVIh4NJzc/Hskpm4bHweJCSKr2Uv7MaOipYBGn3/UyoE5Jm0sGjVqGjyYVelE7WuAGKc8IKIiIjA4oqITqPOFYQ/FIUxxRkC397nQGsoCrtFi0vG5ia3m3Vq/PCr5+LRr01CvllEkzeER/5+EI//6wu4A5H+Hv6A0aqVsFt1iMUl7Kt2YX+NG25/5oyfiIiIBgaLKyLqli/UllrpNSkdFwjHsGF3NQDgG7MTqVVXM0bY8PTimbh+ehEUArDly0bcs24nNn/ekDG9TIIgwKbXINekRUNrELsrnTja4EUoyksFiYiIhisWV0TUrTp3IJFapdhr9c/9dfAEoyi0aDH33Lwe99Oqlbjj4lF44qZpKM3WozUYxe/eO4yfv3kADk+wr8M/a9RKBQrMOmjVSnzZtjZWgyeYMUUiERER9R8WV0R0Cq/M1CoYiWF9W6/VLed1n1p1NTbfhN/dMh3f/spIqJUCdle5sPyFXXijvCajepkMogqFFi0CoRj2VLtxqM4DbyhzJuwgIiKivmNxRUSnqHMFEAjHU06t3tnvgDsQQb5ZxLxxuWc+oI1KqcDNs0rw1K0zMdluRigax/98fBz/+doeHG/ypTr8tGlfG8umT8yKuLvSiaoWH6JcG4uIiGhYYHFFRJ14Q1HUugKw6tQpHReMxPB6W6/VLbNKoFKm/s9LkU2HX359CpbPHwODJnGZ3Q9fKcf/bq1AOJo5BYqoUqLIqocAAQfrPNhT7UKLL5zuYREREdEAY3FFRJ3UuQIIRGIwpJhavXvQAZc/gjyTiPnjeu61OhOFIGDRpAI8s2Qm5pyTjVhcwqs7q3H/S7uxv8Yt+7zpYNGpkW/SwemLYHeVE4cdrQhGOOEFERHRUMXiioiSWoORttQqtV6rcDSO13cmeq1uPq8EahmpVVfZRhE/uWoCVlw5Hll6DWpcAazYsA/PvH8EvgzqZVIqBOSbtTBqVDjW5MXuSifq3AHEM6ifjIiIiHqHxRURJdW5grJSq38dcKDFH0aOUcSCCfJTq+5cODoHz3xzJhZNzAcAvHPAgXtf2IWtx5r79XEGml6jgt2iQyQqYV+1G/tr3Rm1thcRERGdGYsrIgLQllq5A7ClOENgOBrHa7sSvVY3n1fcL6lVV0ZRheWXjcVj10+G3aJFiy+Mx94+hFX/PJRRvUyCIMBm0CDHKMLhDqK80omKJm9G9ZMRERFRz9JaXG3ZsgXXXnst7HY7BEHAG2+8cdr9m5ubccUVV8But0MURZSUlGD58uXweDyd9tu3bx/mzp0LnU6HoqIiPProo1xzhugMal0BhKIx6DWppVYbD9WjxRdGjlGDhW3p0kCZUmzFHxbPwM3nFUMhAJ8cbca9L+zEuwcdGfU7rlYqUGjRQaNU4nNHK/ZUu9DYGsqo50BERESnSmtx5fP5MG3aNDz99NO92l+hUOC6667Dm2++icOHD2Pt2rV47733cPfddyf38Xg8WLhwIex2O7Zv346nnnoKTzzxBFavXj1QT4Mo43mCEdS5gyn3WkVicby2swoAcNPMgUmtuhJVSnx7Til+/43pGJNrhC8Uw1Obj+ChN/aj1hUY8MfvT0atCgVmHVoDUeypcuGQw5NR/WRERETUmSANkrdKBUHAhg0bcP3116d03B/+8Ac8/vjjqKpKvMB77rnnsGLFCtTX10MURQDAr371Kzz11FOorq6GIHS/qGkoFEIoFEre9ng8KCkpgdvthtlslvekiDLE53UeVDT7UGTVp3TcP/fX4dkPjiLLoMGf/mMWNKqz+35NLC7hrT21+L/PTiAcjUOjVGDx+SNw/XS7rKng0ykYiaHZF4JRVKE0x4ACszbjngMREdFQ5fF4YLFYzlgbDOq/3CtXrkRpaWmP99fW1mL9+vWYO3ductvWrVsxd+7cZGEFAIsWLUJtbS0qKip6PNeqVatgsViSHyUlJf3xFIgGPXcgAoc7mHKvVSQWx6s7E71WN84sPuuFFZCYie/6GUV4ZvFMTC+xIhyL469bK/DAq3twpMF71sfTF1q1EnaLDoCA/TUe7Ktxw5lB/WREREQ0yIurnJwcjB49+pTtixcvhl6vR1FREcxmM/785z8n73M4HMjP79z30X7b4XD0+FgrVqyA2+1OfrQnYURDXZ0rgFA0nnKv1ebPG9DYGoJNr8aiSQPba3UmBRYtHv3aJPxgwVgYRRWONfnwwKvl+Mu/j2fUulKCILStjSWiyRtGeZUTRxq4NhYREVGmGNTF1fLly7Fp06ZTtv/ud7/Drl278MYbb+Do0aMoKyvrdH/XS//ar3zs6ZJAABBFEWazudMH0VDnDkRQJ2OGwGgsjld2JN6AuHFmMUSVciCGlxJBELBgQj6e/eZMXDo2B3EJ2LC7Bve9uBvlVa50Dy8lKqUCBWYt9BoVvqz3orzKBYc7yLWxiIiIBrlBXVz1pKCgAOPHj8d1112HP/7xj3juuedQV1eXvK9rQtXQ0AAApyRaRMNdjcuPcFSCTpNacfT+Fw1oaA3Bqldj0aSCARqdPDa9Bv+5aDx+dvVE5Bg1cHiC+Nnf9uPJTYfRGsysdaX0GhXsVh1CkTj2VrtwsM6Tcc+BiIhoOMnI4qqj9lSqfTKKOXPmYMuWLQiHT/YqvPvuu7Db7aft3yIabtz+COpl9FolUqtEr9UNM4qgVac/terO+aOy8MySmbhmSiEEAO8dasC963bhoy8bM2rKc4UgIMugQbZBRI0zgF2VTpxo9iES49pYREREg01aiyuv14vy8nKUl5cDAI4fP47y8nJUVlYCAJ5++mksWLAguf/bb7+NNWvWYP/+/aioqMDbb7+Ne+65BxdddFGycFqyZAlEUcTSpUuxf/9+bNiwAY899hjKyspOe1kg0XBT4/YjHEs9tfrgcCMcniAsOjWunFw4QKPrH3qNCnfNHY1f3zgVJTYdXIEIfvOvL/CLfxxCkzd05hMMIhqVAnarDmqFAofqPNhT5UKTl2tjERERDSZpLa527NiBGTNmYMaMGQCAsrIyzJgxAw8//DAAoKmpCUePHk3ur9Pp8Kc//QkXX3wxJkyYgB/84Ae45ppr8Pe//z25j8ViwcaNG1FdXY1Zs2bh3nvvRVlZ2Sl9WUTDmdufmCEwK8XUKhaXkr1WXx/EqVVXEwrNePLWGVg8uwQqhYBtFS24d90u/GNfHeIZVpyYtGoUmHVwByIor3LhC0cr/GGujUVERDQYDJp1rgab3s5lT5RpJEnCoToPqp0BFFp0KR27+fMG/O69wzBrVfjzt2ennHoNBieafXhq8xF8Ud8KIFF43Td/DEqyUlvjazBIrI0Vhkl7cm0spYIJPRERUX8bEutcEVH/cwcicHhS77XqmFpdP6MoIwsrABiZbcCvb5yKuy49Bzq1EofqPLj/pd14aXtlxvUxJdbG0iIel7Cv2oX9NW64/Fwbi4iIKF1YXBENI5IkocYZQDQmpXxJ30dfNqLGFYBJVOHqKYO71+pMlAoB10y14+klMzBrpA3RuIR1n1XiBy+X43OHJ93DS4kgCLDqNcgzadHYGkJ5pQtHG7wIRbk2FhER0dnG4opoGHH5I3C0ykutXm5Lra6bUZTygsODVZ5Ji4evmYgfXT4OFp0alS1+/Pi1vfh/W44iEM6s4kStVCDfrIVWrcThhlbsrnShwRPkhBdERERnEYsromFCkiTUuAKIx1NPrf59pAnVzgAMohLXTs3s1KorQRAw99xcPLtkJi4blwcJwFt767DsxV3YcaIl3cNLmUFUwW7RIRiOYU+1CwdrPfCGOOEFERHR2cDiimiYcPkTvVZWXWqpVVyS8FJ7ajVt6KRWXZl1avxw4bl45GuTkGcS0dgawiNvHcQT734BdyCzFu5VCAKyjSJseg2qnH7sOuFEJdfGIiIiGnAsroiGAUmSUO3yQ5JST60+OdqMqhY/DBolrp1mT/mx/eEoKlv8GVOgzBxhwzNLZuL66XYoBODDw424Z91OvP9FQ8ZdYieqlCiy6qEUBBys82BvtQvNGba+FxERUSZhcUU0DDj9EdR7Qin3WsUlCS9tSyzq/bVpdhjF1FMrpz+MEVk6SJBQ6wpkRHqiVStxx8Xn4PGbpqE0W4/WYBSrNx7GyrcOoN4TTPfwUmbWJdbGcvkiKK924bCjFcFIZvWUERERZQIWV0RDnCRJqHb6ASmRZKTi02PNONHih16jxNemFaX82P5wFFq1EiNzDJgxwoYimw5N3hCc/nBGpEDn5pvwu1um4z++MhJqpYBdlS4se2EX/lZeg1h88I+/I6VCQJ5ZC5NGjWONXuyudKLOHci450FERDSYsbgiGuKc/ggaPCFY9eqUjotLEl7anui1unaqHUZt6qmVyx9BgVkLs1YNo6jCxEIzphRboFQIqHUHMmK6cJVSgVtmleAPt87AJLsZoWgcf/74OP7ztT043uRL9/BSptMoYbfqEIlK2FuVWBsrUy7ZJCIiGuxYXBENYe2plYTUU6vPjrfgeJMPOrUS101PvdcqEI5BVClQaNUltykUAgotOswYYcWILD2c/jCavaGMSLGKbXo89vUpWDZvDPQaJb5s8OKHr5Tj/z49gXB08F/q2JEgCLAZNMg1aVHvCWJ3pRPHGr0Z9zyIiIgGGxZXRENYiy+MBk8IWSn2WkmShJe2J3qtrplaCJM2tdQLAJyBMPItIiy6U4/Va1SYUGjG1GIrtGolal2BjOgBUggCrphcgGeXzMRXzslCLC7hlR1VuP+l3ThQ60738FKmVipQaNFBVClxuN6L8ionGlq5NhYREZFcLK6Ihqh4XEK1MwAJgEaV2q/69ooWHGv0QatW4LrpqfdaBSMxaJQC7BZ9j/sIgoB8sxbTR1hRmmOAOxBBkzeEeAa8sM82ivjpVROx4srxsOnVqHEF8OD6fXj2gyPwZeCaUkZRhUKLFr5QDHur3Djk8GTk8yAiIko3FldEQ1SLP4zGVnmp1YvbEr1WV0+xd5s8nYnTH0a+WQtLL/q8tGolxhWYMK3ECr2oRJ07AH84M17YXzg6B88uOQ+LJuYDAP6534F7X9iFT481p3lkqVMIAnKMiaSxstmP3ZVOVLX4Ec2A2R2JiIgGCxZXRENQPC6hxhkAkHpqteOEE0cavRBVCnx9hrzUSqUUYO/Qa3UmgiAg1yRieokVo3ON8IajaPAEM2ImO6NWheWXjcUvr5+MQosWLb4wfvn2Ifzqn4fg9IXTPbyUadWJtbEAAQdqPdhX487I50FERJQOLK6IhqAWfxgNrSFkGeT3Wl01pVBWauUKhJFv0so6VlQpMTbfhOnFVlj0atS5AxlzedrUYiueWjwDN80shkIA/n20Gfe8sBPvHnRkZA+TRadGvklEkzeM3VVOfFnPtbGIiIjOhMUV0RDTnloJSExYkIpdlS4crvdC04fUSqFIpFaCIKR8fLtso4ipxVaMKzAhGImhPkNSLFGlxG0XluJ3t0zHmFwjfKEYntp8BA+9sR+1rkC6h5cylVKBArMWBo0KRxu9KK90weEOIp4B3wsiIqJ0YHFFNMQ0++SnVi9ua0utJhfAlmKvFgC4AxHkm7Qpr6nVHY1KgXNyjZg+wopsowYOTwCtwcxYj+mcXCOeuHkabr+oFBqVAntr3Ljvxd14fVd1RhSJXek1KtgtOoSiceytdmF/rRueDPleEBERnU0sroiGkERq5YcCqadW5VUufFHfCo1SgRtmFKf82KFoDBDQ59SqK6tegylFFkwoNCMSi6POHciISRaUCgFfn1GMZxbPxPQSK8KxONZ+UoGyV8txpMGb7uGlTBAEZBk0yDGKqHMn1saqaOLaWERERB2xuCIaQpp9YTR6Q7DJSa22J2YIvGJyQcrHA4DLH0GeSYStH1KrrlRKBUZmGzB9hA35Zi3qW0NwBzIjOSmwaPHo1ybh+wvGwiiqcKzRhwdeLceafx/PyB4mtVIBu0UHjUKJzx2t2FPtQlOGLARNREQ00FhcEQ0RiXWt/FAIQsqp1d5qNw7VeaBWCrhBRq9Ve3pR1M+pVVcWnRqTiyyYZDdDgoRaVwCRDEixBEHAVyfk49lvzsQlY3MQl4D1u2tw/0u7safale7hyWLUqlBg1qE1EEV5pQtfOFozZgp9IiKigcLiimiIaPKF0OQNyeqVerFthsBFEwuQbRRTPt7pDyPXJKbc5yWHUiGgJEuPGSNssNu0aPKG4PSHMyI5sek1+PGi8fjZ1ROQY9Sgzh3EQ2/sxx82fZkx/WQdKRWJKfQtOjWON/uwq9KFGlcgI/vKiIiI+gOLK6IhINY2Q6Cc1GpftQsHaj1QKQTceF7qvVbtyVGRbWBTq66MogqTCi2YXGSBQiGg1h1I9H1lgPNHZeOZJTNx9ZRCAMDGQ/W494Vd+PhIU0YUiV1p1UoUWXSQ4hL217ixv8YNl59rYxER0fDD4opoCGj2htDYKje1SvRaXT6pADlyUitfW2ol47H7qn3a95kjrBiRpYfTH0aLLzNSLL1Ghbvnjsavb5yKEpsOLn8Ev37nc/zy7UNo8obSPbyUCYIAq16DPKOIxtYQyitdONLAtbGIiGh4YXFFlOFicQlVTj9UCkXKqdX+Gjf21bgTqdXM1HutIrE44kjMEKhQnL3Uqiu9RoUJhWZMLbZCVClQ6wpkzIv6iYVmPHnrDNw6uwQqhYDPjrfg3nW78Pa+OsQzoEjsSqVUIN+shU6jxJEGL8qrXKj3cG0sIiIaHlhcEWW4Zm8Izd6wrFn6XmrrtfrqhHzkmbQpH+/0h5Fj1CD7LPRanYkgCMg3azF9hBWlOQa4AxE0eUMZUaColQp884KR+P03pmNcvgmBSAzPfXgUD67fhyqnP93Dk0WvUaHQokMwHMPeahcO1nkysq+MiIgoFSyuiDJYx9RKlWJqdbDOgz3VbigVAm6W2WsVlyQU2dKbWnWlVSsxrsCEqSUW6EUl6tyBjJnFbmS2Ab++cSruvOQcaNUKHKrz4P4Xd+Pl7ZUZMStiVwpBQLZRRJZeRI0zgN2VLlQ2+zLyuRAREfUGiyuiDNbUl9RqWyK1WjA+D3nm1FMrlz+CHKOIbEPqfVoDTRAE5Jm0mFZsxehcI7zhKBpagxkxi51SIeDaaXY8s2QmzhtpQzQu4fnPKvHDl8vxhaM13cOTRaNSwG7VQSkIOFjnwd5qF5q5NhYREQ1BLK6IMlQ0FkdVix9qZeqp1ecOD3ZXuRKp1awSWY8di8dRZNVBOYhSq660aiXG5pswvdgKi06NOncAvlBmpFh5Ji1+fs1E/OjycTBrVTjR4sd/vrYHf/roGALhzOgn68qsU6PArIPLF8HuKhcO17dm7HMhIiLqDosrogzV7AujWe66VtsSMwReNi4PBXJSq0AEWUaNrDWx0iHbKGJqsRXn5psQjMTg8GRGiiUIAuaem4tnv3ke5o/LhQTgzT21WPbiLuw84Uz38GRRKgTkmbUwi2ocb/RhV6UTtVwbi4iIhggWV0QZKBqLo7LFD1GlTDk5Olzfil2VTigE4OZZqfdaxeISwtEYim36QZ1adaVRKTA6z4hpJVbkGDVweAIZM8GCRadG2cJxeOTaScgzJaY6X/nWAfz23S/gDmTGc+hKp1HCbtUhFpewr9qF/TVuuP2Z+VyIiIjasbgiykBN3kRqZZWVWiV6reaNy0OhRZfy8S5/GNlGcVDMECiHzaDB5CILJhSaEYnF4fAEEM2QCRZmjrTh6cUzcd00OxQC8MHhRty7bic++KIhI/uXBEGATa9BrkmLhtYgdlc5cazRmzGLQRMREXXF4ooow0RjcVQ5/dDKSK2+rG/FjhOJ1OobMnqtYnEJwbbUKtU+r8FErVRgZLYB00fYkGfSor41lDEJkE6jxHcvOQeP3zQNpdl6eIJR/HbjYax86yAaPMF0D08WtVKBArMOokqJw/Ve7KlyoaE1mJEFIxERDW+Z++qIaJhq9IbQ4gvLSq1e2p7otZp7bi7sVvmpVY4xM1Orriw6NSYXWTDJboYECbWuQMZME35uvgm/u2U6/uMrI6FWCthV6cSyF3fhzT01Gdu/ZBRVKLRo4QvFsKfKjUN1noyZgISIiAhgcUWUUSJtMwSKSkXKqdXRRi+2VbRAIQC3yE6t4ii26TI6tepKqRBQkqXH9BIrCq1aNLYG4fSHMyI1USkVuGVWCf5w6wxMspsRjMTxp4+O48ev70FFky/dw5NFIQjIMYqw6dWocvqxq9KJqhZfxly6SUREw1taXyFt2bIF1157Lex2OwRBwBtvvNHrY5ubm1FcXAxBEOByuTrdt2/fPsydOxc6nQ5FRUV49NFHM+KFEtGZNHlDaPFFZKZWiV6rS8bmotimT/l4dyACm0GNnAyZITBVJq0ak+0WTCm2QqEQUOsOZEzvT7FNj8e+PgX3zhsNvSZxad0PXinH85+eQDiamUWJqFLCbtFDgIADtR7sq3GjxRdO97CIiIhOK63Flc/nw7Rp0/D000+nfOwdd9yBqVOnnrLd4/Fg4cKFsNvt2L59O5566ik88cQTWL16dX8MmSht2lMrrSr11Op4kxefHmuBAPm9VoFIFCU2PdRDKLXqSqEQYLfqMKPEihFZejj9YbT4MiPFUggCrpxciGeXzMQFo7IQi0t4eUcVvv/ybhyodad7eLJZ2tbGavaGUV7lxJf1rQhGMqPoJSKi4UeVzge/8sorceWVV6Z83HPPPQeXy4WHH34Y//znPzvdt27dOgSDQaxduxaiKGLy5Mk4fPgwVq9ejbKyMghC5kwdTdRRY2sitZKzLlV7r9XFY3NQkpV6auUJJNKyXNPQTK26MogqjC8wI9so4nijD7WuALKNIrRqZbqHdkbZRhE/vWoCPjnajD9uOYpqZwAPrt+HKycX4LY5pTCIaf1nXxalQkC+WQt/OIqjjV40e8MozTEgzyRCkUHLARAR0dA3qN+CXrlyJUpLSzttO3jwIB599FH87//+LxSKU4e/detWzJ07F6J48kXgokWLUFtbi4qKih4fKxQKwePxdPogGiwibeta6dSpzxBY0eTDJ0ebZadWcUmCPxJFSdbQTq26UrS9oJ9WYkVpjgHuQARN3hDiGZBiCYKAi8bk4Nkl52HhxHwAwD/3O7DshV347Hhzmkcnn16jgt2iQygax95qF/bXuuHJkLXKiIhoeBjUr5RycnIwevTo5O1QKITFixfj8ccfx4gRI7o9xuFwID8/v9O29tsOh6PHx1q1ahUsFkvyo6Qk9RehRAOlsTUElz8Mi06d8rEv7UikVheOycHIbEPKx7sDEVh1GuQO0V6rM9FplBhXYMLUEgt0GiXq3AH4w5kxg51Rq8L9l43FL66fjEKLFs2+MH7xj0P41Tufw5mh/UuCICDLoEGOUUSdO4jdJ5yoaPJmbG8ZERGdKhaXEIzE4AtFEc+wGXAH9fUhy5cvx/Lly5O3V6xYgQkTJuBb3/rWaY/reulfe7/E6S4JXLFiBcrKypK3PR4PCywaFMLRRGqlV6tSTq1ONPvwyZEmAMCtMlOrQDiKc4os0KgG9XsxA0oQBOSZtDBr1ahq8aPS6Yc3FEW2QUz5e5IO04qteGrxDLy4rQobdlfj30eaUF7lxB0XjcJXJ+Rn5OXSaqUCdosO3mAUnzta0egNozTbgByjJiOfDxHRUBaPS4jGJUTj8cT/Y4nPY22fh6NxhKIxhKOJ9TRjcQmxuARBAMYXmDOqLWFQF1ddbd68Gfv27cNrr70G4GTRlJOTg5/+9Kd45JFHUFBQcEpC1dDQAACnJFodiaLY6VJCosGi0RuCOxBGvin1dale2VEFCcCcc7JRmpN6auUJRGDWqTPqH7WBpFUrMTbfhCyDBseafHB4grDq1BnRxySqlFh6YSkuGZuDpzZ/iaONPvxh8xF8cLgRy+aNkbXu2WBg1Kqg0yjR4gtjT5ULRTYtRmYboNcM/u8JEVGmkqREsRSLS4jE2oqkDkVTJBpHOBZHKJr4iETjiElScr/2NKr9vwoooFAASkGASqmAUhCgVingDIQyYlKpjjLqr8/rr7+OQCCQvL19+3bcfvvt+Oijj5KXD86ZMwc/+clPEA6HodEkpqt+9913YbfbT+nfIhrswtHEDIE6VeqpVVWLHx992ZZazZaXWvnCUUyymyGqBv9EDmdTtlGEqT3FavGhNRRFrjEzUqzRuUb89ubp+Ft5DdZtq8Teajfue3E3vnnBCFw3vSgjnkNXSoWAXJOIYCSGimY/mn0RjMoxoMCszcjnQ0SUDp0KpQ7JUiQuIRaTEIrG2j7iCEelRLEUayuaYkBcikMQBLTXQiqFAKVCgEIhQKUQoFEqoFQLUAqJ7b25ysAVOOMug05aiyuv14sjR44kbx8/fhzl5eXIysrCiBEj8PTTT2PDhg3YtGkTAHTqvwKApqbEC8cJEybAarUCAJYsWYJHHnkES5cuxU9+8hN8+eWXeOyxx/Dwww/zUhHKOA2tQbj8YRRa5KdWF4zKwjm5xpSPbw1GYdKqkWtKfXbC4UCjUmB0nrEtxfLC4QnAotXAqB3871kpFQJumFmMOaOz8cz7R7Cn2o01n1Tgwy8bcf9lYzFaxs/LYKBVK1Fk0cETjGJftRuN5iBKcwyy1oUjIsp0ci/Fi8XjiMWBmCRBgNSWLglQCIkiSSmcLJhETeLNX6UicT+lubjasWMH5s+fn7zd3vN02223Ye3atWhqasLRo0dTOqfFYsHGjRuxbNkyzJo1CzabDWVlZZ36qYgyQTgaR3VLAHqNKuV/sGqcAWz5shEAcOvs7id/OR1JkuANRTGx0JQR04+nk82gwVStFbWuACqafHB4IsgxiFBlwMyKhRYd/uu6ydh0qAH/8+/jONboQ9kr5fj6jCLcOntERn7vBUGARaeGQaNEkzcMpz+Mkiw9im36jHw+RETtursULxJrv9RO/qV4KkVi/cz2S/GUipMFE6VOkDLtQsazxOPxwGKxwO12w2w2p3s4NAxVO/3YX+NGoUWXcnG1euMXeP+LRpxfmoWfXTMx5cd2ByKAAMwaaeML0hS4AxFUNPlQ5w7CKKpkze6YLk5fGP/vo2P4uG0ClEKLFsvmj8G0Ymt6B9ZH/nAUTn8YVr0Go3IMyDVybSwiGjwG+lK89iIplUvxBpM6tx/TS2zIk7HGZ3/rbW0w+K9fIRqGQtGY7NSq1hXAh4fbU6vUe60SqVUEEwrNLKxSZNGpMbnIgiyDGseb/Kh1BZBrEjNifTCbQYP/74rxmHe8Gc99cBR17iAeemM/Fk7Ix+0XjcqIyx27o9eooFUr4fSFsbfahUKLDiOz9TBpM6fwJaLMwUvxKDP/WhINcQ2eIFwB+b1WcSmROo3NN6V8fGswCqOoQv4geJcoEykVAkqyEn0+x5t8qHMlimSLTp0R7xheMCobU4os+OvWE3h7Xx02HqrH9hMtuPvS0bhwdHZGPIeuFIKAbKOIcDSOGmcALb4wRmbrYbfqMqLwJaL04aV4lCoWV0SDTCgaQ7UzAIOM1KrOHcD7XySWHpDba9UajmB8Pnut+sqkVWOy3YIco4hjTT7UugPINWozYr0wvUaFe+aOxqVjc/D0+0dQ7QzgV+98jgtGZeGeuaORnaELSmtUCtitOrQGIzhU50FjawilOQZkG7g2FtFwMhhnxaOhg8UV0SDT4AnCHYjISq1e3VmNuATMHGHFuILUUytvKAqDRoV8c2aueTTYKBQC7FYdLDo1TjT7UO0MQFQpYdNnRoo1yW7Bk9+YgVd2VuG1ndX47HgL9tW4sfTCUiyaVJCxl6OYtGroNSo0+0Ior3Kh2KrDyGwDdBq+oUCUiXgpHg0mLK6IBpFgJIbKlgCMojrlf7zrPUFs/jyRWi2WkVoBgCcYwbn5Jr7I7GcGUYXxBWZkGUQcb/Ki1hVAtlHMiHRQo1LgWxeMxMWjEynWF/WtePaDo/jgi0Ysv2wMSmz6dA9RFqVCQJ5Jm1gbq8mHZl8Yo3IMyOfaWERpx0vxKJOxuCIaRBo8QbQGo7BbUu93enVHFWJxCdNLrBhfmPoMl95gFHqNCgUyHpvOTKEQUGDRdkqxfKEobAZNRrwLWppjwK9vnIp/7KvD/31agYN1Htz/4m7cOrsEN8wsztjeJa1aCbtVB1cggn3VLjRadCjNNsCi54QXRP0pGosnCyZeikdDGYsrokEiGImhyhmAUVSl/EehwRPEpvbU6nx5qZU7EMbYfBP0Gv6zMJB0GiXGFZiQZdTgWKMvkWIZxIxIC5UKAV+bZsdXRmXhmQ+OYlelE89/VomPjzThvsvG4lwZE6gMBoIgwKbXwCiq0NAahNPXtjZWlg6iavB/X4jSgZfiEXWPr6KIBon6PqRWr+2qRjQuYWqxBRPlpFahKHSikqnVWSIIiUvSzFo1qlr8qHT60RqKINsgZsTlKXlmLVZeOxEfHm7Enz46hopmP3706h5cO82Ob10wMiMKxe6olQoUmHXwhaL4ssGLJl8Io7INyDWJfBechjxeikfUP1hcEQ0CfUmtGltD2HiwHoD8Xit3IIIxeQYYRP6TcDZp1UqMzTfBZkhM2+7wBGHVqTPi+yAIAuaNy8OMETb8+eNj+OCLRry5pxafHmvGvfPG4LyRtnQPUTaDqIJOk1gba0+1G4UWLXRqJTr+anb8Le34O9vTr6+A7u+QU7P1+Bg93NHTQ/TnWHu8q58eo+fnkNpzPv1jpPbg/TXW0x/T0/6pff14KR7R2TP4/4ITDQOJ1CqCIhkzBLanVlOKLJhcZEn5eF8oCp1agQIZj039I8conkyxWnzwhqLIMWZGimXRqfHAwnGYd24env3gCBpaQ1j51gHMG5eL7158Diy6zOxdal8bKxSNweEOJl9cAkheyNSV1P3mnl8597h/93cIELp9DEHo/lSCkEgjuj1PDw/dk55/Ent+0t2OqYcjBPQwVuE05+nha9GTfitw+6vY6nF7iic63V1td8TjEi/FIzpLWFwRpVl7amUSU5+eu9kbwrsHHACAW2eXyHp8VyCM0blGGDMgLRnKNCoFRucZkWXQ4FiTFw5PABatBkZtZnxfzhtpw9OLZ+L5z07grT21+OCLRuw64cT3LjkHc8/Nzdh3tEWVEvnmzLzMcbjrrlgDei4HeyyO++n8pz9XD9tTLeR7oGhLljLhDRuiTJcZf7WJhjCHOwBvMAJ7H1KrSXYzpshIrfzhKLRq9loNJjaDBlO1VtQ4/TjR7IfDE0GOQYQqA2bj02mU+N4l5+DSsbl4avOXONHix283HsYHhxtx79zRyDPz54zOnpQvGUy57mChQkSnGvx/rYmGsEA4huo+pFb/akutFs8eISsZcPrDKLRoYdJm5qVbQ5VaqUBpjhHTS2zIM2lR3xqCOxBJ97B6bVyBCb/7xnR86ysjoVII2HnCiWUv7sKbe2oRi8t5X5+IiCgzsLgiSiOHOwBvKAqTjEu/1u+uQSQmYUKBCVOLZaZWKiUKrey1GqwsejUm2c2YZDchLkmodQcQicXTPaxeUSsV+MasEvxh8QxMLDQjGInjTx8dw//3+l6caPale3hEREQDgsUVUZoEwjFUuwIwa1NPrZy+MN7Z39Zrdb681Mrlj6DAkpgOnAYvlVKBkiwDZoywotCiRWNrEC5/uMd+j8GmxKbHqhum4N55o6FTK/FFfSt+8HI5nv/sRMYUikRERL3F4oooTercAfhCUVkTSazfXY1wLI5x+SbMKLGmfHwgHINGJTC1yiAmrRqT7BZMKbZCUAiodQcQjmZGcaIQBFw5uRDPfXMmLhiVhWhcwsvbq3D/S7txoNad7uERERH1GxZXRGngD0dRIzO1cvnDeDuZWpXI67UKhJFv0WbsNNnDlVIhwG7VYUaJFSU2PZp9IbT4MifFyjaK+OlVE/DgFeNh1atR7QzgwfX78NyHR+EPR9M9PCIioj5jcUWUBnWuoOzUasPuGoSjcYzNM+K8Eakv1BqMxKBWCiiy6FM+lgYHg6jChEIzphZboVEJqHUFEIzE0j2sXhEEAReNycFzS87Dwon5AIC399Xh3nW7sO14c5pHR0RE1DcsrojOsvbUyqLVpJw6uQMR/GNfHQBgscxeK6c/jAKzFmYdV2LIZAqFgAKLFtNLbCjNMcAdiKDZG0I8Q1Iso1aF+y8bi19cPxmFFi2afWH81z8O4dfvfA6nP5zu4REREcnC4oroLKtzBeEPRWUtDvvG7hqEonGMyTVi1kh5qZVSmbi0LFMXdaXOdBolxhWYMLXEAq1GiTp3AIFwZqRYADCt2Io/3DoDN84sgkIAPj7ShHvX7cJ7B+sz5nJHIiKidiyuiM4iX6gttdJpUj7W0yG1kttr5QqEkW9ir9VQIwgC8kxaTC+xYnSuEZ5QBA2twYxZU0qrVmLphaPw25un45xcA7yhKJ7c/CV+9rf9qHMH0j08IiKiXmNxRXQW1bkD8lOr8hoEIjGck2PA+aVZKR8fisYgCAKKmFoNWVq1EmPyjJheYoVZp4bDE8yoiSLG5Bmx+ubp+M6FpdAoFdhT7cbyF3dj/a7qjCkUiYhoeGNxRXSWeNtTK33qqVVrMIK/721LrWbLTK38EeSZRFj1TK2GMkEQkGMUMa3YirF5RvjDUdR7MifFUioE3DCzGE8tnoGpxRaEo3Gs+aQCD7xajqON3nQPj4iIBlgkFkdDaxCH61uxp8qFJm8o3UNKCTvaic4ShzuAQDiOLKuY8rF/21OLQCSG0mw9LjgnO+Xj29dDYmo1fGhUCozOMyLLoMGxJi8cnsQkKnJS03SwW3X4xXWT8d6hevzPv4/jaKMPZa+U4+szirH4/BKIKmW6h0hERL0UicXh8kfg9Ifh8kfgCoTh9Efgarvdcbsv1LlveESWARPtljSNPHWZ8VeWKMN5Q1HUOAOwyuh18gajeGtPLQDg1tkjoJBRHLX4w8gzicgypJ6aUWazGTSYqrWixulHRbMfXk8EOQYRKuXgv3BBEAQsnFiAWSOz8MePjuHfR5rw+q5qfHK0Ccvnj8HUYmu6h0hENGy1F0wufxiuQIcCyd+hcGrb3rVgOhOVQoBVr4ZBo8qIv1cdsbgiOgvqXAH4IzFkGVJPrd7aWwt/OIaRWXrMGZ16ahWJxSEAKLIxtRqu1EoFSnOMsOlFHG/ywuEJwSSqYM6QiU1sBg0evGI8Pj3WjOc+PIo6dxA/fWM/Fk7Mx+0XjsqYNI6IaLCLxOJwById0qQOyVKn7RF4Q6n19LYXTFadBla9GjZ94v/t22x6Naxt24yiCoIgoM7tx/SS1GdHTif+RSIaYK3BCGpdAdhkzBDoC0Xxtz01AIBvzC6Rl1r5wsg1iciS0etFQ4tFr8bkIguyjQEcb/Kj1h1ArlGEOkPeFfzKOdmYUmTBX7dW4J/7Hdh4sB47Klpw16WjceHobL55QETUjY4FUyJVar8E79S0KdWCSakQYNWpOxdLOg1shlOLqPaCaahjcUU0wOpcQQT6kFr5QjGUZOlx0ZiclI+PxOKQkOhfUSiG/j9odGYqpQIlWQZY9BpUNPlQ5wpAr1HBmiHFt0FU4d55YzD33Fw8tfkIalwB/Oqdz/GVc7Jw96WjkW1M/feMiCjTRNsKpk59S4GThVLHhKlVRsFk0alPJkm6jimTptN2o1Yl643foYzFFdEAag1GUOsOwCbjhas/HMXfytt6rWbJS62cvjByjRpks9eKujBr1ZhktyDbKOJ4oxe1bj9yDFpoVJmRYk2yW/CHW2fglR1VeG1XNT491oK91W4svbAUiyYV8I89EWWcTgVToMtED+3pUiDx/9ZgagWTQkDykruul+CdTJwSn7Ng6hsWV0QDqNYVQDASQ7aM1Orve+vgDUVRbNPJTq3ikGC3MbWi7ikViXXPrDo1jjf5UOsKQKtSwqpXZ8SlGxqVAt/6ykhcPCYHT73/JQ7Xe/HsB0fx4eFGLJ8/BsU2fbqHSETDXCwuJSd26FwshU8pomQVTLqTiVKiUOo+bTKxYDprWFwRDRBPMII6d1B2avXG7rZeq1klUMoojpz+MHKMoqzCjoYXg6jCxEIzcoyJCS9q3UFkGzTQqjNjuvPSHAN+c+M0/GNfLf7v0xM4UOvB/S/txjdmj8CNM4oybqYpIhrcYnGprYepy6x4vvYi6uT21mAUqawyqBDQdkne6fuXWDANXiyuiAZIrVN+avWPfXVoDUVRZNXhkrG5KR8fjcURi0sosupkFWY0/CgUAgosWlh0alQ0e1HjDMIXisJm0GTEH2+lQsDXphXhglHZePaDI9hV6cLzn57Ax1824r7LxuLcfFO6h0hEg1jHgqnz7Hinrsckt2A6NVFq/7xtu4EF01DA4opoAHiCEThkplaBcCyZWt0yq1hmahVBtlHD5n5KmU6jxPgCM7INIo41+VDnDiBLL0KnyYwUK9+sxcprJ+HDw434fx8dQ0WzH//52h5cO9WOb31lZMakcUTUd7G4BE+gbcFaXzd9TB3SJk8gknLBZG4vlLrOlqfXdNpu0qr5RucwwuKKaADUOgMIReOyipt/7q+DJxhFoUWLuefmpXx8LC4hGo+j2KbnP+YkiyAIyDNrYdapUdnsR6XTD28oiiyDJiN+pgRBwLxxeZgxwoY/f3QMHxxuxN/21GLrsWYsmzcGM0dm1popRHRSLC7BE+yYKJ3av9SeMrllFkxW3amz4tkMmk7bWTBRT9JaXG3ZsgWPP/44du7cibq6OmzYsAHXX3/9aY/prsn6ueeew9133528vW/fPixfvhzbtm1DVlYW7rrrLvzsZz/LiAZtynzuQAR17gCs+tQXaA1GYlifTK3k9Vq5/GFkGTTIYWpFfaRVKzE234gsowbHm3xweIKw6dXQazLjfTmLTo0HLh+HueNy8ewHR9HQGsLP3zqA+eNyccfF58CSIYsoEw11JwumbvqY/J0LJk8wgngKFZOA9kvy1GecLc/Mgon6QVr/Qvp8PkybNg3f+c53cOONN/b6uDVr1uCKK65I3rZYLMnPPR4PFi5ciPnz52P79u04fPgwli5dCoPBgAceeKBfx0/UnRqXH+GohBxj6r9e7+x3wB2IIN8sYt65qfdaxeISQtEYxtvM/ANB/UIQBOQYRZi0KlS3BFDZ4kNrMIoco5gxP2OzRmbhmcUWPP/ZCby1pxbvf9GInSec+N4l52Duubl8441oAMTiElqDkTNO+NB+SV6qBZO5yzpMJ5OmDp/rNDDrWDDR2ZXW4urKK6/ElVdemfJxVqsVBQUF3d63bt06BINBrF27FqIoYvLkyTh8+DBWr16NsrIy/hGlAeX2R1Avs9cqGInh9d3VABKplZwZzlz+MLKMInKMXNeK+peoUmJ0nhE2gwbHm7xweAKwaBProWQCnUaJ711yDi4dm4unNn+JEy1+/HbjYXx4uBH3zBuNPJM23UMkGvTiUlsPU3u/kj98yoK17dvlFkzd9y91ni2PBRMNZoP6r+LKlSuxdu1aVFRUdNq+fPlyfPe738WoUaNwxx134M4774RCkXghunXrVsydOxeiePKSqEWLFmHFihWoqKjAqFGjun2sUCiEUCiUvO3xePr/CdGQV+P2IxyTkCOj+f9fBxxw+SPIM4m4bJy8XqtQLI5xNh2nnqYBk2XQwKS1osbpR0WzHz5PFNkGTcb8zI0rMOF335iO9buq8dL2Kuw44cSyF3bh218pxVVTCvmCjYaduCShNRjtdlY8V1sfU/t2t4yCyaRVdSqUuutfsuo1sLBgoiFiUBdXOTk5GD16dKdt//Vf/4UFCxZAp9Nh06ZNeOCBB9DU1ISHHnoIAOBwOFBaWtrpmPz8/OR9PRVXq1atwiOPPNL/T4KGDbc/MUNglozUKhSN4fVdidTq5vPkpVbuQAQ2vZq9VjTg1EoFSnOMsOnFthQrCJOohjlDepjUSgW+MXsELhyTg6c3H8HBOg/+30fH8OHhRtx32RiMzDake4hE3ZIkCXEJiMYTy20kJjCSEG/7f8dt7Z8HI7FuCyVX+2QQgXBKBRMAmLWqzv1KXSeAaNvOgomGo0FdXC1fvhzLly/vtK29iAKA6dOnAwAeffTRTtu7XvonSVK32ztasWIFysrKkrc9Hg9KSkpkj52GF0mSUOPyIxKTZE31/O6Bejj9EeSaRCyYIC+1CkRiGJtvhDpDEgTKfBa9GpOLLMgyaFDR7EetO4Bco5gxP4MlNj1W3TAF7+x3YO0nFfiivhU/eLkcN51XjFtmlWTM86DO4tLJwqJroXFyW/zUfSQJsVji/52Pifdwju5uxxGTgFgsfvKcPRxzsiiKd3/OtvF0Pc9AMbUVTF0vweu0HpNODYtOnTFJNVE6DOriqje+8pWvwOPxoL6+Hvn5+SgoKIDD4ei0T0NDA4CTCVZ3RFHsdCkhUSrcgQgcHnmpVTgax2vJ1KpY1gs6TyACq16NXBN/hunsUikVGJFtgNWgQUWTD7WuAAyaxIu0TKAQBFw1pRDnj8rCcx8cxbaKFry0vQr/PtKE+y4biwmF5nQPsd+1px/tRUY8fmoS0vGFfby92IglCofEMT0nJZ2TlPjJbZKEaOxk4ZA458nPuys0enycToVQ50JpAOuPQUupEBIfggCVQoBSmfhcqRAgqpWwdZktz6bTwGo4OWseCyai/pPxxdXu3buh1WphtVoBAHPmzMFPfvIThMNhaDSJP+7vvvsu7Hb7KZcLEvUHSZJQ4wwgKjO12nioHi2+MHKMGnx1Qs9vAPQkLkkIRKMYnW/lO+2UNmatGpPsFmQbRRxv9KLW7UeOQQuNKjN+JnOMIh66egL+fbQZf/zwKKqcAfx/r+/FlVMKcWvbsgjdFQWxeDxRMEjdFxqdb8cRi+PUJOSUc3Y95kwFTIc0pkNqEpd6Pma4EZAoQFQdio7EhyJRjLR9qBQCFG3/77RNaDtWoThZwJzpmOQ2RXKbUkgUPp3PebIoShyj6HSe0z+OAgrh9FfmENHZldbiyuv14siRI8nbx48fR3l5ObKysjBixAg8/fTT2LBhAzZt2gQAeOutt+BwODBnzhzodDq8//77+OlPf4o777wzmTotWbIEjzzyCJYuXYqf/OQn+PLLL/HYY4/h4Ycf5j8+NCDcgQgcrfJmCIzE4nhtZxUA4KaZ8lIrdyACi06DXPZaUZopFQKKrDpYdWocb0uxtColrHp1Rvz7KwgCLh6Tg2nFFqz5dwU2HqrH2/vq8Pa+unQP7axQCDjlhf0ZiwYhkV62FwjdFQWdbyvOcP/J86iUifP36pgOxUZ39ysy4OePiIaGtBZXO3bswPz585O323uebrvtNqxduxZNTU04evRo8n61Wo1nn30WZWVliMfjOOecc/Doo49i2bJlyX0sFgs2btyIZcuWYdasWbDZbCgrK+vUT0XUXyRJQrUzgHhcXmr13qF6NHkTi/4unNj98gKnE5ck+MNRnJNryZiEgIY+g6jCxEIzcowijjV6UesOItugkfU7kg4mrRr3LxiLuefm4rkPj6LGFUjed8aiQKk4mVB0m5R0kzycKaEQOp5H0Yuip2Ohge6PaTunokMKkwkFMBHRYCdI7bM9UCcejwcWiwVutxtm89C75p76h9MXxs5KJyxadcovHCOxOO56ficaW0P43iXn4GvT7Ck/vssfhlqpwIyRVoiqzHjhSsNLIBxDRbMX1c4g1AoBNoMmo1IESZIQiUnJgoWIiM6eOrcf00tsyDOnfy3C3tYGfKubSKbEDIEBSJK81Grz5w1obA3Bpldj0SR5vVa+cBRFNi0LKxq0dBolxheYMa3YAq1GiTp3AIFwLN3D6jVBEKBRKVhYERFRr2T8hBZE6eL0J2YIlNNrFY3F8cqORK/VjTOLZRVHrcEozFr1oHg3h+h0BEFAnlkLs06NymY/Kp1+eENRZBszK8UiIiI6EyZXRDIkeq38gARZhdH7XzSgoTUEq16NRZNS77WSJAneUBTFNh1TK8oYWrUSY/ONmF5ihUmnQp07CH84mu5hERER9RsmV0QyOP0RNHgSxVGqEqlVYl2rG2YUybqk0BOMwqRVMbWijCMIAnKMIkxaFapa/Khs8aM1GEWOUeSld0RElPGYXBGlKJlaQV5q9cHhRjg8QVh0alw5uVDW47eGIii26TJm9jWirkSVEmPyTJheYoPNoIbDE4A3xBSLiIgyG5MrohS1+MJo8IRk9VrF4lKy10puatUajMKkVSOfqRUNAVkGDUxaK2qcflQ0++ELRZFt0EDFBbGJiCgD8a8XUQra17WSAFnrSn14uBF17iDMWlXfUiurlqkVDRlqpQKlOUbMKLEhx6hBfWsQnkAk3cMiIiJKGYsrohS0+MJobA0hq4+p1fUziqDTpF4ceUNRGEUV8s26lI8lGuwsejUmF1kwsdCMmCSh1h1AJBZP97CIiIh6jZcFEvVSPJ5IrQB5qdVHXzaixhWASVTh6inyUitPMIJz802yCjOiTKBSKjAi2wCrQYPjjT7UuQMwimpYdKlPHkNERJknLkmIxSVEYxKkdA9GBhZXRL3U4g+joTWEbIO81OrlttTquhlF0GtS/9XzhWIwiCoUWNhrRUOfWZtIsXJMIo43elHj8iPXqJX1xgYREaVfLN5WNMXjbf+Xkv+PxyWgbcJYBQQolYBSIcCszbweXBZXRL0Qj0uocQYgINEfkqp/H2lCtTMAo6jCtVNTT60AwB0IY2y+SVZhRpSJlAoBRVYdLDo1Kpp8qHUFoFUpYdWrIXDxYSKitJMk6ZRCqWMBJUmAIAASAKUgQKUQoFQKUAkK6DUKaNUKaNVKiColVEoBKoUCaqUAlVIBlUKAWqnIuGU6+CqNqBeaffJTq7gk4aX21Gq6XVZx5A1FoWdqRcOUUVRhYqEZ2cbEpYK17iCyDRpO6kJENEDaL83rVDDFEgVTTEpcridAgiS1FUuKtsJJoYBeVECrSvwbrVYqoFYqoFIKUCsS/2//XJFhRVNvsbgiOoNEauWHAvJSq0+ONqOqxQ+DRolrptpljcEdiGBMngEGkb+yNDwpFAIKLW0pVrMPNc4g1KEobAYNFEyxiIh6Rc6leaq2osik1UBUK6BVKaBWKaFWtCVMHQsnhTDsryzgKzWiM2j2hdHoDSHbIKZ8bFyS8NK2SgDA16bZYZRRHPlCUeg0ChRYOEMgkV6jwoQCM3IMIo41JSa8yNKLnOSFiIa1TgVTrHPiFEccgABIEpQKBZQKQKlIXHan0yghqhTQdbw0r0OxpG67PC/T+p7SicUV0WkkZgj0QwFBVmq19WgzTrT4odco8bVpRbLG4AqEMTrXKKswIxqKBEFAnlkLs06NymY/Kp1+eENRZBuZYhHR0CFJ3fQyxU4mThASl+YBAhRd+pm02kQvk1alhEZ18tK89kIpU/uZMgFfrRGdRpMvhKa+pFbbE6nVtVPtMGpT/3Xzh6PQqpXstSLqhlatxNh8I2wGDY43eVHrDiBLr+GkL0Q0qHWcavyUS/QkCWgrmASgrVgSoGwrjoxix0vzFJ2SJXWHCSGG+6V56cS/QEQ9iLXNEKgQ5KVWnx1vQUWzHzq1EtdNl9dr5QqEMSrbCJOWa/wQdUcQBOSaRJh1KlS1+FHZ4oc3GEW2UeQ7skR0VvXq0jyc2s8kqttTJgVEtTJRKLGfKWOxuCLqQbMvhMbWEHKMqadWUofU6pqphbKKI384ClGpRIGVqRXRmYgqJcbkmZBlEHG8yQuHJwCLTsPLaYmoT/oy1bgoDs2pxun0+FeHqBuxuISqFn/bP4Kpp1bbK1pwrNEHrVqB66bL7LXyRzAyWw8zUyuiXssyaGDSWlHd4seJFj98oSiyDZm3CCURDayeLs3jVOPUVyyuiLrR7A2hyRtGnszU6sVtiXWtrp5ih0WXenEUCMegUQkotHKGQKJUqZUKjMpt78XyoaE1CKNGDbOM30UiyixypxrXqNouzWtLmnhpHsnF4oqoi1hcQpXT3/YPaervdu844cSRRi9ElQJfnyEvtXIGwijJ0skqzIgowarXYEqRCrUuDY43J6ZtzzGKstJoIkqvaCyO2ClpE6cap8GHxRVRF03eEJq9YeT2sdfq6imFsoqjYCQGtVJAkUWf8rFE1JlKqcCIbAOsBg2ONyYKLKOo5hsXRINASlONKzpfmqcTFdCqEgVTx6nGeWkepRuLK6IO2nutEv9Ip/4u1q5KFw7Xe6FRKXC93NTKH0axTQeLni/+iPqLWavG5CILckwijjd6UePyI9eohUbFd6uJ+hunGqfhjMUVUQeJ1CqEPFPqM/Qleq0SqdVVkwtg02tSPkcwEoNSKcDOXiuifqdUCCiyJi63rWjyodYVgFalhFWv5gs1ol7o1VTj3Vyap+WleTSMsLgiahONxVHV4odGpZT1D3x5lQtf1LdCo1TghhnFssbgCoRRaGGvFdFAMooqTCw0I9uowbFGH2rdQeQYNRBVynQPjeis41TjRP2LxRVRmyZvGM3eEPLNqadGkiThxe2JGQKvmFwAmyH11CoUjUEQEu+s8110ooGlUAjJNzIqmn2ocQahVkSRZdDw948ygtQ2Xbgknfwc7beRKIrab6d6aZ5BTBRLOvWpl+Yl/s9+JqKesLgiQltq5fRDVCllvcO2t9qNQ3UeqJUCbpDZa+XyR5BvEWFlrxXRWaPXqDChwIxsg4jjTT7UugPINojQqpliDQcdC5SOt9G2Ld52R3vBcvJzAB2KGKnjsR1ut93sVPB0PRZC206ClCh1hJPjEdrOILXPH94WIwlIlEXJ9wGERLokAMn7Tm4ToFQInGqc6CxhcUWEk6lVgYzUCgBebJshcNGkAmTLmGUwHI0DAIqsev5RIzrLBEFAvlkLi06NymY/Klv8aA1GkW3UQMHfx15JJUXpqciQupwLHYubDscmi5eOx7fvJEiA1FZldEhmkuNsH0TbdW7txYfQVpV0W6Cg7b62/YRkcdO2TdG5iBEEQCEIUAjtn6PtcyH5uaL9c4XQqUjqdP7247o+PjrvkxxDd9vbzst+JqKzh8UVDXvRWByVLT5oZaZW+6pdOFDrgUoh4MaZ8nqtWvxh5JtF2JhaEaWNVq3E2Pz2xYe9qHUHkKXXQK85O38qT5eixKVTC5STnyNZZMS7HttTitL+WB2ObU9ROhcj7dHKqSlKx/1Om6L0UCCgQ5GiEE4WCAqFou3/gAIKKJLbhbYCBh0Kl5NFzMnip/sio+MYFN3s02ncbfe1nxvdnKvT8SzCiagNiysa9hq9IbT4Iigwpz5DIIBkr9XlkwqQIzO1EgD2WhENAoIgINckwqxToaolkWJ5glFolIpuL/PqmqLEJanTZV7tKUrX32wp+UnnFCWZlPUiRVG0vbLvuI9SgVOKDqWgSBYdHVMUZYfk5HQpiqKHAqW7QqS7AqVrinKyGGKBQkRDD4srGtYibTMEalXyZjPaX+PGvho3VAoBN8lMrZz+MHJNoqyp24loYIgqJcbkmZBlEFHV4kdckjoVBUpF58u8OhY0p6QdPaQoQk9FRpcUpWsygx7OpWCBQkSUdiyuaFhrbO1bavVSW6/VVyfkI9eUemoVicUhASiy6TjrEtEglGXQIEvG7J9ERDQ8sbuRhq1I2wyBOrW8XquDdR7sqU6kVjefJzO18oWRa9Qgi6kVERERUcZjcUXDVmNrCE5fWPaCvS9uS6RWC8bnIU9G8hWJxRGHhCKbnqkVERER0RCQ1uJq1apVmD17NkwmE/Ly8nD99dfjiy++OONxlZWVuPbaa2EwGJCTk4P7778f4XC40z779u3D3LlzodPpUFRUhEcffTTZjEwUjsZR2eKHTq2SlVp9XudBeZULSoWAm2aVyBqD0x9GjlFENi85IiIiIhoS0lpcffjhh1i2bBk+/fRTbNy4EdFoFJdffjl8Pl+Px8RiMVx99dXw+Xz4+OOP8dJLL+H111/HAw88kNzH4/Fg4cKFsNvt2L59O5566ik88cQTWL169dl4WpQBGr0huAN9SK3aZgi8bFyerH6taCyOWFxirxURERHREJLWCS3eeeedTrfXrFmDvLw87Ny5E5deemm3x7z77rs4ePAgqqqqYLfbAQC//e1vsXTpUvzyl7+E2WzGunXrEAwGsXbtWoiiiMmTJ+Pw4cNYvXo1ysrKOJvSMBeOJmYI1KnkpVaH61uxq9IJhQDcPEvuDIERZBs1yDakPgkGEREREQ1Og6rnyu12AwCysrKS21auXInS0tLk7a1bt2Ly5MnJwgoAFi1ahFAohJ07dyb3mTt3LkRR7LRPbW0tKioqun3sUCgEj8fT6YOGpkZvCC5/GBaZC/a291rNG5eHQosu5eOjsTii8ThKbHpZxR0RERERDU6DpriSJAllZWW4+OKLMXny5OT2nJwcjB49Onnb4XAgPz+/07E2mw0ajQYOh6PHfdpvt+/T1apVq2CxWJIfJSXy+mhocAtH46hq9kOvUZ1crDMFX9a3YseJRGr1DZm9Vq5ABFkGDbJlLDhMRERERIPXoCmuli9fjr179+LFF188ZfumTZs6bevusj5Jkjpt77pP+2QWPV0SuGLFCrjd7uRHVVWVrOdBg1tDaxCuPvRavdTWazX33FzYramnVrG4hHA0hpIsplZEREREQ82gWET4vvvuw5tvvoktW7aguPj0PSwFBQX47LPPOm1zOp2IRCLJdKqgoOCUhKqhoQEATkm02omi2OkyQhp6QtEYqlsCslOro41ebKtogUIAbpGbWvnDyOIMgURERERDUlqTK0mSsHz5cqxfvx6bN2/GqFGjznjMnDlzsH//ftTV1SW3vfvuuxBFEeedd15yny1btnSanv3dd9+F3W7v1L9Fw0uDp6+pVaLX6pKxuSi26VM+PhaXEIoleq1UykETGhMRERFRP0nrK7xly5bh+eefxwsvvACTyQSHwwGHw4FAIJDc5+mnn8aCBQuSty+//HJMnDgR//Ef/4Hdu3dj06ZN+NGPfoTvfe97MJvNAIAlS5ZAFEUsXboU+/fvx4YNG/DYY49xpsBhLBSNodoZgEFmanW8yYtPj7VAQB96rfxh2PRq5BiZWhERERENRWktrp577jm43W7MmzcPhYWFyY+XX345uU9TUxOOHj2avK1UKvGPf/wDWq0WF110EW655RZcf/31eOKJJ5L7WCwWbNy4EdXV1Zg1axbuvfdelJWVoays7Kw+Pxo8GjxBuAMRmPvYa3XJ2ByUZMlLrYLROEqymFoRERERDVWC1D7TA3Xi8XhgsVjgdruTiRhlpmAkhl0nnIjFJVj1qadGFU0+3PfSbggAnlo8AyOzDSmfo8UXhqhW4LyRNqhZXBERERFllN7WBnyVR0NegycITzAqP7XakUitLhyTI6uwSqRWUYzI0rOwIiIiIhrC+EqPhrRgJIYqZwBGUV6v1YlmHz450gQAuFVmr5UnEIFFp0EO17UiIiIiGtJYXNGQ1uAJojUYhVkrb9WBV3ZUQQIw55xslOaknlrFJQn+SBQlWXpoVPx1IyIiIhrK+GqPhqxgJIbKttRKziyRVS1+fPRlIrVafL681ModiMCq0yCXqRURERHRkCeruIpGo3jvvffwxz/+Ea2trQCA2tpaeL3efh0cUV/Ue4JoDUb6nFp95ZwsjMoxpnx8XJLgD0dRZNMxtSIiIiIaBlJ+1XnixAlcccUVqKysRCgUwsKFC2EymfCb3/wGwWAQ//3f/z0Q4yRKSXuvlUlUy0qtapwBbPmyEQDwjVkjZI3BE4jArFUjz8zUioiIiGg4SPnt9O9///uYNWsWnE4ndDpdcvvXv/51bNq0qV8HRySXwx2Atw+p1cs7KhGXgPNLszAmL/XUSpIk+MJRFNt0EFVKWWMgIiIiosyS8ivPjz/+GP/+97+h0XReL2jkyJGoqanpt4ERyRUIx1Ddh9Sq1hXAh4cTqdWts2XOEBiMwqRVI8+slXU8EREREWWelJOreDyOWCx2yvbq6mqYTKZ+GRRRX9R7AvCGojD1odcqLgGzRtowNj/1n2lJkuANJVIrrZqpFREREdFwkXJxtXDhQvz+979P3hYEAV6vFz//+c9x1VVX9efYiFLW19Sqzh3A+180AAAWny+z1yoYhVGrQj5TKyIiIqJhJeW39n/3u99h/vz5mDhxIoLBIJYsWYIvv/wSOTk5ePHFFwdijES9VudOpFZ2i+7MO3fj1R3ViEvAzBE2nCs7tYpgfIGJqRURERHRMJNycWW321FeXo4XX3wRu3btQjwexx133IFvfvObnSa4IDrb/OEoalwBmLXyUiuHJ4jN7amVzF6r1mAURlGFfDN/F4iIiIiGG1lNKTqdDrfffjtuv/32/h4PkWwOdxC+PqRWr+2oQiwuYXqJFeMLzSkfL0kSWkMRnJtvgk7D1IqIiIhouJFVXNXU1ODf//43GhoaEI/HO913//3398vAiFLhD0dR7QzAotXISq0aPEG893nfeq28oSgMogoFFvZaEREREQ1HKRdXa9aswd133w2NRoPs7OxOL2QFQWBxRWlR5wrCH4qiyKaXdfxru6oRi0uYWmzBRBmpFQB4ghGMzTNBr5E3SyERERERZbaUXwU+/PDDePjhh7FixQooFClPNkjU73yhRK+VRac5887daGwNYePBegDA4tnyUyu9hqkVERER0XCWcnXk9/tx6623srCiQaPOHYA/lJj+XI7XdlUjGpcwpciCyUUWWedwByKwW7UwiEytiIiIiIarlCukO+64A6+++upAjIUoZcnUSi8vtWr2hvDuAQcA+TME+kJR6DQKFMicSIOIiIiIhoaU32ZftWoVrrnmGrzzzjuYMmUK1Gp1p/tXr17db4MjOpM6dwCBcBxZVlHW8e2p1SS7WXZq5QyEMSbXCCNTKyIiIqJhLeVXg4899hj+9a9/Ydy4cQBwyoQWRGeLN9lrpT7zzt1o9obwr2RqNULWz68/HIVerWSvFRERERGlXlytXr0af/nLX7B06dIBGA5R79W5AvCHY7JTq/W7axCJSZhQaMbUYpmplT+Mc3KMMGnlFXhERERENHSk3HMliiIuuuiigRgLUa95Q1HUugKwyZwh0OkL4539idTq1tklslMrrVqJAitTKyIiIiKSUVx9//vfx1NPPTUQYyHqtTpXAIFITPbsfOt3VyMci2NcvgkzSqyyzuHyR1Bg1sLM1IqIiIiIIOOywG3btmHz5s34+9//jkmTJp0yocX69ev7bXBE3WkNRlDjCsAmc4ZAlz+Mt9tSq8Xny+u1CoRjEFUKFFo5QyARERERJaRcXFmtVtxwww0DMRaiXqlzBRGMxJBtkNdrtWF3DcLROMbmGTFzhFXWOZyBMEZk6WRPpkFEREREQ0/KxdWaNWsGYhxEveIJRlDrlp9auQMR/GNfHQD5qVUwEoNGKcBu0csaAxERERENTSn3XBGlU60zgFA0Br1GXq/VG7trEIrGMSbXiFkjbbLO4fSHkW/WwqJnakVEREREJ/XqFerMmTOxadMm2Gw2zJgx47Tv9u/atavfBkfUkScYgcMdhFXmDIGeDqnVrefLmyEwGIlBpRRgZ68VEREREXXRq+Lquuuugygm+luuv/76gRwPUY8SqVUc2UZ5vVZvlNcgEInhnFwDzi/NknUOVyAMu4W9VkRERER0ql4VVz//+c9x++2348knn8TPf/7zgR4T0SncgbbUSualeK3BCP6+ty21mi2/10qhSKRWco4nIiIioqGt1z1Xf/3rXxEIBAZyLEQ9qnX5EYrGZfda/W1PLQKRGEqz9bhglLzUyh2IIN+klV3gEREREdHQ1uviSpKkgRwHUY/aUyu5MwR6g1G8tacWQCK1UshInULRGCCAqRURERER9Sil2QL5opLSocblRzgmQadRyjr+zT018IdjGJmlx5zR2bLO4fJHkGcSYWNqRUREREQ9SOkaq3PPPfeMBVZLS0ufBkTUkdufSK2yZKZWvlAUb7alVt+YXSIrtQpH4wCAIqZWRERERHQaKRVXjzzyCCwWS789+KpVq7B+/Xp8/vnn0Ol0uPDCC/HrX/8a48aNO+1x3//+9/Hxxx9j//79mDBhAsrLy0/ZZ9++fVi+fDm2bduGrKws3HXXXfjZz37GF8cZRJIk1Lj8iMQkaNXyUqu39tbCF46hJEuPi8bkyDqH0x9GrklElkFegUdEREREw0NKxdWtt96KvLy8fnvwDz/8EMuWLcPs2bMRjUbx05/+FJdffjkOHjwIg8HQ43GSJOH222/HZ599hr17955yv8fjwcKFCzF//nxs374dhw8fxtKlS2EwGPDAAw/02/hpYLkDETg88lMrfziKv5W39VrNkpdaRWJtqZWNqRURERERnV6vi6uBeGH5zjvvdLq9Zs0a5OXlYefOnbj00kt7PO4Pf/gDAKCxsbHb4mrdunUIBoNYu3YtRFHE5MmTcfjwYaxevRplZWV8kZwBJElCjTOAaB9Sq7/vrYM3FEWxTSc/tfK1pVYyCzwiIiIiGj4G1WyBbrcbAJCVdXKq7JUrV6K0tDSl82zduhVz585NLnwMAIsWLUJtbS0qKiq6PSYUCsHj8XT6oPRxByJwtMqfIdAfjuKN3TUAgG/MKoFSIS+1iiMxQ6BCxvFERERENLz0uriKx+P9eklgV5IkoaysDBdffDEmT56c3J6Tk4PRo0endC6Hw4H8/PxO29pvOxyObo9ZtWoVLBZL8qOkpCTFZ0D9RZIkVDsDiPUhtfrHvjq0hqIosupwydhcWedw+sPIMWqQzV4rIiIiIuqFlKZiH0jLly/H3r178eKLL56yfdOmTSmfr+ulf+3JW0+XBK5YsQJutzv5UVVVlfJjUv9w+SOo70NqFQjHkqnVLX1IrWJxCUU2plZERERE1DspTWgxUO677z68+eab2LJlC4qLi/t8voKCglMSqoaGBgA4JdFqJ4pip8sIKT0SMwQGEI/LT63+ub8OnmAUhRYt5p4rL7Vy+SPIMWmQbeDPBBERERH1TlqTK0mSsHz5cqxfvx6bN2/GqFGj+uW8c+bMwZYtWxAOh5Pb3n33Xdjt9pT7t+jscvkTMwTKTa2CkRjW9zG1isbiiMbjKLbqZR1PRERERMNTWourZcuW4fnnn8cLL7wAk8kEh8MBh8OBQCCQ3Ofpp5/GggULOh135MgRlJeXJ/ctLy9HeXl5sphasmQJRFHE0qVLsX//fmzYsAGPPfYYZwoc5CRJQrXLD0iAqJKXWr2z3wF3IIICsxbz5KZWgQiyjRpkG5laEREREVHvpfWywOeeew4AMG/evE7b16xZg6VLlwIAmpqacPTo0U73f/e738WHH36YvD1jxgwAwPHjx1FaWgqLxYKNGzdi2bJlmDVrFmw2G8rKylBWVjZwT4b6zOmPoN4dglWvlnV8MBLD67urAQA3zyqGSpn6ewexuIRwNIZim5mpFRERERGlRJDOxhzrGcjj8cBiscDtdsNsNqd7OEOeJEnYV+NGgyeEfLNW1jn+Vl6DP398HHkmEX/81nmyiqtmbwhGrQrTS6yyjiciIiKioae3tQFfPdKg0OILo8ETkt1rFYrG8PquRGp1y6wS2alVMBpDsU3PwoqIiIiIUsZXkJR27etaSQA0Knk/ku8eqIfTH0GuScRl4+Wtx+byh5Fl0CDHyHWtiIiIiCh1LK4o7Vp8YTS2hpAlM7UKR+N4rS21uvm8Yqhlp1ZxlGQxtSIiIiIiefgqktIqHu97arXxUD1afGHkGDX46oTu1zE7E3cgAptBjRzOEEhEREREMrG4orRq8SdSq2yDvNQqEovjtZ1VAICbZspPrQKRKEpselnHExEREREBLK4ojeJxCTXOxJpmcoua9w7Vo8mb6JVaOLFA1jk8gQiseg1TKyIiIiLqExZXlDYt/jAaWkPI6kNq9erORK/VTTOLZV1WGJck+CNRlGTpZV+WSEREREQEsLiiNGlPrRSQn1pt/rwBja0h2PRqXD5Jfq+VVadBLlMrIiIiIuojFleUFs2+MBpag7DJTK2isThe2ZHotbpxZjFElTLlc8QlCYFwFMVZOqZWRERERNRnfEVJZ11ihkA/FBDkp1ZfNKChNQSrXo1Fk+T3Wpl1auSamFoRERERUd+xuKKzrskXQpM31C+p1Q0ziqBVy0utfOEoim06WakXEREREVFXLK7orIq191oJ8lOrDw43ot4TgkWnxpWTC2WdozUYhUmrRq5JK+t4IiIiIqKuWFzRWdXsC7VNQiEvtYrFpT6nVpIkwRuKosSmk3U8EREREVF3WFzRWROLS6hq8UOpkJ9afXi4EXXuIMxalezUyhOMwqhVIc/M1IqIiIiI+g+LKzprmr0hNHvDyOqH1Or6GUXQaeSmVhGmVkRERETU71hc0VkRi0uocvqhUiigkplaffRlI2pcAZhEFa6eIr/XyiiqkM/UioiIiIj6GYsrOivaUyubXi3r+FhcwssdUiu9RpXyOSRJQmsogmKmVkREREQ0AFhc0YCLxSVUtvihVspPrf59pAnVzgCMogrXTJWXWnlDURhEFfLNOlnHExERERGdDosrGnBN3hCavSFYdfJSq7gk4aW21Oq66XZZqRUAeIIRFFl1snq1iIiIiIjOhMUVDahoLI6qFj80KqXs1OqTo82oavHDoFHi2ql2WefwBqPQa1QosLDXioiIiIgGBosrGlBN3jCavfLXtYpLEl7aVgkA+No0OwyivNTKHQijyKqTnXoREREREZ0JiysaMNFYHFVOP0SVEkqFIOscW48240SLH3qNEl+bViTrHN5QFDpRydSKiIiIiAYUiysaMO2plbUvqdX2RGp17TQ7jFq5qVWi10pu6kVERERE1BssrmhAtKdW2j6kVp8db0FFsx86tRLXTZPXa+ULRaFTK1Bg4QyBRERERDSwWFzRgGj0htDiC8tOraQOqdU1Uwth0sqbadAVCMNu1cHI1IqIiIiIBhiLK+p3kbYZAkWlQnZqtb2iBccafdCqFbh+urxeK384Cq2avVZEREREdHawuKJ+1+QNocUX6VNq9eK2xLpWV0+xwyxzfSynP4xCi1Z26kVERERElAoWV9SvIrE4KlsSfVJyU6sdJ5w40uiFqFLg6zP6kFqplCi0steKiIiIiM4OFlfUrxpbQ3D6wrDITJs69lpdPaVQ9nlc/ggKLFqYmVoRERER0VnC4or6zcnUSiU7tdpV6cLhei80KgWul5laBcIxaFQCUysiIiIiOqtYXFG/aWgNwR3oW2r14rZEanXV5ALYZPZsOQNh5Fu0ssdBRERERCQHiyvqF+FoYoZAnUp+arW7yoUv6luhUSpww4xiWecIRmJQKwUUWfSyjiciIiIikovFFfWLRm8ILn9Y9sx+kiThpbbU6orJBbAZZKZW/jAKzFqYdVzXioiIiIjOLhZX1GftqZW+D71We6vdOORohVop4AaZvVbBSAxKpQC7VQdBkDcOIiIiIiK50lpcrVq1CrNnz4bJZEJeXh6uv/56fPHFF6c9Zs+ePVi8eDFKSkqg0+kwYcIEPPnkk6fst2/fPsydOxc6nQ5FRUV49NFHIUnSQD2VYa2hNQiXPwyLvg+9Vm0zBC6aVIBsoyjrPK5AGPkm9loRERERUXqk9dqpDz/8EMuWLcPs2bMRjUbx05/+FJdffjkOHjwIg8HQ7TE7d+5Ebm4unn/+eZSUlOCTTz7BnXfeCaVSieXLlwMAPB4PFi5ciPnz52P79u04fPgwli5dCoPBgAceeOBsPsUhLxSNobolAL1GBYXMtGh/jRsHaj1QKQTcNFNer1UoGoMgMLUiIiIiovQRpEEU5zQ2NiIvLw8ffvghLr300l4ft2zZMhw6dAibN28GADz33HNYsWIF6uvrIYqJFORXv/oVnnrqKVRXV/fqxbfH44HFYoHb7YbZbJb3hIaBqhY/DtS6UWjRyS6ufrJhH/bVuHHVlELcM3e0rHPUe4LIM4uYUmRhcUVERERE/aq3tcGg6rlyu90AgKysrOS2lStXorS09IzHdTxm69atmDt3brKwAoBFixahtrYWFRUV3Z4jFArB4/F0+qDTC0VjqHb6YehjarWvxt2n1CocjQMAiphaEREREVEaDZriSpIklJWV4eKLL8bkyZOT23NycjB6dM9pxtatW/HKK6/grrvuSm5zOBzIz8/vtF/7bYfD0e15Vq1aBYvFkvwoKSnpy9MZFho8QbgDEdkzBALAS229Vgsn5iPXJK/XqsUfRq5JRJbMGQaJiIiIiPrDoCmuli9fjr179+LFF188ZfumTZu6PebAgQO47rrr8PDDD2PhwoWd7uuaYLRf/dhTsrFixQq43e7kR1VVldynMiwEIzFUtQT6lFodrPNgT3XfUqtILA4BQJGNqRURERERpdegWAzovvvuw5tvvoktW7aguLh3L7IPHjyIyy67DN/73vfw0EMPdbqvoKDglISqoaEBAE5JtNqJotjpMkI6vfbUym7VyT7Hi23rWi0Yn4c8s1bWOVp8bamVnqkVEREREaVXWpMrSZKwfPlyrF+/Hps3b8aoUaN6ddyBAwcwf/583HbbbfjlL395yv1z5szBli1bEA6Hk9veffdd2O32M/Zv0ZkFIzFUOQMwadWyU6vP6zwor3JBqRBw8yx5l2BGYnFIAOxWHRQy19ciIiIiIuovaS2uli1bhueffx4vvPACTCYTHA4HHA4HAoFAcp+nn34aCxYsSN5uL6wWLlyIsrKy5DGNjY3JfZYsWQJRFLF06VLs378fGzZswGOPPYaysjJeOtYPGjxBtAajMGvlB58vbk9cdnnZuDzky0ytnL4wco0aZLPXioiIiIgGgbQWV8899xzcbjfmzZuHwsLC5MfLL7+c3KepqQlHjx5N3n711VfR2NiIdevWdTpm9uzZyX0sFgs2btyI6upqzJo1C/feey/KyspQVlZ2Vp/fUNSeWhlFlexC9XB9K3ZVOqEQgFv6kFrFIcFuY2pFRERERIPDoFrnajDhOlfdO9Hsw6G6VtgtWtnF1SNvHcCOE04sGJ+HH3z1XFnnaGgNIsugwdRiK5QsroiIiIhoAGXkOlc0uPVHavVlfSt2nOhbahWNxRGLSyiy6lhYEREREdGgweKKeq3eE4Q3GOlTr9VLbb1Wc8/NlT3ToNMfQbZRg2wjZ3ckIiIiosGDxRX1SiAcQ1WLHyZRLTu1OtroxbaKlj6lVrG4hGg8jmKbnqkVEREREQ0qLK6oV+o9AXhDUZj6lFol1rW6ZGwuim16Wedw+cPIMmiQw9SKiIiIiAYZFld0RoFwDNXOQJ9Sq+NNXnx6rAUCgG/0IbUKRWNMrYiIiIhoUGJxRWdU5+6P1CrRa3XJ2ByUZPUhtTKKyDFyXSsiIiIiGnxYXNFp+cNR1LgCMGvlp1YVTT58crQZAvrWaxWKxVFs00Gl5I8tEREREQ0+fJVKp+VwB+ELRWEU+5Ba7UikVheOycHIbIOsc7gDEdj0avZaEREREdGgxeKKetQfqdWJZh8+OdIEALi1D6lVIJLotVIztSIiIiKiQYqvVKlHda6+p1av7KiCBODC0dkozZGXWnkCEVj1auSamFoRERER0eDF4oq65QslUiuLViM7tapq8eOjL9tSq9nyUqu4JCEQjaIki6kVEREREQ1ufLVK3XK4g/CHojD2YYbAl9tSq6+ck4VROUZZ53AHIrDoNMhlrxURERERDXIsrugUvlAU1S4/LHr5U55XO/346MtGAMCts0fIOkdckuAPR1Fs00Gj4o8qEREREQ1ufMVKp6hzBxAIx/vcaxWXgPNLszA6V15q5QlEYNVp2GtFRERERBmBxRV14m3vtdKpZZ+j1hXAh4cTqdXi8+WnVr5wFEU2LUSVUvZYiIiIiIjOFhZX1EmdKwB/ONYvqdWskTaMyZOXWrUGozBr1cgza2WPg4iIiIjobGJxRUneUBS1rgBsOvm9VnXuAN7/ogGA/NRKkiR4Q4leK6ZWRERERJQpWFxRUp0rgEAkBkMfUqtXd1QjLgEzR9hwbr5J1jk8wShMWhVTKyIiIiLKKCyuCADQGoyg1hWAtQ+plcMTxOb21ErmulaSJKE1FEGxTQetmqkVEREREWUOFlcEAKhzBfucWr22owqxuITpJVaMLzTLOkdrMAqTVo18plZERERElGFYXBE8wQhq3QHY+rCuVYMniPc+73uvVWsogmKrlqkVEREREWUcFleEOlcAoWgMek0fUqtd1YjFJUwrtmCizNTKG4rCKKqQb9bJHgcRERERUbqwuBrmPMEI6lzBPvVaNbaGsPFgPQDg1tnyUytPMAK7VQedhqkVEREREWUeFlfDXK0zgGA/pFbRuIQpRRZMLrLIOocvlOj3KrCw14qIiIiIMhOLq2HMHYjA4Q72qdeq2RvCuwccAOTPEJgYSxh2i65PRR4RERERUTqxuBrGal1+hKLxfkmtJtnNslMrbygKPVMrIiIiIspwLK6Gqf5Krf6VTK1GQBAE2WOxW7V9mgaeiIiIiCjdWFwNUzUuP8IxqU+TR6zfXYNITMKEQjOmFsvttYpCp1agwMIZAomIiIgos7G4Gobc/gjq3UHY+jBDoNMXxjv7T/ZayU2tXIEw7FYdjEytiIiIiCjDsbgaZiRJ6qfUqhrhWBzj8k2YXmKVdQ5/OAqtWsleKyIiIiIaElhcDTPuQAQOTxBZfei1cvrDeLs9tTpffq+Vq22GQJNWLXssRERERESDBYurYUSSJNS6AojGJGjV8lOrN3bXIByN49x8I2aOsMo6hz8chahUosDK1IqIiIiIhgYWV8OIOxBBnadvMwS6AxH8Y18dAODWPswQ6PJHUGDRwszUioiIiIiGCBZXw4QkSahxBhDrY2q1YXcNQtE4xuQZMWukTdY5AuEYNCoBhVbOEEhEREREQ0dai6tVq1Zh9uzZMJlMyMvLw/XXX48vvvjitMc0NzfjiiuugN1uhyiKKCkpwfLly+HxeDrtt2/fPsydOxc6nQ5FRUV49NFHIUnSQD6dQc3lj8DR2h+pVS2Avs0Q6AyEkW/RwqJjakVEREREQ0dai6sPP/wQy5Ytw6effoqNGzciGo3i8ssvh8/n6/EYhUKB6667Dm+++SYOHz6MtWvX4r333sPdd9+d3Mfj8WDhwoWw2+3Yvn07nnrqKTzxxBNYvXr12Xhag05ihsAA4vG+pVZ/K69BMBLHObkGzC7NknWOYCQGtVJAkUUvexxERERERINRWhcXeueddzrdXrNmDfLy8rBz505ceuml3R5js9lwzz33JG+PHDkS9957Lx5//PHktnXr1iEYDGLt2rUQRRGTJ0/G4cOHsXr1apSVlclOXDKVy5+YIbAvqVVrMIK/7+17r5XTH0axTQezjutaEREREdHQMqh6rtxuNwAgK+tkKrJy5UqUlpb2eExtbS3Wr1+PuXPnJrdt3boVc+fOhSiKyW2LFi1CbW0tKioquj1PKBSCx+Pp9DEUSJKEapcfkABR1YfUak8tApEYRuUY8JVR8lMrpVKA3aobdgUuEREREQ19g6a4kiQJZWVluPjiizF58uTk9pycHIwePfqU/RcvXgy9Xo+ioiKYzWb8+c9/Tt7ncDiQn5/faf/22w6Ho9vHX7VqFSwWS/KjpKSkP55W2jn9EdR7QrDq5fc3eYNRvLUn0Wv1jVnye61cgTDyTey1IiIiIqKhadAUV8uXL8fevXvx4osvnrJ906ZNp+z/u9/9Drt27cIbb7yBo0ePoqysrNP9XQuA9skseioMVqxYAbfbnfyoqqrqy9MZFCRJQrWz76nVm3tq4A/HMDJLjzmjs2WdIxSNQRAEFDG1IiIiIqIhalA0vtx333148803sWXLFhQXF/fqmIKCAhQUFGD8+PHIzs7GJZdcgp/97GcoLCxEQUHBKQlVQ0MDAJySaLUTRbHTZYRDQYsvjAZPqE+9Vr5QFG+2pVa3nj8Cij6sa5VvEfuUoBERERERDWZpTa4kScLy5cuxfv16bN68GaNGjZJ9HiDRNwUAc+bMwZYtWxAOh5P7vPvuu7Db7aft3xpKEqlVABIAjUr+t/mtvbXwhWMoydLjQpmpVTgaBwAUWfVMrYiIiIhoyEprcbVs2TI8//zzeOGFF2AymeBwOOBwOBAIBJL7PP3001iwYEHy9ttvv401a9Zg//79qKiowNtvv4177rkHF110UbJwWrJkCURRxNKlS7F//35s2LABjz322LCaKbDFF0ZjawhZfUit/OEo/lbellrNKpGdWrX4w8gzi7AxtSIiIiKiISytlwU+99xzAIB58+Z12r5mzRosXboUANDU1ISjR48m79PpdPjTn/6EH/7whwiFQigpKcENN9yABx98MLmPxWLBxo0bsWzZMsyaNQs2mw1lZWWn9GUNVfF4/6RWf99bB28oimKbDheNyZF1jnA0DgFgrxURERERDXmC1H5NHXXi8XhgsVjgdrthNpvTPZyUNHlDKK90wabXyC6u/OEovvvXHWgNRfHAwnMxb1yerPPUe4LINYmYUmSBQsHiioiIiIgyT29rg0EzWyD1j3hcQo0zcVllX1Krf+yrQ2soiiKrDpeMzZV1jkgsDglAkU3HwoqIiIiIhjwWV0NMiz+MhtYQsgzye60C4Rje2F0DALhlVgmUMgsjpy+MXKOmT31fRERERESZgsXVENKeWikAqJXyv7X/3F8HTzCKQosWc8+Vn1rFIaHIpmdqRURERETDAourIaTZl0itbH1IrYKRGNb3R2rlDyPHKCK7D2MhIiIiIsokLK6GiMQMgf4+p1bv7HfAHYigwKzFfJmTWERjccTiEnutiIiIiGhYYXE1RDT5Qmjy9j21en13NQDgllnFfUitIsg2apBtEGWPhYiIiIgo07C4GgJi7b1WgtCn1OpfBxxw+SPIM4l9Sq2i8ThKbHrZxRkRERERUSZicTUENPtCaGwNwdaHWflC0Rhe39WeWpVAJbNIcwUiyDJokG1kakVEREREwwuLqwwXa+u1Uir6llq9e6AeTn8EuSYRl42Xl1rF4hLC0RhKsphaEREREdHww+IqwzV7Q2hqDfdpLalwNI7X2lKrm88rll2kufxhZHGGQCIiIiIaplhcZbBYXEKV0w+VQiH7Mj4A2HjQgRZfGDlGDb46IV/2WEKxRK9VX8ZCRERERJSp+Co4gzV7Q2j2hmHTq2WfIxI7mVrddF5Jn1Irm16NHCNTKyIiIiIanlhcZahYXEJlix9qZd9Sq/cO1aPJG0aWQYOFfUitgtE4SrKYWhERERHR8MVXwhmqyRtCiy8Mq65vqdWrO9tSq5nF0Kjk/Ti4A5H/v717D46yPP8//tmwyWaTbDYE3CSbgyAe28WqDRUcKqgV8FSp/vrzVCQj1doGdBracagdUZyK1srUwfHYmdhWFA/ISFuPNdGqBES+8UuQFiQSDmIIBLIbyHGz9/ePkC0xB+JmN3vg/ZrZGfbZZ+/nfi6uCbm49r5XWWnJGssOgQAAADiBUVzFIX9XQLvD0LWq+E+D9je3KzstRTO/nRvSGN1dK7+KstOGtVshAAAAEO/4bTgOHTjcocbDw/teK39XQC99sluSdM15+SF3rXytnXLaU+haAQAA4IRHcRVn/F0B7T7UIpt11LC+S6pia4MamtuVlZasWZ7QulYBY9TS6VfBaHvIxRkAAACQKPiNOM70dK2ywtS1uvbcAtmso0Iax9vaqSx7ilyO1JDnAgAAACQKiqs40tO1Sh1m1+q9bfu1z9cup32YXasOv/LpWgEAAACSKK7iyv6eHQKH0bXqCpj/rrU6N1+pyaF1rXytncpMTZYrk7VWAAAAgERxFTc6j+4QaBuVNKyu1fvb9usrb5syU626fGJeSGMYY3S4vXutVagfKQQAAAASDcVVnOj+XqvOsHWtfnRuQehdqza/Mu3JcmWy1goAAADoQXEVBzq7Atp1sEX25OGttfrg8/36sqlVDptVl08Mba3VsV2rUIszAAAAIBFRXMUBX2unvC2dctqTQx6jK2D04tGu1exz85WWYg1tLm1+ZaRalUPXCgAAAOiF4ioOGHV3jIbTtfpo+wHtOdSqDJtVV549nLVWnSrISqVrBQAAAHwNxdUJIGCMVh7tWl19jjvkrlVzm18ZNqtyMu3hnB4AAACQECiuTgBraxu1+2CL0m2jdNXZ7pDGMMaoub1T7iy77Cl0rQAAAICvo7hKcAFjtPLjXZKkq7+Tr3RbaF2rw+1+pdusynWy1goAAADoD8VVgquqbdTOgy1KSwm9ayVJvrZOuZ32kD9SCAAAACQ6iqsEFjBGKzd0d62u+o5bGamhd63SUuhaAQAAAIOhuEpg63ccVF1j9/djXf2d0LtW3tZOubNSQ/5IIQAAAHAioLhKUOaYrtWVZ+fJkRrad2QdaffLnpKkXCc7BAIAAACDobhKUB/XHdQX+4/InjxKs8/JD3mcQ60dcjvtyqBrBQAAAAyK4ioBGWO08uPu77W6YmKeMu2hda1aOvxKSx7FWisAAABgCKJaXC1dulSTJk2Sw+GQy+XS7NmztXXr1iG/v7GxUQUFBbJYLGpqaur1Wk1NjaZNmya73a78/HwtWbJExpgw30Fs+mTnIW3ff1g2a5JmnzuMrlVLh/Kc9pA/UggAAACcSKJaXL3//vsqLS3VunXr9M4778jv92vGjBk6cuTIkN4/b948nX322X2O+3w+XXrppXK73dqwYYOWL1+uP/zhD1q2bFm4byHmGGP0wtHvtbpiYp6cw+hapSaPUm4WXSsAAABgKKK6kObNN9/s9by8vFwul0sbN27UhRdeOOh7n3jiCTU1Nemee+7RG2+80eu1FStWqK2tTc8++6xsNps8Ho+2bdumZcuWqaysTBaLJez3Eiv+Z1eTPm84rBRrkn40jK5VU0unTh6Tpky6VgAAAMCQxNSaK6/XK0nKzs4OHrv33ns1bty4Xudt2bJFS5Ys0V/+8hclJfW9haqqKk2bNk02my14bObMmdq7d6/q6ur6vXZ7e7t8Pl+vR7w5tmt1uSdXWWkpIY3T2tElmzVJeVnsEAgAAAAMVcwUV8YYlZWVaerUqfJ4PMHjY8eO1YQJE4LP29vbdcMNN+jhhx9WUVFRv2PV19crJyen17Ge5/X19f2+Z+nSpXI6ncFHYWHhcG9pxFXvbtLWfc1KGZWka84tCHmcQ60dynHaQv5IIQAAAHAiipniav78+dq0aZNeeOGFPsfffffd4PNFixbprLPO0k9+8pNBx/v6R/96NrMY6COBixYtktfrDT52794dym1ETfcOgd1dq1meXI1OD61r1dbZpZRRFrmdaeGcHgAAAJDwYqK4WrBggdasWaPKykoVFAzecamoqNDLL78sq9Uqq9WqSy65RFJ3h2vx4sWSpNzc3D4dqoaGBknq09HqYbPZlJmZ2esRTzbt8erf9c1KHmXRNcPcITAnM1XONLpWAAAAwDcR1Q0tjDFasGCBVq9erffee0/jx48/7ntWrVql1tbW4PMNGzbolltu0QcffBD8+OCUKVP0m9/8Rh0dHUpJ6e7gvP3223K73X3WbyUCY4xe2NDdtZr57VyNybAd5x39a+vsknWURW7WWgEAAADfWFQ7V6WlpXruuef0/PPPy+FwqL6+XvX19b2Kp8ceeyzYnZKkCRMmyOPxBB89BdlZZ50ll8slSbrxxhtls9lUUlKizZs3a/Xq1XrggQcSdqfAzV969dlen6xJFv2/80Jfa9XU2qEcRyprrQAAAIAQRLW4euKJJ+T1ejV9+nTl5eUFHy+++GLwnAMHDqi2tvYbjet0OvXOO+9oz549Ki4u1i9+8QuVlZWprKws3LcQE17Y0L0+bLhdq6Sk7q5VIhagAAAAQKRZTM9OD+jF5/PJ6XTK6/VGff3VgcPt2lh3UO6svptMbP7Sq0Wra2RNsujpOcU6yRFacbXP16ZcZ6q+7c6kuAIAAACOMdTaICY2tEDoVh5da3Xpt3JCLqza/V2SRXStAAAAgGGguIpjW77y6X/3eLvXWn13GN9r1dIpl8Om0ewQCAAAAISM4iqOvXD0e60uOdMllyM1pDE6/AFZJOXTtQIAAACGheIqTv3nK58+3d2kUUkW/bi4MORxDrV06CSHTdkhfukwAAAAgG4UV3GqZ4fAi890KScztK5VZ1dAkpQ/mq4VAAAAMFwUV3Fo275m/c+uQ0qySP//u8PoWh052rVKo2sFAAAADBfFVRzqWWt10Rku5TpD71oFZOTOsispia4VAAAAMFwUV3Hm833N+mTn0a7VMNdajc2waQxrrQAAAICwoLiKMyuPrrWadvpJcmfZQxqjsyugroBR/mi6VgAAAEC4UFzFke0Nh/Vx3UElWaTriotCHqeppVNjMlI0Jj20Lx0GAAAA0BfFVRx58ZPutVYXnnaS8keH1rXydwXkDwRUODpNo+haAQAAAGFDcRUndh9q0bovDsqi4a21amo92rXKoGsFAAAAhBPFVZz4x6Z6SdL3Txurwuy0kMboChh1+LtUQNcKAAAACDuKqziwveGwqnc3Db9r1dKhbHYIBAAAACKC4ioO/OmDLyRJF5w6ViePSQ9pjK6AUZu/S4Wj02QdxV87AAAAEG78lh3jtu1r1rv/bpAkXT/crlV6isZm0LUCAAAAIoHiKsZt2etTijVJ5xVladzY4XStAirMpmsFAAAARIo12hPA4Gafm69vuTP1yY7GkMfwtnZqdHqyxrJDIAAAABAxtDHiQHZ66FundwWMWjv9KhydpmS6VgAAAEDE8Nt2gvO1diorLYWuFQAAABBhFFcJLGCMWjr9KsxOU4qVv2oAAAAgkviNO4F5WzuVZU/RSXStAAAAgIijuEpQAWPU2uFXQbadrhUAAAAwAvitO0H5WjuVaU/WSQ66VgAAAMBIoLhKQAFjdKTDr4LRdtmso6I9HQAAAOCEQHGVgJrb/HKkJuskR2q0pwIAAACcMCiuEowxRofb/SocbVdqMl0rAAAAYKRQXCUYX5tfGalWuTLpWgEAAAAjieIqgXR3rTrpWgEAAABRQHGVQJrb/MqwWeVirRUAAAAw4iiuEoQxRs3tnSoYbZc9ha4VAAAAMNIorhLE4Xa/0m1W5WTaoz0VAAAA4IREcZUgfG2dys+iawUAAABEC8VVAjjc5ldailW5TtZaAQAAANFCcZUAvK0dys+yKy3FGu2pAAAAACesqBZXS5cu1aRJk+RwOORyuTR79mxt3br1uO+zWCx9Hk8++WSvc2pqajRt2jTZ7Xbl5+dryZIlMsZE6lai5nC7X3bbKLpWAAAAQJRFtdXx/vvvq7S0VJMmTZLf79fdd9+tGTNmaMuWLUpPTx/0veXl5Zo1a1bwudPpDP7Z5/Pp0ksv1UUXXaQNGzZo27ZtKikpUXp6uhYuXBix+4kGb2unTnWlK91G1woAAACIpqj+Rv7mm2/2el5eXi6Xy6WNGzfqwgsvHPS9WVlZys3N7fe1FStWqK2tTc8++6xsNps8Ho+2bdumZcuWqaysTBaLpc972tvb1d7eHnzu8/lCuKORdaTdL3tyknKd7BAIAAAARFtMrbnyer2SpOzs7OCxe++9V+PGjetz7vz58zV27FhNmjRJTz75pAKBQPC1qqoqTZs2TTabLXhs5syZ2rt3r+rq6vq99tKlS+V0OoOPwsLC8NxUBDW1dsidZVcGXSsAAAAg6mKmuDLGqKysTFOnTpXH4wkeHzt2rCZMmNDr3Pvvv18vv/yy/vnPf+r666/XwoUL9cADDwRfr6+vV05OTq/39Dyvr6/v9/qLFi2S1+sNPnbv3h2uW4uIlg6/UpNZawUAAADEiphpecyfP1+bNm3Shx9+2Of4/Pnzex377W9/G/zzOeecI0lasmRJr+Nf/+hfz2YW/X0kUJJsNluvTlesO9TSofFj0+VITY72VAAAAAAoRjpXCxYs0Jo1a1RZWamCgoJv/P7JkyfL5/Np3759kqTc3Nw+HaqGhgZJ6tPRikctHX6lWkcpL4u1VgAAAECsiGpxZYzR/Pnz9eqrr6qiokLjx48PaZzq6mqlpqYqKytLkjRlyhT961//UkdHR/Cct99+W263u9/1W/GmqaVTuc5UZdK1AgAAAGJGVIur0tJSPffcc3r++eflcDhUX1+v+vp6tba2Bs957LHHdMkllwSf/+1vf9MzzzyjzZs3q7a2Vn/60590991367bbbgt+rO/GG2+UzWZTSUmJNm/erNWrV+uBBx4YcKfAeNLa0aUUq4WuFQAAABBjorrm6oknnpAkTZ8+vdfx8vJylZSUSJIOHDig2tra4GvJycl6/PHHVVZWpkAgoFNOOUVLlixRaWlp8Byn06l33nlHpaWlKi4u1ujRo1VWVqaysrKI31OkHWrtUGG2XU47XSsAAAAgllhMz04P6MXn88npdMrr9SozMzOqczlwuF0b6w4qO92m5vZOfbcoW840iisAAABgJAy1NoiJDS0wNIdaOpSbmapMe8xs8ggAAADgKIqrOGEkjRplkTvLHvfrxgAAAIBERHEVNyzKcaSy1goAAACIURRXcSIz1UrXCgAAAIhhFFdxwGZNUk6mTaPZxAIAAACIWeyMEAccqcly8IXBAAAAQEyjcwUAAAAAYUBxBQAAAABhQHEFAAAAAGFAcQUAAAAAYUBxBQAAAABhQHEFAAAAAGFAcQUAAAAAYUBxBQAAAABhQHEFAAAAAGFAcQUAAAAAYUBxBQAAAABhQHEFAAAAAGFAcQUAAAAAYUBxBQAAAABhQHEFAAAAAGFAcQUAAAAAYUBxBQAAAABhQHEFAAAAAGFgjfYEYpUxRpLk8/miPBMAAAAA0dRTE/TUCAOhuBpAc3OzJKmwsDDKMwEAAAAQC5qbm+V0Ogd83WKOV36doAKBgPbu3SuHwyGLxRLVufh8PhUWFmr37t3KzMyM6lwSEfGNLOIbWcQ3sohvZBHfyCK+kUV8IyvW4muMUXNzs9xut5KSBl5ZRedqAElJSSooKIj2NHrJzMyMieRKVMQ3sohvZBHfyCK+kUV8I4v4RhbxjaxYiu9gHasebGgBAAAAAGFAcQUAAAAAYUBxFQdsNpsWL14sm80W7akkJOIbWcQ3sohvZBHfyCK+kUV8I4v4Rla8xpcNLQAAAAAgDOhcAQAAAEAYUFwBAAAAQBhQXAEAAABAGFBcAQAAAEAYUFyFydKlSzVp0iQ5HA65XC7Nnj1bW7du7XWOMUb33nuv3G637Ha7pk+frs8++yz4+sGDB7VgwQKdccYZSktLU1FRke644w55vd5e4xw6dEhz5syR0+mU0+nUnDlz1NTUNOj8jnftWBfr8S0pKZHFYun1mDx5ctjufySMZIx/97vf6YILLlBaWpqysrKGND9yOLLxjfccHqn41tXVad68eRo/frzsdrsmTJigxYsXq6OjY9D5kb+RjS/5O/SfDz/84Q9VVFSk1NRU5eXlac6cOdq7d++g8yN/Ixtf8nfo8e3R3t6uc845RxaLRZ9++umg8xvx/DUIi5kzZ5ry8nKzefNm8+mnn5orrrjCFBUVmcOHDwfPefDBB43D4TCrVq0yNTU15rrrrjN5eXnG5/MZY4ypqakx11xzjVmzZo3Zvn27effdd81pp51mrr322l7XmjVrlvF4PGbt2rVm7dq1xuPxmCuvvHLQ+R3v2rEu1uM7d+5cM2vWLPPVV18FH42NjeEPRASNZIzvueces2zZMlNWVmacTueQ5kcORza+8Z7DIxXfN954w5SUlJi33nrL1NbWmtdee824XC6zcOHCQedH/kY2vuTv0H8+LFu2zFRVVZm6ujrz0UcfmSlTppgpU6YMOj/yN7LxJX+HHt8ed9xxh7nsssuMJFNdXT3o/EY6fymuIqShocFIMu+//74xxphAIGByc3PNgw8+GDynra3NOJ1O8+STTw44zksvvWRSUlJMZ2enMcaYLVu2GElm3bp1wXOqqqqMJPOf//yn3zFCvXYsi6X4GtP9g/Hqq68e5l3FlkjF+Fjl5eVD+uWfHI5sfI1JvBweifj2+P3vf2/Gjx8/4Ovkb2Tjawz5O5ChxPe1114zFovFdHR09Ps6+RvZ+BpD/g5koPi+/vrr5swzzzSfffbZcYuraOQvHwuMkJ42ZnZ2tiRpx44dqq+v14wZM4Ln2Gw2TZs2TWvXrh10nMzMTFmtVklSVVWVnE6nzj///OA5kydPltPpHHCcUK8dy2Ipvj3ee+89uVwunX766br11lvV0NAQ8v3FgkjFOBTkcGTj2yORcngk4+v1eoPX6Q/5G9n49iB/+x9nsPgePHhQK1as0AUXXKDk5OR+zyF/IxvfHuRv/+N8Pb779u3Trbfeqr/+9a9KS0s77lyikb8UVxFgjFFZWZmmTp0qj8cjSaqvr5ck5eTk9Do3Jycn+NrXNTY26v7779fPfvaz4LH6+nq5XK4+57pcrgHHCeXasSzW4itJl112mVasWKGKigo98sgj2rBhgy6++GK1t7d/4/uLBZGMcSjI4cjGV0qsHB7J+NbW1mr58uW6/fbbBzyH/I1sfCXytz+Dxfeuu+5Senq6xowZo127dum1114bcD7kb2TjK5G//ekvvsYYlZSU6Pbbb1dxcfGQ5hON/B3+f3Wij/nz52vTpk368MMP+7xmsVh6PTfG9DkmST6fT1dccYW+9a1vafHixYOOMdg4oVw71sVifK+77rrgnz0ej4qLi3XyySfrH//4h6655prj3lOsiXSMQ0UO/1e445tIOTxS8d27d69mzZqlH//4x/rpT3963HmRv/8V7viSv70dL76//vWvNW/ePO3cuVP33Xefbr75Zv39738fNB/J3/8Kd3zJ394Giu/y5cvl8/m0aNGibzyvkcxfOldhtmDBAq1Zs0aVlZUqKCgIHs/NzZWkPlVyQ0NDn2q6ublZs2bNUkZGhlavXt2rlZybm6t9+/b1ue7+/fv7jBPKtWNdLMa3P3l5eTr55JP1+eefD/k9sSLSMQ4FORzZ+PYnXnN4pOK7d+9eXXTRRZoyZYqefvrpQedE/kY2vv0hfweP79ixY3X66afr0ksv1cqVK/X6669r3bp1/c6J/I1sfPtD/vYf34qKCq1bt042m01Wq1WnnnqqJKm4uFhz587td05Ryd+IrOQ6AQUCAVNaWmrcbrfZtm1bv6/n5uaahx56KHisvb29z4I6r9drJk+ebKZNm2aOHDnSZ5yeDRfWr18fPLZu3bohbWhxvGvHsliOb38OHDhgbDab+fOf/zzk90TbSMX4WN90QwtyODLx7U+85fBIxnfPnj3mtNNOM9dff73x+/1Dmhv52y0S8e0P+Xv8nw89du3aZSSZysrKAedG/naLRHz7Q/72H9+dO3eampqa4OOtt94ykswrr7xidu/ePeDcRjp/Ka7C5Oc//7lxOp3mvffe67WVZktLS/CcBx980DidTvPqq6+ampoac8MNN/TaCtLn85nzzz/fTJw40Wzfvr3XOMf+AzNr1ixz9tlnm6qqKlNVVWUmTpzYZ6vwM844w7z66qtDvnasi+X4Njc3m4ULF5q1a9eaHTt2mMrKSjNlyhSTn58fN/E1ZmRjvHPnTlNdXW3uu+8+k5GRYaqrq011dbVpbm4OnkMOj1x8EyGHRyq+X375pTn11FPNxRdfbPbs2dPrnGORvyMXX/J36PFdv369Wb58uamurjZ1dXWmoqLCTJ061UyYMMG0tbUFr0X+jlx8yd9v9u/bsXbs2NHvboHRzl+KqzCR1O+jvLw8eE4gEDCLFy82ubm5xmazmQsvvNDU1NQEX6+srBxwnB07dgTPa2xsNDfddJNxOBzG4XCYm266yRw6dKjPfL7JtWNdLMe3paXFzJgxw5x00kkmOTnZFBUVmblz55pdu3ZFMCLhN5Ixnjt3br/nHPs/e+TwyMU3EXJ4pOJbXl4+4Dlfnw/5OzLxJX+7DSW+mzZtMhdddJHJzs42NpvNjBs3ztx+++1mz549feZD/o5MfMnfbkP99+1YAxVX0c5fy9FJAAAAAACGgQ0tAAAAACAMKK4AAAAAIAworgAAAAAgDCiuAAAAACAMKK4AAAAAIAworgAAAAAgDCiuAAAAACAMKK4AAAAAIAworgAAAAAgDCiuAAAJzxijH/zgB5o5c2af1x5//HE5nU7t2rUrCjMDACQSiisAQMKzWCwqLy/X+vXr9dRTTwWP79ixQ3fddZceffRRFRUVhfWanZ2dYR0PABD7KK4AACeEwsJCPfroo/rVr36lHTt2yBijefPm6ZJLLtH3vvc9XX755crIyFBOTo7mzJmjAwcOBN/75ptvaurUqcrKytKYMWN05ZVXqra2Nvh6XV2dLBaLXnrpJU2fPl2pqal67rnnonGbAIAoshhjTLQnAQDASJk9e7aampp07bXX6v7779eGDRtUXFysW2+9VTfffLNaW1t11113ye/3q6KiQpK0atUqWSwWTZw4UUeOHNE999yjuro6ffrpp0pKSlJdXZ3Gjx+vcePG6ZFHHtG5554rm80mt9sd5bsFAIwkiisAwAmloaFBHo9HjY2NeuWVV1RdXa3169frrbfeCp6zZ88eFRYWauvWrTr99NP7jLF//365XC7V1NTI4/EEi6s//vGPuvPOO0fydgAAMYSPBQIATigul0u33XabzjrrLP3oRz/Sxo0bVVlZqYyMjODjzDPPlKTgR/9qa2t144036pRTTlFmZqbGjx8vSX02wSguLh7ZmwEAxBRrtCcAAMBIs1qtslq7/wkMBAK66qqr9NBDD/U5Ly8vT5J01VVXqbCwUM8884zcbrcCgYA8Ho86Ojp6nZ+enh75yQMAYhbFFQDghHbeeedp1apVGjduXLDgOlZjY6P+/e9/66mnntL3v/99SdKHH3440tMEAMQBPhYIADihlZaW6uDBg7rhhhv08ccf64svvtDbb7+tW265RV1dXRo9erTGjBmjp59+Wtu3b1dFRYXKysqiPW0AQAyiuAIAnNDcbrc++ugjdXV1aebMmfJ4PLrzzjvldDqVlJSkpKQkrVy5Uhs3bpTH49Evf/lLPfzww9GeNgAgBrFbIAAAAACEAZ0rAAAAAAgDiisAAAAACAOKKwAAAAAIA4orAAAAAAgDiisAAAAACAOKKwAAAAAIA4orAAAAAAgDiisAAAAACAOKKwAAAAAIA4orAAAAAAgDiisAAAAACIP/A1Y9jwlZ/enuAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# Graph of Fastest Lap Times by Year\n", "# Who had the fastest lap time in each year?\n", @@ -1761,20 +1549,7 @@ "plt.title('Fastest Lap Times by Year')\n", "plt.show()\n", "\n" - ], - "outputs": [ - { - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAIjCAYAAADvBuGTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACXgklEQVR4nOzdeZxT5b0/8M/Jvi+zr+zIIgiIWnEFtaDFKrV1QVvFpWqFKtLWSm0t2tvyq9Zae1mseq/UKi5g0RasSEVAC96KMCpYUNbZ9yyT5GQ95/dHZuJkZoCZJDNJZj7v1ysyOTnn5AkzMvnmc57vI8iyLIOIiIiIiIiSokj3AIiIiIiIiAYDFldEREREREQpwOKKiIiIiIgoBVhcERERERERpQCLKyIiIiIiohRgcUVERERERJQCLK6IiIiIiIhSgMUVERERERFRCrC4IiIiIiIiSgEWV0RERL2wZs0aCIKAY8eOpXsovdYx5t27d6d7KEREQwKLKyKiNOh409vT7cEHH0zpc7311ltYtmxZSs/Zlc/nw7Jly7Bt27Ze7b9t2zYIgoD169f367hOZebMmSf8PnS+9fffX7ZyOp0oLi7G+eefD1mWuz3+4YcfQqFQ4Cc/+UkaRkdENPBU6R4AEdFQ9uijj2LkyJFx2yZNmpTS53jrrbewcuXKfi0QfD4fHnnkEQDRgiVbPPTQQ7jjjjti9z/66CP88Y9/xM9+9jNMmDAhtv2MM87A6aefjhtuuAFarTYdQ81INpsNf/jDH3DDDTfg2WefxZ133hl7LBwO4+6778bw4cNjPxtERIMdiysiojS64oorcNZZZ6V7GEPW17/+9bj7Op0Of/zjH/H1r3+9xyJRqVQO0Miyx/XXX48///nPePDBB3H11VejsLAQAPDUU0/hk08+wVtvvQWDwdDv4/B6vTAajf3+PEREJ8PLAomIMtDx48dxzz33YNy4cdDr9cjNzcW1117bbb5PKBTCI488grFjx0Kn0yE3NxcXXHABtmzZAgBYsGABVq5cCQBxl7l1kCQJf/jDH3D66adDp9OhsLAQd911FxwOR9zz7N69G3PmzEFeXh70ej1GjhyJ2267DQBw7Ngx5OfnAwAeeeSRlF5K97vf/Q7nnXcecnNzodfrMX369B4vJRQEAYsWLcJLL72EcePGQafTYfr06dixY0fSY+jQ05yrESNG4Morr8S2bdtw1llnQa/XY/LkybHLI//6179i8uTJsfHs3bu323kPHDiA73znO8jJyYFOp8NZZ52Fv/3tb3H7nOr7fCo+nw933XUXcnNzYbFYcPPNN8d9j2+55Rbk5eUhFAp1O3b27NkYN27cSc+/atUqBAIBLFmyBABQVVWFZcuW4frrr8cVV1wBAPjHP/6BCy+8EEajEWazGXPnzsX+/fvjzvPpp59iwYIFGDVqFHQ6HYqKinDbbbehpaUlbr9ly5ZBEAR8/vnnuPHGG2G323HBBRf06u+CiKg/MbkiIkojl8uF5ubmuG15eXn46KOPsHPnTtxwww0oKyvDsWPHsHr1asycOROff/55LAlYtmwZli9fjjvuuAPnnHMO3G43du/ejT179uDrX/867rrrLtTW1mLLli34y1/+0u3577rrLqxZswa33nor7r33Xhw9ehQrVqzA3r178a9//QtqtRqNjY2YPXs28vPz8eCDD8Jms+HYsWP461//CgDIz8/H6tWr8YMf/ADf+ta3cM011wCIXkqXrKeeegpXXXUVbrrpJgSDQbzyyiu49tprsXHjRsydOzdu3+3bt+PVV1/FvffeC61Wi1WrVuHyyy/Hv//975RfatnZoUOHcOONN+Kuu+7Cd7/7Xfzud7/DN7/5TTz99NP42c9+hnvuuQcAsHz5clx33XU4ePAgFIroZ5v79+/H+eefj9LSUjz44IMwGo147bXXMG/ePLz++uv41re+BeDU3+dTWbRoEWw2G5YtW4aDBw9i9erVOH78eGzu2/e+9z288MIL2Lx5M6688srYcfX19di6dSt++ctfnvT8I0aMwCOPPIKf/OQnWLBgAVatWgWVSoU//OEPAIC//OUvuOWWWzBnzhz89re/hc/nw+rVq3HBBRdg7969GDFiBABgy5YtOHLkCG699VYUFRVh//79eOaZZ7B//358+OGHcR8MAMC1116LsWPH4je/+U2Pc76IiAacTEREA+7555+XAfR4k2VZ9vl83Y7ZtWuXDEB+4YUXYtumTJkiz50796TPtXDhQrmnf+7ff/99GYD80ksvxW1/++2347Zv2LBBBiB/9NFHJ3yOpqYmGYD8y1/+8qRj6fDee+/JAOR169addL+ufw/BYFCeNGmSfMkll8Rt7/i72717d2zb8ePHZZ1OJ3/rW9/q1ZhkWZbXrVsnA5Dfe++9bo91fM+OHj0a2zZ8+HAZgLxz587Yts2bN8sAZL1eLx8/fjy2/U9/+lO3c1966aXy5MmTZb/fH9smSZJ83nnnyWPHjo1t6833uScdY54+fbocDAZj2x977DEZgPzmm2/KsizLkUhELisrk6+//vq443//+9/LgiDIR44cOeVzhUIheerUqXJOTo4MQP7Tn/4ky7Ist7W1yTabTf7+978ft399fb1stVrjtvf0c//yyy/LAOQdO3bEtv3yl7+UAcjz58/vxd8CEdHA4WWBRERptHLlSmzZsiXuBgB6vT62TygUQktLC8aMGQObzYY9e/bEHrPZbNi/fz++/PLLPj/3unXrYLVa8fWvfx3Nzc2x2/Tp02EymfDee+/FngMANm7c2ONlY/2p89+Dw+GAy+XChRdeGPd30GHGjBmYPn167P6wYcNw9dVXY/PmzYhEIv02xokTJ2LGjBmx+1/72tcAAJdccgmGDRvWbfuRI0cAAK2trdi6dSuuu+46tLW1xf7+W1paMGfOHHz55ZeoqakBkNz3GQDuvPNOqNXq2P0f/OAHUKlUeOuttwAACoUCN910E/72t7+hra0ttt9LL72E8847r1vTlZ6oVCo888wzaG1txbnnnovvf//7AKJplNPpxPz58+N+zpRKJb72ta/Ffs6A+O+33+9Hc3Mzzj33XADo8Xt+99139/Fvgoiof7G4IiJKo3POOQeXXXZZ3A0ARFHEww8/jPLycmi1WuTl5SE/Px9OpxMulyt2/KOPPgqn04nTTjsNkydPxk9+8hN8+umnvXruL7/8Ei6XCwUFBcjPz4+7eTweNDY2AgAuvvhifPvb38YjjzyCvLw8XH311Xj++ecRCARS/xfSxcaNG3HuuedCp9MhJycndgli57+DDmPHju227bTTToPP50NTU1O/jbFzAQUAVqsVAFBeXt7j9o65TocOHYIsy/jFL37R7e+/4zK8ju9BMt9noPvfjclkQnFxcdz8sZtvvhmiKGLDhg0AgIMHD+Ljjz/G9773vV4/z9lnnw0AmD59euwSvo6C8JJLLun2Ot95553YawSiBed9992HwsJC6PV65Ofnxwq7nr7nvSn6iIgGEudcERFloB/+8Id4/vnnsXjxYsyYMQNWqxWCIOCGG26AJEmx/S666CIcPnwYb775Jt555x0899xzePLJJ/H000/HtRjviSRJKCgowEsvvdTj4x1NKjrWo/rwww/x97//HZs3b8Ztt92GJ554Ah9++CFMJlPqXngn77//Pq666ipcdNFFWLVqFYqLi6FWq/H8889j7dq1/fKciThRB8ETbZfb5wZ1fB9//OMfY86cOT3uO2bMGADJfZ97a+LEiZg+fTpefPFF3HzzzXjxxReh0Whw3XXXJXXejtf5l7/8BUVFRd0eV6m+eity3XXXYefOnfjJT36CqVOnwmQyQZIkXH755XE/9x06J11ERJmAxRURUQZav349brnlFjzxxBOxbX6/H06ns9u+OTk5uPXWW3HrrbfC4/HgoosuwrJly2Jvurs2AegwevRo/POf/8T555/fqzep5557Ls4991z8+te/xtq1a3HTTTfhlVdewR133HHC50jG66+/Dp1Oh82bN8etLfX888/3uH9Pl8x98cUXMBgMsUIxk4waNQoAoFarY4nlyZzq+3wyX375JWbNmhW77/F4UFdXh2984xtx+918881YsmQJ6urqsHbtWsydOxd2u72Pryze6NGjAQAFBQUnfZ0OhwPvvvsuHnnkETz88MNxYyciyha8LJCIKAMplcpu3c/++7//u9vcoa4tqk0mE8aMGRN3yV7H2j9dC7PrrrsOkUgEv/rVr7o9fzgcju3vcDi6jWXq1KkAEHueju6FPRV/iVIqlRAEIe41Hzt2DG+88UaP++/atStuXk5VVRXefPNNzJ49OyPXpyooKMDMmTPxpz/9CXV1dd0e73wpY2++zyfzzDPPxM2XW716NcLhcKxNeof58+dDEATcd999OHLkCL773e/25SX1aM6cObBYLPjNb37T45y9jtfZ8T3q+rPW0XGQiCgbMLkiIspAV155Jf7yl7/AarVi4sSJ2LVrF/75z38iNzc3br+JEydi5syZmD59OnJycrB7926sX78eixYtiu3T0eTh3nvvxZw5c6BUKnHDDTfg4osvxl133YXly5ejoqICs2fPhlqtxpdffol169bhqaeewne+8x38+c9/xqpVq/Ctb30Lo0ePRltbG5599llYLJZY8qHX6zFx4kS8+uqrOO2005CTk4NJkyadsgX666+/jgMHDnTbfsstt2Du3Ln4/e9/j8svvxw33ngjGhsbsXLlSowZM6bH+UaTJk3CnDlz4lqxA9G1tzLVypUrccEFF2Dy5Mn4/ve/j1GjRqGhoQG7du1CdXU1PvnkEwC9+z6fTDAYxKWXXhprBb9q1SpccMEFuOqqq+L2y8/Px+WXX45169bBZrN1a3efCIvFgtWrV+N73/sezjzzTNxwww3Iz89HZWUlNm3ahPPPPx8rVqyAxWLBRRddhMceewyhUAilpaV45513cPTo0aTHQEQ0YNLaq5CIaIjqaJF9ovbmDodDvvXWW+W8vDzZZDLJc+bMkQ8cOCAPHz5cvuWWW2L7/dd//Zd8zjnnyDabTdbr9fL48ePlX//613Ftt8PhsPzDH/5Qzs/PlwVB6NaW/ZlnnpGnT58u6/V62Ww2y5MnT5YfeOABuba2VpZlWd6zZ488f/58ediwYbJWq5ULCgrkK6+8Mq7tuSzL8s6dO+Xp06fLGo3mlG3ZO1qxn+j2/vvvy7Isy//zP/8jjx07VtZqtfL48ePl559/PtaGuzMA8sKFC+UXX3wxtv+0adN6bKl+Mom0Yu+pRXrHeDo7evSoDEB+/PHH47YfPnxYvvnmm+WioiJZrVbLpaWl8pVXXimvX78+tk9vvs896Rjz9u3b5TvvvFO22+2yyWSSb7rpJrmlpaXHY1577TUZgHznnXee9Nwn0tNrl+Xo93zOnDmy1WqVdTqdPHr0aHnBggVxP0fV1dXyt771Ldlms8lWq1W+9tpr5dra2m4/Tx0/A01NTQmNkYiovwiyzFX3iIgouwmCgIULF2LFihXpHkrWe/PNNzFv3jzs2LEDF154YbqHQ0SUVTjnioiIiGKeffZZjBo1ChdccEG6h0JElHU454qIiIjwyiuv4NNPP8WmTZvw1FNP9UsHSCKiwY7FFREREWH+/PkwmUy4/fbbcc8996R7OEREWYlzroiIiIiIiFKAc66IiIiIiIhSgMUVERERERFRCnDOVQ8kSUJtbS3MZjMn9BIRERERDWGyLKOtrQ0lJSVQKE6eTbG46kFtbS3Ky8vTPQwiIiIiIsoQVVVVKCsrO+k+LK56YDabAUT/Ai0WS5pHQ0RERERE6eJ2u1FeXh6rEU6GxVUPOi4FtFgsLK6IiIiIiKhX04XY0IKIiIiIiCgFWFwRERERERGlAIsrIiIiIiKiFGBxRURERERElAIsroiIiIiIiFKAxRUREREREVEKsLgiIiIiIiJKARZXREREREREKcDiioiIiIiIKAVYXBEREREREaUAiysiIiIiIqIUYHFFRERERESUAiyuiIiIiIiIUoDFFRERERERUQqwuCIiIiIiIkoBFldEREREREQpwOKKiIiIiIgoBdJaXO3YsQPf/OY3UVJSAkEQ8MYbb5x0/08++QTz589HeXk59Ho9JkyYgKeeeqrbftu2bcOZZ54JrVaLMWPGYM2aNf3zAojolALhCFxiKN3DICIiIup3aS2uvF4vpkyZgpUrV/Zq/48//hgFBQV48cUXsX//fjz00ENYunQpVqxYEdvn6NGjmDt3LmbNmoWKigosXrwYd9xxBzZv3txfL4OITuJYsxd7jzvwZUMb/KFIuodDRERE1G8EWZbldA8CAARBwIYNGzBv3rw+Hbdw4UL85z//wdatWwEAP/3pT7Fp0ybs27cvts8NN9wAp9OJt99+u1fndLvdsFqtcLlcsFgsfRoPEX3F7Q9hzzEHBEGAGArDptdgRJ4RBWYtFAoh3cMjIiIiOqW+1AYZPedq2bJlGDFixEn3cblcyMnJid3ftWsXLrvssrh95syZg127dp3wHIFAAG63O+5GRMmrdYjwhyPIMWpQYtUjEJbwSbUT+2pdvFSQiIiIBp2MLq7y8vIwevToEz6+c+dOvPrqq7jzzjtj2+rr61FYWBi3X2FhIdxuN0RR7PE8y5cvh9Vqjd3Ky8tT8wKIhjCXL4Q6l4gcgxZANJ3OMWqQb9KizuVHRaUDx5o9CIalNI+UiIiIKDUyurhatGgR3n333R4f27dvH66++mr88pe/xOzZs5N6nqVLl8LlcsVuVVVVSZ2PaKiTZRk1Lh+CERl6jTLuMbVSgRKrHhqlEgfq2/BJtRONbX5kyBXKRERERAlTpXsAifj8889x6aWX4s4778TPf/7zuMeKiorQ0NAQt62hoQEWiwV6vb7H82m1Wmi12n4bL9FQ4xJDqHf5kWPQnHAfk04FvUaJVm8Qn1a5UGLXYXiOEUZtVv6zRERERJTZyVVP9u/fj1mzZuGWW27Br3/9626Pz5gxo1vatWXLFsyYMWOghkg0pMmyjGqHiHBEhk6tPOm+SoWAfLMWVr0alS0+7K10oKrVi3CElwoSERFR9klrceXxeFBRUYGKigoA0TbqFRUVqKysBACsWLECl156aWz/ffv2YdasWZg9ezaWLFmC+vp61NfXo6mpKbbP3XffjSNHjuCBBx7AgQMHsGrVKrz22mu4//77B/S1EQ1VTl8I9W4/7CdJrbrSqZUotRkACNhf68ZnNS60eoP9N0giIiKifpDW4mr37t2YNm0apk2bBgBYsmQJpk2bhocffhgA0NzcjMOHD8f2X79+PZqamvDiiy+iuLg4djv77LNj+4wcORKbNm3Cli1bMGXKFDzxxBN47rnnMGfOnIF9cURDkCzLqHb6IMunTq16YtWrUWTRo8UTREUV18YiIiKi7JIx61xlEq5zRZSYFk8AeyudsBnU0Kr6Xlx15guG4fAFYdWrMSLPiEKzjmtjERER0YAbNOtcEVH2kKToXCsZSLqwAgCDRoUSqx6hsIzPql1cG4uIiIgyHttyEVFKtPqCaGoLnLRDYF8JggC7UYNQREK9y49WbxDDcgwotetTUsARERERpRKTKyJKmiTJqHFEF+nWqFL/z4paqUCxNVpQfdHgwSdVXBuLiIiIMg+LKyJKWos3iMY2P3KMqUutemLSqlBs1cEbiOCTKhf+U+eGJxDu1+ckIiIi6i1eFkhESYlIMqodPiggQK3s/89rFIKAPJMWgXAEVQ4fWrxBjMg1oNiqh2oAnp+IiIjoRPhOhIiS0uIJoKktAHs/p1ZdaVVKlFgNECDg8zo3Pql2osUTGNAxEBEREXXG4oqIEhaRZFQ5fFApFAOSWvXEqlej0KyH0xtCRbUTX9S3QQxybSwiIiIaeCyuiChhzZ4AWjxB2A3qtI5DqRBQYNHBrFHjSJMHeysdqHWKiEhseEFEREQDh8UVESUkHJFQ1eqDWqnImLlOeo0SJTY9wpKMz6qd2FfjgsvHtbGIiIhoYLChBRElpNkTRLMngCKLPt1DiSMIAuwGDUxaFRrb/HD4gii3G1CWw7WxiIiIqH9lxsfNRJRVQhEJla1e6FRKKBVCuofTI7VSgSKLHjqVEl82erC30olGN9fGIiIiov7D4oqI+qypLYBWbwg2w8B2CEyEsX1tLH8wgk+qnfi8lmtjERERUf/gZYFE1CfR1MoHvTpzU6uuFIKA3J7WxrLp09blkIiIiAYfvqsgoj5pbAvAJQZh1ae3Q2AitColSm0GKIXo2liftq+NxUsFiYiIKBVYXBFRrwXD0Q6BepUqa1Krnlj0ahRZomtj7a1y4iDXxiIiIqIUYHFFRL3W2OaH0xeENc3rWqVCx9pYVp0ax5q92FPpQA3XxiIiIqIksLgiol4JhCOoavXBoFFBIWRvatWVTh1dGyvSaW0spy+Y7mERERFRFmJDCyLqlQaXHy4xhGJrZq1rlQqd18ZqagvA4Q2iLEePMrsBOjXXxiIiIqLeYXJFRKfkD0VQ5RBh0qoHVWrVlVqpQKFFB51aiUONHlRUOdHg9kPipYJERETUCyyuiOiUGtx+tPnDsOj6Fna7xRCe3n4Y73/ZlFUd+aJrY+nhD0bwabUTn9e50eYPpXtYRERElOF4WSARndRXqZUKQh9Tqxd2HcPmzxuw6bM6vHugET+4eDQKLbp+GmlqdayNFQxLqHGIaPEGMCLXiBKujUVEREQnwHcIRHRS9S4RHn+oz6lVg9uPfx5oBACoFAI+Pu7AwrV78EZFTVZ15NOoFNGCSqHAf+rc+KTKiWaujUVEREQ9YHFFRCckBqOplVmr7nNqtW53FSKSjKnlNvxx/jScXmJBICzhfz44ih+v+wRHmjz9NOr+YdZF18ZyiSFUVEbXxvIFw+keFhEREWUQFldEdEK1ThHeQBjmJFKrG84uR7ndgN98azIWzRoDo0aJQ00e3P9aBdbsPAp/KHsW71UqBBSYdbDq1TjW4sOeSifXxiIiIqIYFldE1CNvIIwapwirTpNUanV6iRVAdA7TnNOLsOqm6bhgTB4kGXh9Tw0WvbwHeysd/fES+o1OrUSJVQdZkrGvxoXPqp1weLk2FhER0VDH4oqIelTnEuELhGFKMrXqKseowU8vH49fzJ2APJMGDe4AHv7bfvx+y0G4xOzpyCcIAmwGDQpMWjR7gqiocuBQY1tWJXFERESUWiyuiKgbT0dqZdD0+dieUquenDMyFytvPBPfPKMYAoD3DjbhBy99jK0HGrOqWYSqfW0sg0YVWxur3sW1sYiIiIYiFldE1E2dU4QvGIFJm9rUqiuDRoU7LxqNx78zBSNyDWjzh/HkP7/Aw3/bj3qXP6Gxp4tBE7821r5aF9xcG4uIiGhIYXFFRHHa/CHUOEXY9f2XWnU1rsiMJ6+bipvPHQ61UkBFlRMLX96D1/dUIxyR+jyOdOlYGyvXqEWdy4+9lQ4ca/YgGM6e10BERESJY3FFRHFqHCL8oQiM/ZxadaVSKnDtWeVYMf9MnFFmRTAsYc3OY1iy7hN82dDW5/Olk0alQIk1ujbWgfo2fFLtRFMb18YiIiIa7FhcEVGMSwyh3uWHvR/nWp1KiU2P/7p6Eu67dCzMWhWONnvx4/Wf4Ln3j0AMZleziI61sdrEMD6pcuJAvRveANfGIiIiGqxYXBFRTK3Th0BYgkEzsKlVV4Ig4LIJhVh105m4+LR8SDLw5ie1WPTyHuw+1pr0+QeSUiEg36yNrY21t9KBaocvqy53JCIiot5hcUVEAACXL/2pVVc2gwY/nj0Oy755OgrMWjS2BfDIxs/x+OYDcPiya10pnVqJUqsegIB9NW58VuPi2lhERESDDIsrIoIsy6hx+hCMyNBrlH06NtWpVU+mD7dj5Y1nYt7UUigEYMeXzbjnpT3Y8nl9Vs1jEgQBVr0ahebo2lh7qxz4soFrYxEREQ0WaS2uduzYgW9+85soKSmBIAh44403Trp/S0sLLr/8cpSUlECr1aK8vByLFi2C2+2O22/btm0488wzodVqMWbMGKxZs6b/XgTRIOASQ6hz+5GTQalVVzq1ErdfMBJPXDsVo/KN8ATC+OPWQ3jojX2ocYj99rz9QaVUoMiig1GjwuEmDyoquTYWERHRYJDW4srr9WLKlClYuXJlr/ZXKBS4+uqr8be//Q1ffPEF1qxZg3/+85+4++67Y/scPXoUc+fOxaxZs1BRUYHFixfjjjvuwObNm/vrZRBlNVmWUe0QEYnI0KkzL7XqakyBCb+/dipuPW8ENCoFPqtx4Yev7MGru6sQyrJ5TAaNCiVWPQJhCZ+0r43lErk2FhERUbYS5Ay5pkYQBGzYsAHz5s3r03F//OMf8fjjj6OqqgoA8NOf/hSbNm3Cvn37YvvccMMNcDqdePvtt3t1TrfbDavVCpfLBYvF0qfxEGWbVm8QeyodsOrUfS6uVrx3CJv312NquQ2/unpSP43wxOrdfqx67xD2VjkBAMNzDFh0yRiML8q+/29DEQlNngB0KgWG5xpQYjNAo+KV20REROnWl9ogo39zL1u2DCNGjDjh47W1tfjrX/+Kiy++OLZt165duOyyy+L2mzNnDnbt2nXC8wQCAbjd7rgb0VAQTa18gIw+F1aNbj/++Z8GAAOXWnVVZNHhkatOx4++fhosOhWOt/rwwPpP8afth+ELZlfLc7UyujaWRqmMrY3V2ObPqjllREREQ11GF1d5eXkYPXp0t+3z58+HwWBAaWkpLBYLnnvuudhj9fX1KCwsjNu/sLAQbrcbotjzvIzly5fDarXGbuXl6XmjSDTQWr1BNLoDsBnUfT72tY+rB2Su1akIgoCZ4wqw6qbpuGR8AWQAGz+rwz0v7cH/HW1J27gSZdKpUGTRw+MP49MqF/7DtbGIiIiyRkYXV4sWLcK7777bbfuTTz6JPXv24M0338Thw4exZMmSpJ5n6dKlcLlcsVvHJYZEg5kkRedayQC0quxLrbqy6tW4/7LT8KurJ6HIokOLN4j/2vQfLP/Hf9CaZS3PlQoBeabo2liV7WtjVbV6uTYWERFRhuvbSqEZoqioCEVFRRg/fjxycnJw4YUX4he/+AWKi4tRVFSEhoaGuP0bGhpgsVig1+t7PJ9Wq4VWqx2IoRNljFZfEI1tgYQ6BGZKatWTqeU2/Pf8aXjloyps2FuNnYdb8EmVE7ecNwJzTi+CQhDSPcRe06mVKLUZ4BJD2F/rRrMniOG5RuQY+/49IyIiov6X0clVb0hS9JPcQCAAAJgxY0a3tGvLli2YMWPGgI+NKFNJkozqVh8EoM9NEzIxtepKp1ZiwXkj8Ifrp2JsgQneYASrth3G0r9+hqpWX7qH12dWvRpFFj1a2tfG+qKea2MRERFlorQWVx6PBxUVFaioqAAQbaNeUVGByspKAMCKFStw6aWXxvZ/66238Pzzz2Pfvn04duwYNm3ahLvvvhvnn39+rPHF3XffjSNHjuCBBx7AgQMHsGrVKrz22mu4//77B/rlEWWsZm8ATZ5AQglIJqdWXY3MM+Hx70zB9y8cCZ1agc/r3Lj3lb14+d+VWde2XakQUGjRwaRR4UizB3srHahziVwbi4iIKIOktbjavXs3pk2bhmnTpgEAlixZgmnTpuHhhx8GADQ3N+Pw4cOx/fV6PZ599llccMEFmDBhAu6//35cddVV2LhxY2yfkSNHYtOmTdiyZQumTJmCJ554As899xzmzJkzsC+OKENFJBk1DhEKQYBaOfhSq66UCgFXTSnFyhvPxFnD7QhLMtb+uxL3vrIX+2td6R5en3WsjRUKy/i0yonParg2FhERUabImHWuMgnXuaLBrNHtR0WVE3kmbZ+Lq3Sva5UsWZbxwaFmPPP+ETh90YLk8tOLcMt5I2DSZt8U1FBEQrMnAI1KgWE5BpTa9X1uTkJEREQnN2jWuSKi1IpIMqocPqgUiiGRWnUlCAIuHJuP1TdOx+yJ0SUb3t5fj4Uv7cG/DjVn3ZpSaqUCxdZoQfVFgwefVHFtLCIionRicUU0hDR7AmhuC8CexetapYJJp8IPLxmL38ybhFKbHq2+IP7f2wfw67f+g2ZPIN3D6zOTVoViqw7eQASfVLnwnzo3PFwbi4iIaMCxuCIaIsIRCZWtPmhUSqiGYGrVk8llNvzxhmm4/qxyKBUC/u9oK+55aQ82flqLSJY1ilAI0bWx7AY1qhxcG4uIiCgdWFwRDRFNngBaPAHYB9m6VsnSqBT47rnD8dT1UzG+yAwxFMGfdhzBT1//FMeavekeXp9pVUqUWA0QIODzOjc+qXaiJQvTOCIiomzE4opoCAhFJFS1+qBTKaFU9G0R3WRTK38oApcYyvh5QMNzjfjtt8/A3RePhl6txMGGNix+rQJ/+fA4guHsS3+sejUKzXo4vSFUVDvxRX0bxCDXxiIiIupPLK6IhoCmtgBavSHY0pBatXgCgADUuvwZv/CtQhAwd3IxVt10Jr42MgcRScZru6vww5f34LNqZ7qH12dKhYACiw5mjRpHmjzYU+lArVPMukseiYiIsgWLK6JBLhiOzrXSqwc+tfIEwtBrlRhfZMbwXD2cYggtngCkDE+x8kxa/HzuRCy9YjxyDBrUuvz42Rv78MetX6LNn31rSuk1SpTY9IhIMj6rdmJfjQsuX/a9DiIiokzH4opokGvyBOASg7DqB75DoEsMocSqR55Ji/FFFkwps0KnUaLOJWZ8igUA543Ow6qbzsQVk4oAAFs+b8A9L+3Bji+aMv4yx64EQYDdoEG+WYfGNj/2VjpwuNGDQDjzvw9ERETZgsUV0SAWCEdQ1eKDXqUa8NTKGwhDr1ag2KYHEH1zX2DRYWq5DaPyTHCJITS1ZX6KZdSqcM/MMfjtt89AuT2avj3+zkE8uvFzNLr96R5en6mVChRZ9NCplfiisQ17K51odHNtLCIiolRgcUU0iDW6/XCKQVjTsK6VUwyi2KqHSauK265TKzG20IQp5TaYdNEUyxfM/DWZJhZb8NQN03DjOcOgUgjYfdyBhS/vwZsVNVk5h8moVaHEqoc/GMEn1U58Xsu1sYiIiJLF4opokAqEI6h2iDBqVFAIA5ta+YJh6NRKFNl0PT4uCALyzVpMKbdhTIEJ3mAYjW5/xhcpaqUC888Zhj/eMA2nl1jgD0l47oOj+PH6T3CkyZPu4fWZQhCQa9Iix6BFlcOHPccdqGzxIsS1sYiIiBLC4opokGpw+eH0hWBJYq7VlDJrQqmVwxdEkUUHi+7kz61VKTGmwIwpZTZYDWrUu0V4syA9Kc8x4DffmoxFs8bAqFHiUKMH979WgTU7j2bFXLKuNCoFSm0GKIX2tbGqnGj2BHipIBERUR+xuCIahPyhCKocIsw6dVKp1fxzhvX5ucVgBDqVMjbXqjdyTVqcUWbDaYVm+EMRNGRBiqUQBMw5vQirbpqO88fkQZKB1/fU4Icv78XeSke6h5cQi16NIoseLl8IFVVOHOTaWERERH3C4opoEGpw++H2h2DRqU69cxdJp1ZiEIVWbZ+7E2pUCozKN2HqMBtyTRrUu8WsaHueY9TgwcvH4xdzJyDPpEG924+H/7Yfv99yEC4x88ffVcfaWFadGseavdhT6UAN18YiIiLqFRZXRIOMGIygqtUHs1YNYYBTK38oAo1SQInV0OdjO9gMGkwqtWJCsQWhiIR6t4hwFswBOmdkLlbeeCauPKMYAoD3Djbhnpc+xnsHG7Py8jqduvvaWE5fMN3DIiIiymgsrogGmTqXCE8gnJ7UyhdEoUWXUHfCztRKBYbnGjF1mB0FZh0a2gJZkQIZNCrcddFoPP6dKRiRa4DbH8bvt3yBh/+2H/Wu7Gvb3rE2VoFZh6a2ACoqnTjU2JaV88qIiIgGAosrokHEFwyjxinCoktPaqVSCijpw1yrU7Hq1ZhUasXpJWZIsoxal5gVnezGFZnx5HVTcfO5w6FWCqiocmLhy3vw1z3VWXl5nVqpQKFFB5062ryjosqJBrcfUha+FiIiov7E4opoEKlz+uENhLutLdUbyaZWTjGIArOuz3OtTkWpEFCeY8S0YTYUW3VoavNnxeVpKqUC155VjhXzz8QZpVYEwxKe33kMS16rwJcNbekeXkKMWhWK29fG+rTaic/r3FkxL46IiGigsLgiGiS8gWhqZdVpBjy1CoQjEAQBpTZ9n5+7t8w6NU4vsWJSmQ2CANS6fAiGMz/FKrHp8V/zJuG+S8bCpFXhSLMXP17/CZ57/0hWduLrvDZWjUPEnkoHjnNtLCIiIgAsrogGjTqXCF8gDFMa5lo5fSEUWXSwJTnX6lSUimgBN22YHaU2A1q8ATi8wYxvGCEIAi6bWIjVN52Ji8bmQ5KBNz+pxaKX92D38dZ0Dy8hGpUCJTY91AoF18YiIiJqx+KKaBDwBMKocYiwGjR9PjbZ1KojPSrpx9SqK6NWhYnFFpxRZoNKKaDW5c+KJgs2gwY/mTMOv/zmRBSYtWhsC+CRv3+OxzcfhCMLLnXsiVmnRrFFD5cYQkVldG0sXzDzF4ImIiLqDyyuiAaBWocIMRRJy1yrVl8QBRYt7P2cWnWlUAgosuowbZgdw3L1cIohtGRJcnLW8BysmH8m5k0tgUIAdnzZhHte2oN/ft6QFePvSqkQYvPtjrX4sKfSybWxiIhoSGJxRZTl3P4Qal0i7GlIrUIRCQLQr3OtTkWvUWJCkQVTyqzQaZSodYlZkWLpNUrcfsEoPHHtVIzKN8ITCOOprV/i52/sQ61TTPfwEqJTK1Fi1UGWZHxW7cJn1U44vNmZyBERESWCxRVRlqt1iAiEIzBo0pBaeYPIN2sTKuxSSRAEFFh0mFpuw6g8E1xiCE1tAUhZkAKNKTDh99dOxa3njYBGpcCnNS4senkPXttdlRWLJ3clCAJsBg0KzVo0e4KoqHJwbSwiIhoyWFwRZTGXGEK9yw+bPrHU6t0kUysZQKldD4UiPalVVzq1EmMLTZhSboNJp4w2+ciC+T9KhYBrzizDyvlnYmq5DaGIjL98eByLX63AwfrsbNuual8by6BRxdbGqndxbSwiIhrcWFwRZbEapw+BsJRQarXu42qEk0itHN4g8k0a5KQ5tepKEATkm7WYUm7DmAITPMEwGt3+rJj/U2TV4dGrTseSr58Gi06F460+/GT9J/jTjsNZUST2xKCJXxtrX60Lbq6NRUREgxSLK6Is5fJFU6t0zbWSIKMkg1KrrrQqJcYUmDG1zAarQY06lwhvIPMLFEEQMGtcAVbdNB2XjCuADGDjp3VYuHYP/n20Jd3DS0jH2lh5Ji3qXH7srXTgWLMnK9YpIyIi6gsWV0RZSJZl1Dh9CEVk6DXKPh+fdGrlCyLPpEWeUdvnYwdarkmLM8psGFdkhj8UQX2WpFhWvRr3f/00/OrqSSiy6NDsCeJXm/6D//eP/6A1S5tEqJUKlFj10CiUOFDfhk+qnWhqy44Oj0RERL3B4oooCzl9IdS5/QldkpdsahWOSIhIMkptmZtadaVRKTAqPzoXK8+kQb1bhMef+SkWAEwtt+G/50/Dt88sg0IA/nW4Bfe89DHe3lefFQ07emLSqVBk0aNNDOOTKif+U+/OilSRiIjoVFhcEWWZaGolQpJk6NTpSK1CyDVpkGvK/NSqK7tRg0mlVkwotiAYiaDeLWZFRz6dWokF543Ak9dNxZgCE7zBCFZuO4SfbfgMVQ5fuoeXEKUiOjfOqlejssWHvZUOVDt8WfH9ICIiOhEWV0RZxuELod6dnrlWEUlGWJJQZjdAmSWpVVdqpQLDc42YOsyOArMODW0BuMTsaLAwKt+E331nCu64YCR0agX217px78t78fK/KxHK0qIkujaWHoCAfTVufFbj4tpYRESUtVhcEWURWZZR7fABcrRhQ18lm1o5fUHkGDXINWZWh8BEWPVqnF5iweklZkiyjFqXmBUFilIh4OqppVg5/0ycNdyOsCRj7b8rcd8re7G/1pXu4SVEEARY9erY2lh7qxz4soFrYxERUfZhcUWURVq9QTS6A2lLrQLhCMrsBqiUg+OfDpVSgfIcI6YNs6HYqkNTmx9OX3akJgUWHR6+ciIemDMONr0aVQ4RD/71M6zadihr5y+plAoUWXQwalQ43ORBRSXXxiIiouyS1ndIO3bswDe/+U2UlJRAEAS88cYbvT62paUFZWVlEAQBTqcz7rFt27bhzDPPhFarxZgxY7BmzZqUjpsoHSRJRrVDhIxog4a+SklqZdIiz5T9qVVXZp0ap5dYManMBkEAal2+rGgTLggCLhybj1U3nYmvTywEAPxjXz3ueWkPdh5uTvPoEmfQqFBi1SMQlmJrY2XLpZtERDS0pbW48nq9mDJlClauXNnnY2+//XacccYZ3bYfPXoUc+fOxaxZs1BRUYHFixfjjjvuwObNm1MxZKK0afEG0dgWSOiSvJSkVhEJZXb9oEmtulIqBJTa9Jg2zI5SmwEt3gAc3mBWtAk369S495Kx+M28SSi16dHqC2L5Pw7g1299jmZPIN3DS4ggCMgxapBn0qLe5UcF18YiIqIsoErnk19xxRW44oor+nzc6tWr4XQ68fDDD+Mf//hH3GNPP/00Ro4ciSeeeAIAMGHCBHzwwQd48sknMWfOnJSMm2igSZKMGocPCkQbMvRVsqmVSwzBblAjLws7BPaVUavCxGILck0aHGnyotblR65Rk1BnxoE2ucyGP94wDa/trsL6PdX48EgrPqly4ZYZw3HF5GIohOxrQqJWKlBs1cPjD+M/dW1obAtgRJ4R+SYthCx8PURENLhl9EfQy5Ytw4gRI+K2ff7553j00UfxwgsvQKHoPvxdu3bhsssui9s2Z84c7Nq164TPEwgE4Ha7425EmaTZG0CTJwB7mlIrMRRGmd2QUGGXjRQKAcVWPaYNs2FYrh5OMYQWT3YsdqtRKfDdc4fjqeunYlyhGWIogqd3HMFPX/8Ux1u86R5ewkw6FYqtengDEXxa5cJ/6rg2FhERZZ6MfqeUl5eH0aNHx+4HAgHMnz8fjz/+OIYN6/lNYn19PQoLC+O2FRYWwu12QxTFHo9Zvnw5rFZr7FZeXp66F0GUpIgko8YhQiEIaUmt3GIINoMG+ebBn1p1ZdCoMKHIgillVug0StS6xKzpYDc814jffvsM3H3RKOjVShyob8PiVyvw4ofHs/bSOqVCQJ6pfW2sVh/2VDpQ1erl2lhERFkkIskIhiWIwQg8gTBcvugHmI1tftS5RFQ7fDje4sWhxjZ82dCWFZ18O0vrZYGnsmjRIixatCh2f+nSpZgwYQK++93vpvR5li5diiVLlsTuu91uFliUMaL/4ARQkMAlecmmVpIsQwyHMbrQNmRSq64EQUCBRQeLXo3jLV5UtYrwBMLIMWoy/jI7pULA3DNK8LVRuXh6+2H839FWvLq7Ch8casbCWWMwubTvxXYm0KmVKLUZ4BJD2F/rRrMniOG5RuQMgiUCiIiygSzL7WtfypDk9j/b70c63cIRCcGIhGBYQkiSEAxH94vInf+MFlzo+JUqI/q1DGhUAopt+qx6D5LRxVVXW7duxWeffYb169cDQOwSnby8PDz00EN45JFHUFRUhIaGhrjjGhoaYLFYoNfrezyvVquFVjv0PpWnzBeOSKhs9UGtUCTUSCIVc62sOg3yh8Bcq1PRqZU4rdCMHKMWR5s9qHOJsBs0MGgy/5/RPJMWD31jAnYdacGfth9BjVPEzzZ8hq9PLMRt542ESZf5r6EnVr0aJq0KzZ4AWn1BlNsMGJZryIr5cUREmUDqUiDFiiJJgiQh9mcwEkEwLCMUkdpvXxVIkiQjAhlSBJAho+O/ACBAgEIQoFQIUAoCFO1/apQCFKro9o7HuwpFJLjE7FgepbOs+o36+uuvx13a99FHH+G2227D+++/H7t8cMaMGXjrrbfijtuyZQtmzJgxoGMlSoVmTxAtngAKzLo+H5uS1CoYxqhSa0Kt3wcjQRCQb9bColehssWHSocPHn8YuSZtj78YMokgCDhvdB7OKLPhhV3H8I999djyeQM+OtaKOy8chQvG5GVlgwilQkChRQdfMIwjzR60eKMNLwrMuoz/nhARpUJHihSR41Ojrwqlr74ORSQEwhGEItFL8yLthdVXf0Z//3cKjwAACghQKBBXICkVAjQqRdz2TL+iYyCktbjyeDw4dOhQ7P7Ro0dRUVGBnJwcDBs2DCtWrMCGDRvw7rvvAkDc/CsAaG6OruMyYcIE2Gw2AMDdd9+NFStW4IEHHsBtt92GrVu34rXXXsOmTZsG5kURpUg4IqHK4YNWpUxLauUWQ7Do1UNyrtWpaFVKjC00I8eowdFmbyzFMmoz//Mqk1aFe2aOwcWn5WPle4dQ5RDx2OaD2HqgET+YOTqhQj4TGDQq6NVKOH0hfFrlRJFVjxF5Rlj16nQPjYioV6QuBVLnS+1iyVIkmioFwtEEKRiOpkhxBZIsQ5aAiCx3KpBkQI5PiqJfR7uyajulSAoBWflhW6ZI6zuB3bt3Y9asWbH7HfOebrnlFqxZswbNzc04fPhwn845cuRIbNq0Cffffz+eeuoplJWV4bnnnmMbdso6TZ4AWr1BFKYhtZJlGd5gGKeXWKBV8RKrE8k1aWHWqVHV6kNlqxdtgTDysyDFAoDTS6x46oZpWP9xNV7bXYXdxx1YuHYPvnfucMydXJIVr6ErQRBgN2pgiqjQ4PbD4QtiWI4BpXY9f46JaMD0dFldWJK6JUvBWIEkIyRJCIdlRGSp03ykaMEVIwCyhFgBFCuG2gslVZfL7JgipYcgZ0Nv4QHmdrthtVrhcrlgsVjSPRwagkIRCXsrHfAFIshNYL7TyvcO4e399TijzIpfz5vc5+NdYgiCAEwfbuf8lV5yeIM40uxBU1sAVp0mq+YxVbX6sOK9Q/i8LroMxZgCE+69ZAxG5pnSPLLkeAJhuMQQcoxqro1FRH3SuWFD7JK7SPdL7zoaNgTCEsJdGjZ0JEmdGzYIAGQZENrTIWWXQumrROmrZGmo/rvVMefq7JG5MKX5ypC+1AbZ89ufaAhpaoumVkWWnpuwnExcanV2YqmVJxDGhGIzC6s+sBs1OENnQ61TxLFmL+rdIeQZtQld0jnQynMMWH7NZLyzvwFrdh7FoUYPFr9agW9NK8P8c8qzNvUxaVUwaJRo9QbxSZULpTYdhuUa0/5LmogGTk+X1UXkkzdsCEYkhLs0bAi3X2onyRIEoaOhXbTo6TwPqS8NG2hw4m8YogwTDEc7BOrVqoT+Me6Ya3VGmRWTEmi17faHYdKpUGjJzrk36aRWKjA81wibXoNjLV7UufwwaVVZMe9HIQi4fFIRzhmZg2d2HMa/Drfg9T3V2Hm4GffMHIOp5bZ0DzEhCiG6NlYgHEFlqw8t3iCG5xiyrrUv0VB2ooYNXdt/h9s72QXbu9mdqGFDXNvvdrFL7diwgZLE4ooowzS2+eH0pTO1CmF8EVOrZFgNapyutSDHqMbRZh9qXSLyTdqseDOfY9TgwSsm4P+OtuDp7YdR5/LjF2/uwyXjCnDbBSOzolDsiVb11dpY/6l3o8kTwIhcY0KX3RJRYk7WsKHzpXdfFUi9adggI9a2Qe75sjo2bKCBxOKKKIMEwhFUt4owaNKTWrX5wzBpVShMoLCjeCqlAuU5RlgNGhxr9qLWKcKoUcFmyI6Fbr82MheTS634y67j2PRZHbYebMTu462448JRmHlafta+MelYG6vFE0CF6ES5zYDyHAP0Gn6YQNRbp2rYEG4vhoLh9iIpLCMYiSASQY8NG+LafsvtKVKXtIgNGyhbsLgiyiCNbj+cYhDF1vSkVm2BEE4rNPONZgpZdGqcXmJFrkmLo00e1Dh9yDfpsmLtMINGhbsuHo2Lx+VjxdZDON7qw++3fIH3DjTinpljUGTNzktHlQoBBRYdxGAER5o8aPIEMDLPiEIL18aioUPusmjsiRo2dCwa29H6OxSRu11qJ3VaGyl68viGDR0JklIhQKVQQMuGDTSIsbgiyhD+UARVrdF0I5FP45JNrbyBCIxaVda+Yc5kSoWAUpseVr0ax5q9qHGK0KuUsBnUWfGmYnyRBX+4fir+urcGr3xUib1VTix8eQ9uOmcYrp5amrUFiV6jRIlaD6cYwmfVTjRZ9RiRa4TVkJ2XPlLmkmUZshxNZuT2IiR6P7r9q/2+2tZ1X5zkMTn6YLfzduz3VcOG9rlIkfa235ARkSTIEro0bBDazylAEHpu2KBiwwaiHrG4IsoQjW4/3P4wihMobpJNrQDAJQYxttAMg4b/LPQXk1aFicUW5Jo0ONLkRU37XKxs6ManUipw3VnluGBMHla+dwif1rjw/M5j2P5lE344ayzGFGRn23ZBEGA3aGDSqtDY5ofDG0R5jgFlOVwbK116U4h0u4/UFSI9PYckRxMaWW4vVgBIUvTxjsvauu4nxb2OTmNCx+VvPY+p635y7IAur7tzT29068+Ajo2yFP2zp4YNKoUAjUoVlyxlwwc+RJmM76KIMoA/FEGlQ4RJm57UyhMIw8DUakAoFAKKre0pVosXNQ4/1IowcoyarHhTU2LT47/mTcK7/2nE//zrKI40efGjdRW4akoJbvra8KxthKJWKlBk0cMbCOOLxjY0eQIYlWdEvjmz18bqayHSeb+Ox/qzEIl+/dU5T1aIRPfrNJ6OMbY/QWoLETn2345nETr6a3f+u2mfCCQI7W2329cpEqIngQCh/bEoQRA6PfbV5W7Rr+P3FxQdjwno/CPWeb+vjhU6PcbL6IgyGYsrogxQ7xLR5g+hNA1zrYDoosFjCowwcv2fAWPQqDChyIJcoxZHm7yodYnINWqzojgRBAGXTSzE9BF2PPf+Uez4sglvVNRi5+EW3DNzDKYPt6d7iAkzalXQa5RweIP4pNqJYqseZXZ97I13x1v+/i5E4ooN9K4Q6VqEAP1XiEQjEQCCDMhfFR0dUlGIKDqfo4dCJFbwACxEiChj8J0UUZqJwQiqHSIs2sTm3yQ/1yoMvUaBogQKO0qOIAgotOhic7GqHSI8gWiKlQ1dsOwGDX4yZxxmjcvHqu2H0dgWwLK/78fFp+XjjgtGZk1nxK4UgoBckxbBsIRqhw/1Ln+nVmapKUR6SkOAFBQiQufEo3sh0rkIQefzsBAhIkoJFldEaVbnir6hLklTauUUgxidb4KJqVXa6NRKjCsyI9ekxZFmD+pcIuwGTdbMfztrRA5Wlljx0v8dx98/rcX2L5qw57gDt10wEpeOL8jaN+walQKlNgPCESmuCAFYiBARUc8yvxcw0SDmC4ZR4xRh0aUntfIFw9CplZxrlQEEQUC+WYup5TaMzjfBEwyj0e1HRJJPfXAG0GuUuOPCUfjdd6ZgVJ4RbYEwnnr3S/z8zX2odYrpHl5SVEpF3MKkCoGT/omIqGcsrojSqM7ph7d94d6+amxLTWpVYtXDrGPr6UyhVSkxttCMqWU2WA1q1LlEeAPhdA+r18YWmvHEtVNw63kjoFEp8Gm1Cz98eS/W7a5COCKle3hERET9isUVUZp4A2FUO32w6hPrErc+BamVVqlEkY2pVSbKNWlxRpkNpxWaIYbCqM+iFEulVOCaM8uwcv6ZmFpuQzAi4YUPj+P+1ypwsL4t3cMjIiLqNyyuiNKk1ilCDEow6RJLrbZ8nmRq5QuhyKqDhalVxtKoFBhdYMLUcjtyjGrUu0V4/NmTYhVZdXj0qtNx/2WnwaxT4ViLDz9Z/wn+tOMwfMHseR1ERES9xeKKKA3a/CHUOkXY9IkVNsmmVmIwAo1KQLGNHQKzgd2owRllNowvMiMYiaDeLWbNJXaCIOCS8QVYfdN0XDKuADKAjZ/WYeHaPfj30ZZ0D4+IiCilWFwRpUGd0w8xFEloXalUpFYOMYhCa7QFOGUHtVKBEXnRFCvfpEVDmx9uMZTuYfWaVa/G/V8/DY9edTqKLDo0e4L41ab/4P+9fQCt3mC6h0dERJQSLK6IBpjbH0Jte6vtRCSbWvlDEaiVAkqthoSen9LLalBjUqkVp5dYEJFl1LpEhLIkxQKAacPs+O/50/DtM0uhEIB/HWrGPS99jM376yHJ2TGnjIiI6ERYXBENsFqHCH8oktAaRilJrXxBFFl0sOizYw0l6k6lVKA8x4ipw2woturQ2OaH05c96Y9OrcSC80biyeumYkyBCd5gBCveO4SfbfgMVQ5fuodHRESUMBZXRAPIJYZiC8QmIhWplVIpoMSm5zo9g4BFp8bpJVZMLrNBEIAapw/BcPakWKPyTfjdd6bgjgtGQqdWYH+tG/e+vBcv/7syq9I4IiKiDiyuiAZQ9M2vnLbUyikGUWjmXKvBRKkQUGrTY+owO8rsBjR7A3B4g5Cz5BI7pULA1VNLsXL+mZg+3I6wJGPtvytx36sV+LzOne7hERER9QmLK6IB4vQFUe/yI8eYntQqEI5AEJhaDVYmrQoTiy04o8wKpVJAjUtEIBxJ97B6rcCiwy+vnIifzB4Hm16NqlYffvr6p1i17VBWLaJMRERDG4srogEgyzJqHCLCERk6tbLPx6dqXasCsxZ2A1OrwUqhEFBs1WPaMBuG5xrg8IXQ4glkTYolCAIuOi0fq246E1+fUAgA+Me+etyzdg92HW5O8+iIiGigZWOjI85oJxoATl8I9W3+tM216piHU8rUakgwaFSYUGRBrlGLo01e1LpE5Bq1CRX26WDWqXHvpWMxc1w+Vr53CLUuP37zjwM4d1QO7r5oNHJN2nQPkYiIEhSRZLjFEJxiEA5fCE5fCE5fEE6x/U9fCE4xBIcvCJcYwv/97FKYEli6Jl2yZ6REWUqWZVQ7fZCk9KVWDl8Q+WZtwpckUvYRBAGFluj8umPNXlQ7RHgCYeQYNVBkSYF9RpkN/z3/TLy6uwqv76nGh0da8UmVC7ecNwJXTCrKmtdBRDTYRSS5U4HUc7HU8bVLDKEveVSLJ4gCs67fxp5qLK6I+pnDF0KDK5C21Kqj61qpnanVUKRTKzGuyIxckxZHmj2xbpWJNFVJB41Kge+dOxwXjsnDivcO4WBDG57efhjbDjZi0awxGJ5rTPcQiYgGpXBEgksMtadL0cLIIbYXS75o8tRRSLX5w30qmAREF5e3GdSwGTSwdftaA5NWCYUCKLHp++sl9ovs+O1KlKVkWUZVa3TdHq0qTamVtz21SrC4o+wnCALyzVqYdSpUtfpQ6fDBEwgj16iFUpEdBfeIPCN+++0z8Pa+Ovx513EcqG/D4lcr8O0zy3DdWeXQqDiFmIjoVEIRKVokxRKlYJek6atCqq2PzYQUAmDRq2E/QbFkM6hhN6hh02tg0atP+fsnFJHgEoNZ83uqA4sron7U4g2iqS29qZWE6Kc+iiz7x4lST6dWYmyhGTlGDY40e1Hv9sOmV8OYJdeyKxUC5p5Rgq+NysXT2w/j/4624tXdVfjgUDMWzhqDyQn8P0JElO2CYQlOX/v8pc7Fki8ER9yleUF4A33rIqsQAJte81Wh1KlA6po6mXWnLpiGguz4jUqUhSQp2iEQQEKfqqdqrlWeSYNczrWiTnJNWph10Xbnla1etAXCyDdlT4qVZ9LioW9MwM7DLfjTjsOocYr42YbPMHtiIW49byRMOv5qI6Ls5g9FYvOUOl+WFzePqT1t8gX7VjCpFELcJXndiiWDOpY2mXUqzm/tI/4GIuonLd4gGtsCCRc2qUitIpKMUjtTK+pOo1JgdIGpPcXyoN4twqrTZE1hIggCzh+ThynlNvx55zG8vb8e73zegH8fa8WdF47CBWPyOMeQiDKKGIzEkiWH7wSX47V/LYb6XjB1Lozsxq8ux7N3KpZsBjVMWhX/fexH2fFblCjLSJKMaocPCgBqZXpSK6cvhFyTBrlGtq2mE7MbNThDZ0ONw4djLT543CHkGbVQJfBzmw4mrQoLZ43BzHH5WPHeIVQ7RDy2+SC2HmjED2aOzqoOU0SUXWRZhhiKdCuWHF3mLnUUVIH2ZVF6S6NUtKdJXyVLdkP3y/FsBg2MGiULpgzB4oqoHzR7A2hqCyAvwfV4kk2twhEJYUlCud2QNZd6UfqolQqMyDPBbtDiaLMH9W4/zFo1LPrsWXD69BIr/njDNKz/uBqv7a7C7uMOLFy7B987dzjmTi7h/wdE1CuyLMMbjHS7DM/RQ7Hk9IUQjPStYNKqFHHFUixZ6lQsdRRQejULpmzE4oooxSJStEOgUiGkL7USQ8gxarjYKvWJ1aDGpFIrcowaHGvxodYlIt+kTejnOB3USgXmnzMMF7S3bf+8zo1n3z+KbQeb8MNLxmBknindQySiNJBlGZ5AOO7Su7j24p0ux3OJQYQifWkqDujVyrh5Sj1dmtdRUOk12bGYOyWOxRVRijV7AmjxBJGfbGpVmlhqFZFkBMMRlOdY+Gk99ZlKqcCwXCNsRg2ONnlR5xJh0qphzaIUqzzHgOXXTMbm/fVYs/MYvmz0YPGrFbhmWhluOKc8oWURiCizSLKMNn+4xxbiji4L2LrEEMJS3womg0YZXxj1kCx1bNOp+W8KfSWtxdWOHTvw+OOP4+OPP0ZdXR02bNiAefPmnfSYnuLRl19+GTfccEPs/rZt27BkyRLs378f5eXl+PnPf44FCxakePRE3YUjEqpafVArFQnNWemcWt1wTqJzrYLIMWnZIZCSYtFFU6w8sxZHmzyocfqQb9JlzXpSCkHAFZOKcc6IHDz7/hH863AL1u+pxr8ON2PhzDGYUm5L9xCJqIuIJKPNH0K3rnhiEA5v/OV4Ln8IkT4WTEatMv5yvK4d89qLJatBzQ9hKGFpLa68Xi+mTJmC2267Dddcc02vj3v++edx+eWXx+7bbLbY10ePHsXcuXNx991346WXXsK7776LO+64A8XFxZgzZ04qh0/UTbMniBZPAIWWxFYT75xaJbJmT0SS4Q9HMN5uyZqGBJS5lAoBpTY9rHo1jjV7UesUoVNFL3/JlnkAuSYtHrxiAv7vaAtWbzuMOpcfP39zHy4ZX4Dbzx+ZVfPKiLJRRJLhFtsLJF+oy6V58R3z3GIIfayXYNaqemwh3nEZnr3TY9lyiTNlt7QWV1dccQWuuOKKPh9ns9lQVFTU42NPP/00Ro4ciSeeeAIAMGHCBHzwwQd48sknWVxRvwpHJFQ5fNCqlAldjpey1MqoQZ6JqRWljkmrwsRiC3JNGhxp8qKmfS5WNn2y+7WRuZhcasVfdh3Hps/qsPVAI3Yfa8X3LxyFi0/Lz5pikSgThCMSXGKohxbiXdqMtxdMfayXYNGp4gqkjo559i5NICx6FkyUeTJ6ztWyZcuwZs0aHDt2LG77woULcccdd2DUqFG4++67ceutt8Z+Me7atQuXXXZZ3P5z5szB4sWLT/g8gUAAgUAgdt/tdqfsNdDQ0dQ+16rIkljr59SkVhLGFZuZWlHKKRQCiq3tKVaLFzUOEWqFAjlGTdYUJgaNCnddPBoXj8vHiq2HcLzVhye2fIH3DjbiBzPHJPz/LtFgEOoomDrPXep0Gd5XyVMQbf5wn84tAHGL1tq6ff1Vm3GrXs35wpTVMrq4ysvLw+jRo+O2Pfroo7jkkktgMBjwzjvv4J577oHH48G9994LAKivr0dhYWHcMYWFhXC73RBFEXp998u1li9fjkceeaT/XggNeqGIhMpWH3QqRdpSK5cYgs2gTrj9O1FvGDQqTCiyINeoxdGm6KWCuSZtVk3oHl9kwZPXT8WGvTV45aNK7Kl0YtHaPbjpa8Nw1ZRSvrGjrCbLMiQZCEvRheS/6pLXec7SV00gOlImT6BvBZNC6CiYTlYsRZMnCwsmGkIyurhatGgRFi1aFLftF7/4RezradOmwev14vHHH48VV4lYunQplixZErvvdrtRXl6e8Plo6GlsC8DhDaIorXOtwhhTaOMlEtTvBEFAoUUXm4tV7RDhCYSRY9RAkSUpllqpwHVnleP80XlYue0QPqtx4X//dQzbvmjCD2eNxZgCtm0frDqKj4gkxwqQzrewJCMiy4hEol9Lcvu2uJvUbVts30j7tvbjpI5ztj9X93N12SZ33S6deN+uY26/nyiFgOhleMbOi9bGr8nUUUiZdSyYiHqS0cVVb3zta1/Dr371KwQCAWi1WhQVFaGhoSFun4aGBlgslh5TKwDQarXQavlpPyUmGI52CDSoVWlLrdxiCFa9JuH270SJ0KmVGFdkRk77XKw6lwi7QQODJnt+tZTa9fj1vEn4538a8L//OoYjTV78aF0FrppSipu+NiyrErlU6Vp8SBLiipDOxUfHG/rUFB89Hxfbt9NxcefsUiR1K1QiqSs+spFKIcCq79w+vEux1KkJhFmnypoPSIgyVfb8BjyBiooK2O32WHE0Y8YMvPXWW3H7bNmyBTNmzEjH8GgIaGzzw+kLotiantRKkmX4QmGMKrBmTZtsGjwEQUCBWQeLTo2qVh8qHT54AmHkGrVZ86m2IAj4+sQinDUiB8+9fwQ7vmzGGxU12Nnetv3M4fa4/VNVfHTdHld8yF2LhxMf17n46Jqy9Lb4iHQ5bihSKgQoBSH6p0KASiFA0f5nj9va91UpFVAIJ9mv4yYIUCkFKBUKKAVAqVREt53geZRdbqoux/W0b0/n0igVWTMvkmgwSGtx5fF4cOjQodj9o0ePoqKiAjk5ORg2bBhWrFiBDRs24N133wUA/P3vf0dDQwPOPfdc6HQ6bNmyBb/5zW/w4x//OHaOu+++GytWrMADDzyA2267DVu3bsVrr72GTZs2Dfjro8EvEI6gulWEQZPYp32pSq1seg3yzUytKH10aiXGFpqRY9TgSLMX9W4/bHo1jNrs+QzPbtDgJ3PGY9a4VqzafhiNbQH88u/7YdaquqUsQ5FCQPQNfh+Lj+hN0WPBEFcctBcf8YWKotfFR0eh0tfio2NfFiBElApp/a23e/duzJo1K3a/Y97TLbfcgjVr1qC5uRmHDx+OPa5Wq7Fy5Urcf//9kGUZY8aMwe9//3t8//vfj+0zcuRIbNq0Cffffz+eeuoplJWV4bnnnmMbduoXjW4/nGJ6UytvMIzTSyxZ1RabBq9ckxbmjhSr1QtPIIw8U/akWABw1ogcrCyx4qX/O46/f1qLtl5O9O9afPRYCAgClMqeiw+l4iTHx1KS7sWHUoEeixeVon1fZXzxoehIQU6akrD4ICJKhCDL8tD8CO4k3G43rFYrXC4XLBZLuodDGcofiuDj4w5Ikgyboe/rSjW1BXDnX3YjLMn4zbcmJ1RcucQQFAIwfYSdxRVlHIc3iCPNHjS1BWDVaWDSZU+K1cHR3na6WwHSQ8rC4oOIKHWiywMEcfbIXJjSfBVEX2qD7PtNR5QhGtx+tPnDKLEmtjbOuo+rkkqtZDnaYndisZmFFWUku1GDM3Q21Dh8ONbig8cdQp5Rm1XrsNkNGtgT+PCEiIiGJhZXRAnwhyKocogwaVUJfVrd1BZIfq6VPwyzToUCLnxKGUytVGBEngl2gxZHmz2od/th1qph0avTPTQiIqKUy56PD4kySL1LhMcfgiXBy5xSk1qFUGbXD8lW0ZR9rAY1JpVaMbHYgrAsodYlIhSR0j0sIiKilGJyRdRHYjCCaocIs1adttSqzR+GSatCIVMryiIqpQLDco2wGTU42r4ulkmrhpUpFhERDRJMroj6qM4lwhOIXpKXiFSkVm1MrSiLWXTRFGtymQ2AjBqnjykWERENCkyuiPrAFwyj2iHCoktfauUJhGHUqlBoSaz9O1EmUCoElNr0sOrVONbsRa1ThE6thE2f2P9bREREmYDJFVEf1DpF+AJhmHWJXcaUbGoFAG5/CKU2PfQaplaU/UxaFSYWWzC5zAqlQkCNS0QgHEn3sIiIiBLC5IqolzyBMGqcIqwJtmVOSWrlD8OgUaEowfbvRJlIoRBQbP0qxapxilArFMgxaphiERFRVmFyRdRLdU4RYlBKeCG7VKRWLjGIUpseBg0/F6HBx6BRYUKxBWeU2aBTK1HrFOEPMcUiIqLswXdoRL3Q5g+h1inClmBXs1TNtdJrlUytaFATBAGFFl0sxap2RBvI5Bg1UDDFIiIaMiKSnO4hJITFFVEv1DpFiKEIcozahI5PTWoVwuh8I4wJJmdE2USnVmJckRk5Jg2OtLdttxs0TG2JiLKYLMuISDLCUtc/JUQkGZIsQxAEyLIMlUIBo1YFRZZ9rsbfUkSn4PaHUOf0w57GuVbeQBh6tQLFNnYIpKFDEAQUmHWw6NSoavWh0uGDJxBGrlELZbb9tiUiGsRkuYeCKSLF7kMABMiQZQFKpQCVInpTKhQwaBXQqTTQqpTQqBRQKxVQKQWoFQqoVULWfaiWXaMlSoNah4hAWEKuKX2plVMMYlSeKeH5XkTZTKdWYmyhGXajBkebvah3+2HTq5niEhH1s0iXZKlzASVJMmRBBmQBCgHRokkQoGwvjkxaDbRqBXQqBdQdRZNCgEqpgFopQKWI/jnYGhfxNxPRSbh8odjlSIlIRWrlC4ahUytRZONcKxra8kzar1KsVi88gTDyTEyxiIj6Kq5gisQnThIkAAIgy1AqFFAqAKUiWhjpNUpoVQro1UpoVUqolEIsZVIphbgCaqhicUV0ArIso8bpQzAiIy/BNaVSkVo5fEGMyDXCkuDaWkSDiUalwOgCE3KMGhxp9qDeLcKq08Ck468zIhraTnlpHgBBAGQASqH9sjylAJWggFargE6tgK5z0dSeLKnaCya1UsEPs3qBv42ITsAlhlDv9iMnjamVGIxAp1JyrhVRF3ajBmfobKhx+HCsxQevO4xco2ZIf1pKRIOT1NEEItLDJXqyjGi5JEBAYpfmqRQCFCyaUobFFVEPZFlGtUNEOCJDp05jaiUGMSwnurgqEcVTKxUYkWeC3aDF0WYP6t1+mLVqWPj/CxFlgc6FUk/zmdBe7yggQKkElIpoMaRRRROmjqRJpVRA3V4wdb5ET6UYfPOZsgGLK6IeOH3R1Cqdc638oQg0SgElVkNCxxMNFVaDGpNKrcgxanC0xYtal4h8kxZqplhENMBO1Wpclk98aZ5Bo4jOZ9Lw0rxsxuKKqAtZllHl8EGW05xa+YIos+thNfBTeKJTUSkVGJZrhM2owdH2dbFMWjVTXyJKiY5L83qazxSR5fYL807ealynVkKtjG813rkhBC/NGxxYXBF10eoNotEdSHtqpVIKKOFcK6I+seiiKVauKdq2vcbpQ4FZxxSLiHp0qlbjPV2ap2wvisy6zvOZlN0uzVMqhEHZapxOjsUVUSeSFJ1rJQPQqtKXWjnFIEqsnGtFlAilQkCZ3QCbQYNjzV7UOkXo1ErY9Gq+ySEaIthqnNKFxRVRJ62+IJraAmntEBgIRyAI0dSKbwSJEmfSqjCx2IJckwZHmqJzsfJM2oQ/OCGi9Dplq3EhemkeIEDRZT6TTtfeBEKlhEal4Hwm6jcsrojaSZKMGocIILqWTiI6UqvJyaRWvhCKrDrYONeKKGkKhYDi9hT4WLMXNU4RaoUCOUYNP7wgyhD93Wqcl+bRQGJxRdSuxRtEY5sfuUZtQsd3Tq3mn12e0DmCYQkAmFoRpZhBo8KEYgtyTVocbYpeKphr0ibctIaITu1kl+ZFZCn2e46txmkwYXFFhOgvgGqHDwoICU98j0utymwJnaPVF0ShRQs7UyuilBMEAYUWXSzFqnaI8ATCyDFqoOAbNKJeSabVuFariBVMbDVOgxWLKyIALZ4AmtoCyDOlN7USAJQytSLqVzq1EuOKzMjpmIvlFJFr1EKvYYpFQ1fXS/MiMluNEyWCxRUNeREpuq5V9NOz9KVWDl8Q+WZtwi3giaj3BEFAgVkHi06NqlYfKh0+tAVCyDVq+ak5DQpye0Eky+hzq/GONMms0/DSPKI+YnFFQ16zJ4AWTxD5aUytQhEJMoBSu56f7BENIJ1aibGFZtiN0XWx6t1+2A1qGDT89TjUdC5GOt9H+zYZcqfHove/+hpA1326nBft+8ntO8idz9PxWNfzCO0bBRmQhfZCqOOBjv/KkDsqpE7X5AlCtAWEIICtxokGEH970JAWjkioavW1X8KQxtTKG0S+SZNwC3giSk6eSftVitXqRZs/jDwTU6yTSWUxkmwhEhsTYkHMV8VJAsVIx85Cez0TvQntrb7bH2vfN3pfiO2naN/Y8ZhCoWj/E1BAEd0uAAohuq8gCJ2+bv8T0U6XnccTPa79ebo9f/z9jiSpYzy8NI9o4LC4oiGt2RNEsyeAIos+oeNTlVpJkFFqN/CXHlEaaVQKjC4wtadYHtS7RVh1Gph0yf+qPFkhAgx8MZLKVCQmJcWI0F5U9K0Y6fg6mWKk835xr6WHc6Cn+1335aVyREMSiysaskIRCZWtXuhUyoQ/nU7VXKs8kxa5RqZWRJkgx6iBWWdDjcOHYy0+uJzB2BvulBUjCRYiQHwx0rmwiC8yvko+okVKp/sdRUcaixEWIkQ0WLG4oiGrqS2AVm8IRRZdwscnm1p1dGIqtXGuFVEmUSsVGJFngt2ghcMXTLgQab/LYoSIaIhgcUVDUjS18kGvTjy1Wr+nOgWpVQi5Jg1yE2ymQUT9y2pQw8p154iIqJfYCoaGpMa2AFxiEFZ9Ym+amtoCeGd/PYDEU6uO1rhldgMnzRMRERENAmktrpYvX46zzz4bZrMZBQUFmDdvHg4ePHjK4z799FNceOGF0Ol0KC8vx2OPPdZtn3Xr1mH8+PHQ6XSYPHky3nrrrf54CZSFguFoh0C9SpXW1MrpCyLHqOFcKyIiIqJBIq3F1fbt27Fw4UJ8+OGH2LJlC0KhEGbPng2v13vCY9xuN2bPno3hw4fj448/xuOPP45ly5bhmWeeie2zc+dOzJ8/H7fffjv27t2LefPmYd68edi3b99AvCzKcI1tfjh9wYQv9UlVahUIR1BmN3AtESIiIqJBQpA7+rZmgKamJhQUFGD79u246KKLetxn9erVeOihh1BfXw+NJvqJ/4MPPog33ngDBw4cAABcf/318Hq92LhxY+y4c889F1OnTsXTTz99ynG43W5YrVa4XC5YLJYUvDLKFIFwBHuOOxCKyLAnuKbU6u2H8dZndZhcasVvvjU5oXO0eAIw6lSYVm5jcUVERESUwfpSG2TUuzqXywUAyMnJiW1bsGABZs6cGbu/a9cuXHTRRbHCCgDmzJmDgwcPwuFwxPa57LLL4s49Z84c7Nq1q8fnDQQCcLvdcTcanBpcfrjEUNrnWgUiEsrsehZWRERERINIxryzkyQJixcvxvnnn49JkybFthcXF2PYsGGx+/X19SgsLIw7tuN+fX39SffpeLyr5cuXw2q1xm7l5Ym9aabM5g9FUOUQYdKqo+vEJCAVc61cYgh2gxp57BBIRERENKhkTCv2hQsXYt++ffjggw/iti9fvrzfn3vp0qVYsmRJ7L7b7WaBNQg1uP1o84dRYk18XatUpFZiKIyxhTaomVoRERERDSoZUVwtWrQIGzduxI4dO1BWVnbSfYuKitDQ0BC3reN+UVHRSffpeLwrrVYLrZYpwmD2VWqlSnjxzVSkVm4xBJtBg3wzf96IiIiIBpu0fnQuyzIWLVqEDRs2YOvWrRg5cuQpj5kxYwZ27NiBUCgU27ZlyxaMGzcOdrs9ts+7774bd9yWLVswY8aM1L4Ayhr1LhEefwgWXWKfJ6QitZJkGWI4jPIcA1MrIiIiokEore/wFi5ciBdffBFr166F2WxGfX096uvrIYpibJ+lS5fi5ptvjt2/8cYbodFocPvtt2P//v149dVX8dRTT8Vd1nfffffh7bffxhNPPIEDBw5g2bJl2L17NxYtWjSgr48ygy8YRpVDhFmrTmtq5RJDsOo0yOdcKyIiIqJBKa3F1erVq+FyuTBz5kwUFxfHbq+++mpsn7q6OlRWVsbuW61WvPPOOzh69CimT5+OH/3oR3j44Ydx5513xvY577zzsHbtWjzzzDOYMmUK1q9fjzfeeCOuUQYNHXVOP7yBMMzpTq2CYZTl6KFRMbUiIiIiGowyap2rTMF1rgYPbyCMj487oFYoYEqwuErFulZOXxAqpYAzh9uhVSkTOgcRERERDbysXeeKKNXqXCJ8gXDChVUqUitZluENhlFm17OwIiIiIhrEWFzRoOUJhFHjFGE1aE698wmkpEOgPwyzTo18c2It4ImIiIgoO7C4okGrzinCF4zApE1vauUJhFFu10OnZmpFRERENJixuKJBqc0fQo1ThF2f/tTKpFOhwMLUioiIiGiwY3FFg1KNQ0QgHIEx7alVCGU2HVMrIiIioiEg4eLq0KFD2Lx5c2xNKjYdpEzhEkOod/lhS3Nq1eYPw6RVodCiT3gcRERERJQ9+lxctbS04LLLLsNpp52Gb3zjG6irqwMA3H777fjRj36U8gES9VWt04dAWIJBk97Uqi0QQolND72GqRURERHRUNDn4ur++++HSqVCZWUlDAZDbPv111+Pt99+O6WDI+orly+aWtnT3CHQG4heklhk5VwrIiIioqGizx/tv/POO9i8eTPKysrito8dOxbHjx9P2cCI+kqWZdQ4fQhGZOQlmBalIrUCAJcYxNhCc8LpGRERERFlnz4nV16vNy6x6tDa2gqtVpuSQRElwiWGUOf2IyfNqZUnEIaBqRURERHRkNPn4urCCy/ECy+8ELsvCAIkScJjjz2GWbNmpXRwRL0lyzKqHSIkSU64M1/qUqsQSmy6hDsVEhEREVF26vO7v8ceewyXXnopdu/ejWAwiAceeAD79+9Ha2sr/vWvf/XHGIlOyeELod6dmrlWk0osScy1CkOvUaDIyg6BRERERENNn5OrSZMm4YsvvsAFF1yAq6++Gl6vF9dccw327t2L0aNH98cYiU4qmlr5ABnQqpJPrW48Z1jCY3GKQZRY9TAxtSIiIiIachJ6B2i1WvHQQw+leixECWn1BtHoDqQ9tfIFw9CplZxrRURERDREJVRc+f1+fPrpp2hsbIQkSXGPXXXVVSkZGFFvSFJ0rpUMQKNKbE3sVKZWI3NNMOvUCZ+DiIiIiLJXn4urt99+GzfffDOam5u7PSYIAiKRSEoGRtQbrb4gGtsCyDWmP7XSKpUosjG1IiIiIhqq+vxR/w9/+ENce+21qKurgyRJcTcWVjSQJElGdasPCgBqZZpTK18IRVYdLEytiIiIiIasPr8jbWhowJIlS1BYWNgf4yHqtWZvAE2eAOxpTq3EYAQalYBiGzsEEhEREQ1lfS6uvvOd72Dbtm39MBSi3otIMmocIhSCkHBq1exJTWrlEIMotOpg1TO1IiIiIhrK+jznasWKFbj22mvx/vvvY/LkyVCr499Q3nvvvSkbHNGJtHgCaGoLIM+kTfgc6z9OPrXyhyJQKwWUWg0Jj4OIiIiIBoc+F1cvv/wy3nnnHeh0Omzbtg2CIMQeEwSBxRX1u4gko8rhg0qhSCq12pyK1MoXRJldD4ue61oRERERDXV9fkf40EMP4ZFHHsGDDz4IhSKxN7ZEyWj2BNDcFkCBOfHOfKlKrZRKASU2fdyHDEREREQ0NPW5OgoGg7j++utZWFFahCMSKlt90KqUUKU5tXKKQRSaOdeKiIiIiKL6/O70lltuwauvvtofYyE6pSZPAC2eAGyGJDoEpiC1CoQjEASmVkRERET0lT5fFhiJRPDYY49h8+bNOOOMM7o1tPj973+fssERdRaKSKhq9UGnUkKpSKygSVlq5QuhwKKF3cDUioiIiIii+lxcffbZZ5g2bRoAYN++fXGP8RN86k9NbQG0ekMosqR3rlUwLAEASplaEREREVEnfS6u3nvvvf4YB9FJBcPRuVZ6dfpTK4cviHyzFjlJLF5MRERERIMPu1JQVmjyBOASg0k1j0hFahWKtKdWdqZWRERERBSvV8nVNddcgzVr1sBiseCaa6456b5//etfUzIwog6BcARVLT7o1ar0p1be9tQqiYYaRERERDQ49aq4slqtsU/prVZrvw6IqKtGtx9OMYhiqz7hc6QqtZIAlNj0UCRY5BERERHR4NWr4ur555/Ho48+ih//+Md4/vnn+3tMRDH+UARVrSKMGhUUCV6Gl8q5VnkmDXI514qIiIiIetDrOVePPPIIPB5Pf46FqJtGtx8uMQRLBsy1ikgySu1MrYiIiIioZ70urmRZ7s9xEHXjD0VQ5RBh1qnTnlo5fSHkmjTINWoTPgcRERERDW596haY6u5oy5cvx9lnnw2z2YyCggLMmzcPBw8ePOkxfr8fCxYswOTJk6FSqTBv3rwe99u2bRvOPPNMaLVajBkzBmvWrEnp2Kn/Nbj9cPtDsOj6vGJATCpSq3BEQliSUG43JNxQg4iIiIgGvz4VV6eddhpycnJOeuuL7du3Y+HChfjwww+xZcsWhEIhzJ49G16v94THRCIR6PV63Hvvvbjssst63Ofo0aOYO3cuZs2ahYqKCixevBh33HEHNm/e3KfxUfqIwQiqWn0wa9UJF/UpS63EEHKMGuSamFoRERER0Yn1KRJ45JFHUtot8O233467v2bNGhQUFODjjz/GRRdd1OMxRqMRq1evBgD861//gtPp7LbP008/jZEjR+KJJ54AAEyYMAEffPABnnzyScyZMydl46f+U+cS0eYPo9SW3g6BEUlGMBxBeY6FqRURERERnVSfiqsbbrgBBQUF/TUWuFwuAIhLwBYsWIBjx45h27ZtvT7Prl27uqVac+bMweLFi3vcPxAIIBAIxO673e7eD5pSzhcMo8YpwqrPgNTKF0SOScsOgURERER0Sr2+LDDV8626kiQJixcvxvnnn49JkybFthcXF2PYsL69Oa6vr0dhYWHctsLCQrjdboii2G3/5cuXw2q1xm7l5eWJvQhKiTqnH95AGCZteudaRSQZ/nAE5XYDVMo+XUFLRERERENQr9+99ne3wIULF2Lfvn344IMP4rYvX768X58XAJYuXYolS5bE7rvdbhZYaeINtKdWOk1mpFZGDfJMTK2IiIiI6NR6XVxJktRvg1i0aBE2btyIHTt2oKysLOnzFRUVoaGhIW5bQ0MDLBYL9Pruc3i0Wi20WjYryAR1LhG+QBildkPC50hdaiVhXLGZqRURERER9Upa3zXKsoxFixZhw4YN2Lp1K0aOHJmS886YMQPvvvtu3LYtW7ZgxowZKTk/9Q9PIIwahwirIfGkKFWplUsMwWZQI48dAomIiIiol9JaXC1cuBAvvvgi1q5dC7PZjPr6etTX18fNi1q6dCluvvnmuOM+//xzVFRUoLW1FS6XCxUVFaioqIg9fvfdd+PIkSN44IEHcODAAaxatQqvvfYa7r///oF6aZSAWocIMRTJkLlWYZTnGKBmakVEREREvZT4u9gU6GipPnPmzLjtzz//PBYsWAAAqKurQ2VlZdzj3/jGN3D8+PHY/WnTpgH4al7YyJEjsWnTJtx///146qmnUFZWhueee45t2DOY2x9CrUuEPQNSK7cYglWvQT5TKyIiIiLqg7QWV71pkrFmzZpu244dO3bK42bOnIm9e/cmMCpKh1qHiEA4glxj4gVNKlIrSZbhC4UxqsAKjYqpFRERERH1Ht89Utq5xBDqXX7Y9KlJreYnmVrZ9Brkm5laEREREVHfsLiitKtx+hAISzBokp9rdXqJBZNLrQmdQ5JleINhlNp10KqUCY+FiIiIiIYmFleUVi5fNLVK5VyrRNfHavOHYdGpUWDRJTwWIiIiIhq6WFxR2siyjGqHD+GIDL0m8aQoFamVLMvwBMIos+uZWhERERFRQlhcUdo4fSHUt2VGauX2h2HWqZhaEREREVHCWFxRWsiyjBqnCEmSoVNnQmoVQpldn9RYiIiIiGhoY3FFaeHwhVDvTi61aknhXCuTVoVCplZERERElAQWVzTgOuZaQUZS85tSlVq1MbUiIiIiohRgcUUDrtUbRKM7kHRq9XYKUitPIAyjVoVCiz7hsRARERERASyuaIBJkoxqhwgA0KgS//FLRWoFAG5/CKU2fVLdComIiIiIABZXNMBavEE0tgWQY8yA1MofhkGjQpGVc62IiIiIKHksrmjASJKMGocPCgBqZfpTK5cYRKlND4NGlfA5iIiIiIg6sLiiAdPsDaDJE4A9E1KrQBh6rZKpFRERERGlDIsrGhARSUZVqw8KQciQ1Co618qoZWpFRERERKnB4ooGRIsngGZPEDkZ0CHQGwhDr1agyMoOgURERESUOiyuqN+FIxIqW33QKBVQZUBq5RSDKLbqYWJqRUREREQpxOKK+l2zJ4gWT2asa+ULhqFTK1Fk41wrIiIiIkotFlfUr8IRCVUOH7QqJZSKxAoiIHWplcMXRJFFB4tOnfA5iIiIiIh6wuKK+lWTJ4BWbxC2TEmtVEoU2zjXioiIiIhSj8UV9ZtQREJVqw9apSIjUiunL4RCqxZWPVMrIiIiIko9FlfUb5raMie18oci0KgElFgNCY+FiIiIiOhkWFxRvwiGox0CDWpVRqRWDl8QhRYdrAamVkRERETUP1hcUb9obPPD6QsmVcykMrVSKQWUcK4VEREREfUjFleUcoFwBNWtIgwaFRQJFkRAate1KjTrONeKiIiIiPoViytKuUa3H04xmFQxk6rUKhCOQBCiqVWi5yAiIiIi6g0WV5RS/lAEVa0ijJmSWvlCKLLoYONcKyIiIiLqZyyuKKUa3X64/WFYMiC1CoYlAGBqRUREREQDgsUVpYw/FEGlQ4RJmxmpVasviAKLFnamVkREREQ0AFhcUcrUu0R4/CFYdKqEz5HK1EoAUMrUioiIiIgGCIsrSgkxGEG1Q4RZq06qmEnlulb5Zi3sSSxgTERERETUFyyuKCXqXCI8gTDMGZBahSISZACldj0USSxgTERERETUFyyuKGm+YBg1ThEWXYakVt4g8k0a5DC1IiIiIqIBxOKKklbn9MPrD8OsS3+HwFBEggQZpXYDUysiIiIiGlAsrigp3kAY1U4frEmmRKmca5Vn0iLXyNSKiIiIiAZWWour5cuX4+yzz4bZbEZBQQHmzZuHgwcPnvSYbdu24eqrr0ZxcTGMRiOmTp2Kl156qdt+69atw/jx46HT6TB58mS89dZb/fUyhrRapwgxKMGkTc1cq/lJpFbhiISIJKPUxrlWRERERDTw0lpcbd++HQsXLsSHH36ILVu2IBQKYfbs2fB6vSc8ZufOnTjjjDPw+uuv49NPP8Wtt96Km2++GRs3bozbZ/78+bj99tuxd+9ezJs3D/PmzcO+ffsG4mUNGW3+EGqdImxJLBgMxKdWZySVWoWQa9Ig16RNajxERERERIkQZFmW0z2IDk1NTSgoKMD27dtx0UUX9fq4uXPnorCwEP/7v/8LALj++uvh9XrjCq5zzz0XU6dOxdNPP33K87ndblitVrhcLlgslr6/kCHii/o2HGn2oNRmSPgcLZ4A7nhhN8KSjP+aNwlTymwJnSciyWhs82NKuQ2FFl3C4yEiIiIi6qwvtUFGzblyuVwAgJycnNi2BQsWYObMmac8rvMxu3btwmWXXRa3z5w5c7Br164ejw8EAnC73XE3Ojm3P4Ral5j0OlKpSq2cviByjBrkMbUiIiIiojTJmOJKkiQsXrwY559/PiZNmhTbXlxcjGHDhp3wuNdeew0fffQRbr311ti2+vp6FBYWxu1XWFiI+vr6Hs+xfPlyWK3W2K28vDzJVzP41TpE+EMRGDTJzbXa/Hnyc60ikoxAOIIyuwFKzrUiIiIiojRJ/J1xii1cuBD79u3DBx98ELd9+fLlJzzmvffew6233opnn30Wp59+esLPvXTpUixZsiR23+12s8A6CZcYQp1LRI4huZRo/Z5qhCIpSq1MWuSZ2CGQiIiIiNInI4qrRYsWYePGjdixYwfKysp6dcz27dvxzW9+E08++SRuvvnmuMeKiorQ0NAQt62hoQFFRUU9nkur1UKr5eVkvSHLMmqcPgQjMvI0yoTP0+IJYHMKOgRGJBmBiIRxdj1UyowJYomIiIhoCErru1FZlrFo0SJs2LABW7duxciRI3t13LZt2zB37lz89re/xZ133tnt8RkzZuDdd9+N27ZlyxbMmDEjJeMeylxiCPUuP3KSnWuVotTKJYZgN6g514qIiIiI0i6tydXChQuxdu1avPnmmzCbzbE5UVarFXq9HkD0kr2amhq88MILAKKXAl555ZW477778O1vfzt2jEajiTW1uO+++3DxxRfjiSeewNy5c/HKK69g9+7deOaZZ9LwKgcPWZZR4xARjsjQqTMjtRJDYYwttEHN1IqIiIiI0iyt70hXr14Nl8uFmTNnori4OHZ79dVXY/vU1dWhsrIydv/Pf/4zfD4fli9fHnfMNddcE9vnvPPOw9q1a/HMM89gypQpWL9+Pd544424RhnUd05fCPVt/uQ7BKYotXKLIdgMGuSbmVoRERERUfpl1DpXmYLrXHUnyzL21bpQ7/KjyKJP+DwtngC+/5fdCEWSW9dKkmXUu0VMKrWh1Jb4eIiIiIiITiZr17mizOXwhdDgCmRMauUSQ7DqNMjnXCsiIiIiyhAsruiUJElGVasPMgCtKv1zrSRZhhgMoyxHD42KP8JERERElBn4zpROqdUXRFNbIGM6BLrFECx6NedaEREREVFGYXFFJyVJ0Q6BAJJKiVKVWsmyDG8wjDK7PqkUjYiIiIgo1Vhc0Um1eINobAsgx5ghqZU/DLNOjXyzLqnxEBERERGlGosrOqGIJKPa4YMCSGodqVSmVp5AGOV2fVLrbBERERER9QcWV3RCLd4AmtoCsGdQamXSqVBgYWpFRERERJmHxRX1KNLeIVClUGRQahVCmU3H1IqIiIiIMhKLK+pRsyeAFk8QdoM6qfOkKrVq84dh0qpQmMQCxkRERERE/YnFFXUTjkioavVBrVRAlSGpVVsghBKbHnoNUysiIiIiykwsrqibZk8QLZ4A7BmyrpU3EIFRq0KRlXOtiIiIiChzsbiiOOGIhCqHD1qVEkpFYkkTkLrUCgBcYhAlVj0MGlXC5yAiIiIi6m8srihOU/tcK1uGpFaeQBgGplZERERElAVYXFFMKCKhstUHvTqTUqsQSmw6GLVMrYiIiIgos7G4opjGtgAc3iCs+szoEOgNhKHXKFBkZYdAIiIiIsp8LK4IABAMRzsEGtSqjEmtnO1zrUxMrYiIiIgoC7C4IgBAY5sfTl8Q1gxZ18oXDEOnVnKuFRERERFlDRZXhEA4gupWEQaNCookkqb+SK3MuuSKPSIiIiKigcLiitDo9sMpZs5cK18wDK1SiSIbUysiIiIiyh4sroY4fyiCylYRJq06c1IrXwhFVh0sTK2IiIiIKIuwuBriGtx+tPnDsOiSaxqRqtRKDEagUQkotrFDIBERERFlFxZXQ5g/FEGVQ4RJq0oqaUplauUQgyi06pK+RJGIiIiIaKCxuBrC6l0iPP5QylKricXJpVb+UARqpYBSqyGp8RARERERpQOLqyFKDEZQ7RBh1qpTllrdmGxq5QuiyKKDRc91rYiIiIgo+7C4GqLqXCI8gTDMqUytypJLrZRKASU2fVIFGhERERFRurC4GoJ8wTCqHSKsOk3GpFZOMYhCM+daEREREVH2YnE1BNU6RfgCYZiSTK1eT1FqFQhHIAhMrYiIiIgou7G4GmI8gTBqnCKsBk1S52nxBPB2qlIrXwgFZi3sBqZWRERERJS9WFwNMXVOEb5gBCZtZqRWwbAEAChlakVEREREWY7F1RDS5g+h1inCrs+c1KrVF0S+WYscY3JjIiIiIiJKNxZXQ0itU4QYisCYIalVKCJBAFBqZ2pFRERERNmPxdUQ4faHUOf0w55Bc60c3vbUKskxERERERFlAhZXQ0StQ0QgLMGgyZzUSgJQYtNDoWBqRURERETZj8XVEODyhVDnEjMrtfIFkWfSIJdzrYiIiIhokEhrcbV8+XKcffbZMJvNKCgowLx583Dw4MGTHnPw4EHMmjULhYWF0Ol0GDVqFH7+858jFArF7bdu3TqMHz8eOp0OkydPxltvvdWfLyVjybKMGqcPwYgMvUaZ1LlSmVpFJBmldqZWRERERDR4pLW42r59OxYuXIgPP/wQW7ZsQSgUwuzZs+H1ek94jFqtxs0334x33nkHBw8exB/+8Ac8++yz+OUvfxnbZ+fOnZg/fz5uv/127N27F/PmzcO8efOwb9++gXhZGcUlhlDv9ic9rynV61rlmjTINWqTGhMRERERUSYRZFmW0z2IDk1NTSgoKMD27dtx0UUX9fq4JUuW4KOPPsL7778PALj++uvh9XqxcePG2D7nnnsupk6diqeffvqU53O73bBarXC5XLBYLH1/IRlClmXsr3Wj1imi2KpP6lzP7DiMv39ah4nFFvy/ayYnXFyFIxKaPAFMLbehwKJLakxERERERP2tL7VBRs25crlcAICcnJzYtgULFmDmzJknPObQoUN4++23cfHFF8e27dq1C5dddlncfnPmzMGuXbt6PEcgEIDb7Y67DQZOXzS1yqS5Vk4xhByjBrkmplZERERENLhkTHElSRIWL16M888/H5MmTYptLy4uxrBhw7rtf95550Gn02Hs2LG48MIL8eijj8Yeq6+vR2FhYdz+hYWFqK+v7/G5ly9fDqvVGruVl5en6FWljyzLqHL4ABnQqTNjrlVEkhEMR1CeY4CSc62IiIiIaJDJmOJq4cKF2LdvH1555ZW47cuXL8cLL7zQbf9XX30Ve/bswdq1a7Fp0yb87ne/S/i5ly5dCpfLFbtVVVUlfK5M0eoNotEdgM2gTuo8qZ1rFUSOScsOgUREREQ0KCW36FGKLFq0CBs3bsSOHTtQVlbWq2M60qWJEyciEongzjvvxI9+9CMolUoUFRWhoaEhbv+GhgYUFRX1eC6tVgutdvBcpiZJMqodImQAWlXmpFb+cATj7RaolBlT0xMRERERpUxa3+XKsoxFixZhw4YN2Lp1K0aOHJnQeSRJQigUgiRJAIAZM2bg3Xffjdtny5YtmDFjRtJjzgatviCa2gIZ1iEwiByjBnkmplZERERENDilNblauHAh1q5dizfffBNmszk2J8pqtUKvj3a3W7p0KWpqamKXBr700ktQq9WYPHkytFotdu/ejaVLl+L666+HWh29BO6+++7DxRdfjCeeeAJz587FK6+8gt27d+OZZ55JzwsdQJIko8YhAgA0quRq59SmVhLGFZuZWhERERHRoJXW4mr16tUA0K0b4PPPP48FCxYAAOrq6lBZWRl7TKVS4be//S2++OILyLKM4cOHY9GiRbj//vtj+5x33nlYu3Ytfv7zn+NnP/sZxo4dizfeeCOuUcZg1eINorHNn/QaUqlMrVxiCDaDGnnsEEhEREREg1hGrXOVKbJ1nauIJOPTaidavUEUmJNbQypV61pFJBkNbSImldpQakturS0iIiIiooGWtetcUXJaPAE0tQUyal0rtxiCVa9BPlMrIiIiIhrkWFwNEhEpuq6VSqGAOsl5TamaayXJMnyhMMrs+qTnfxERERERZTq+4x0kmj0BtHiCsGfQulZuMQSbXoN8M1MrIiIiIhr8WFwNAuGIhKpWH9RKRdLd+FKZWnmDYZTadUmvtUVERERElA1YXA0CzZ4gmj2ZNdeqzR+GRadGgSW5xhpERERERNmCxVWWC0UkVLZ6oVMpoVQkXgwBqUutZFmGJxCda8XUioiIiIiGChZXWa6pLYBWbwi2DEqt3P4wzDoVUysiIiIiGlJYXGWxYFhCZasPenVmpVZtgRDK7Hro1EytiIiIiGjoYHGVxZo8AbjEIKz6zOkQ2OYPw6xVoZCpFRERERENMSyuslQwHO0QqFepmFoREREREWUAFldZqsHth9MXhDWF61rNTzK18gTCMGpVKLTokxoTEREREVE2YnGVhQLhCKodPhg1KiiSKIaAr1KrCcUWTEkitQIAtz+EUpseeg1TKyIiIiIaelhcZaEGlx8uMQRLknOtWr1BbN7fACD5uVYefxgGjQpFVs61IiIiIqKhicVVlvGHIqhyiDBp1SlJrYIRKSWplUsMotSmh0GjSuo8RERERETZisVVlmlw+9HmD8OiS66IafUG8fa+1HQI9ATC0GuVTK2IiIiIaEhjcZVFxGBHaqVKqhgCUp1aRedaGbVMrYiIiIho6GJxlUXqXSI8/lBGpVbeQBh6tQJFVnYIJCIiIqKhjcVVlvAFw6h2irDo1BmVWjnFIIqtepiYWhERERHREMfiKkvUOf3wBsJJFzGpTK18wTB0aiWKbJxrRURERETE4ioLeANh1DhFWHWajEqtHL4giiw6WHTJtYQnIiIiIhoMWFxlgVZvMJpaZdBcK18wDJ1KiWIb51oREREREQEsrrKCJMtJr2kFpHiulS+EQqsW1iQXMiYiIiIiGixYXA0RqUyt/KEINCoBJVZDqoZHRERERJT1WFwNEamea1Vo0cFqYGpFRERERNSBxdUQkOrUSqUUUMK5VkREREREcVhcDQGpXteq0KzjXCsiIiIioi5YXA1yqUytAuEIBCGaWiXbEp6IiIiIaLBhcTXIpbpDYJFFBxvnWhERERERdcPiahBLZWoVDEsAwNSKiIiIiOgEWFwNYqlMrVp9QRRYtLAztSIiIiIi6hGLq0Eq1amVAKCUqRURERER0QmxuBqkUr2uVb5ZC7tBk6LRERERERENPiyuBqFUplahiAQZQKldD4WCqRURERER0Ymktbhavnw5zj77bJjNZhQUFGDevHk4ePBgr48/dOgQzGYzbDZbt8fWrVuH8ePHQ6fTYfLkyXjrrbdSOPLMltLUyhtEvkmDHKZWREREREQnldbiavv27Vi4cCE+/PBDbNmyBaFQCLNnz4bX6z3lsaFQCPPnz8eFF17Y7bGdO3di/vz5uP3227F3717MmzcP8+bNw759+/rjZWSUVKdWEmSU2g1MrYiIiIiITkGQZVlO9yA6NDU1oaCgANu3b8dFF1100n1/+tOfora2FpdeeikWL14Mp9MZe+z666+H1+vFxo0bY9vOPfdcTJ06FU8//fQpx+F2u2G1WuFyuWCxWBJ+PalyvMWLA3VtKLHpT7nvs+8fwd8+qcWEYgt+e83kpIqrxjY/cowaTCmzsbgiIiIioiGpL7VBRs25crlcAICcnJzYtgULFmDmzJlx+23duhXr1q3DypUrezzPrl27cNlll8VtmzNnDnbt2tXj/oFAAG63O+6WjVKZWoUjEiKSjFIb51oREREREfVGxhRXkiRh8eLFOP/88zFp0qTY9uLiYgwbNix2v6WlBQsWLMCaNWtOWDnW19ejsLAwblthYSHq6+t73H/58uWwWq2xW3l5eQpe0cBLbYfAEHJNGuSatCkaHRERERHR4KZK9wA6LFy4EPv27cMHH3wQt3358uVx97///e/jxhtvPOVlg32xdOlSLFmyJHbf7XZnXYGV6tQqLEkosxugZGpFRERERNQrGZFcLVq0CBs3bsR7772HsrKyk+67detW/O53v4NKpYJKpcLtt98Ol8sFlUqF//3f/wUAFBUVoaGhIe64hoYGFBUV9XhOrVYLi8USd8s2qUytnGIIOUYN8phaERERERH1WlqTK1mW8cMf/hAbNmzAtm3bMHLkyFMes2vXLkQikdj9N998E7/97W+xc+dOlJaWAgBmzJiBd999F4sXL47tt2XLFsyYMSPlryETpDK1ikgyguEIyuwWplZERERERH2Q1uJq4cKFWLt2Ld58802YzebYnCir1Qq9PtoZb+nSpaipqcELL7wAAJgwYULcOXbv3g2FQhE3T+u+++7DxRdfjCeeeAJz587FK6+8gt27d+OZZ54ZoFc2sFKaWvmCyDFpkWfiulZERERERH2R1ssCV69eDZfLhZkzZ6K4uDh2e/XVV2P71NXVobKysk/nPe+887B27Vo888wzmDJlCtavX4833ngjrgAbLFKdWgUiEsrseqiUGXHFKBERERFR1sioda4yRTatc5XKda1avUHoNQpMG2aHmsUVEREREVH2rnNFfdM5tZp/dnnSqZUYCqPMbmBhRURERESUAL6LzmKxuVZFZkwttyV1LrcYgs2gQb6ZHQKJiIiIiBLB4ipLxaVWSc61kmQZYjiM8hymVkREREREieI76SyVytTKJYZg1WmQz3WtiIiIiIgSxuIqC6U8tQqGUZajh0bFHwciIiIiokTx3XQWSvVcK4tezblWRERERERJYnGVZVKZWsmyDG8wjDK7HlqVMlVDJCIiIiIaklhcZZmUplb+MMw6NfLNutQMjoiIiIhoCGNxlUVSnVp5AmGU2/XQqZlaEREREREli8VVFkl1amXSqVBgYWpFRERERJQKLK6yhMsXSnFqFUKZTcfUioiIiIgoRVhcZYnNn9enLLVq84dh0qpQaNGnZnBERERERMTiKhu0eALY8WUTgNSkVm2BEEpseug1TK2IiIiIiFKFxVUWePnfVQhF5JSkVp5AGEatCkVWzrUiIiIiIkolFlcZrtHtx5uf1AJIPrUCoosGl1j1MGhUqRgeERERERG1Y3GV4Z7efgTBsITR+caUpFYGplZERERERP2CxVWGmzrMhjK7HleeUZJ0auUSQyix6WDUMrUiIiIiIko1vsvOcFdNKcGkEgu+qG9L6jzeQBh6jQJFVnYIJCIiIiLqD0yusoBSISSdWjnFIEqsepiYWhERERER9QsWV0OALxiGTq3kXCsiIiIion7E4moI6EitzDp1uodCRERERDRosbga5HzBMLRKJYpsTK2IiIiIiPoTi6tBzukLociqg4WpFRERERFRv2JxNYiJwQg0KgHFNnYIJCIiIiLqbyyuBjGHGEShVQernqkVEREREVF/Y3E1SPlDEaiVAkqthnQPhYiIiIhoSGBxNUg5fEEUWXSw6LmuFRERERHRQGBxNQj5QxEolQJKbPqkFx8mIiIiIqLeYXE1CDnFIArNnGtFRERERDSQWFwNMoFwBILA1IqIiIiIaKCxuBpknL4QCsxa2A1MrYiIiIiIBhKLq0EkGJYAAKVMrYiIiIiIBhyLq0Gk1RdEvlmLHKMm3UMhIiIiIhpyWFwNEqGIBAFAqZ2pFRERERFROqS1uFq+fDnOPvtsmM1mFBQUYN68eTh48OBJjzl27BgEQeh2+/DDD+P2W7duHcaPHw+dTofJkyfjrbfe6s+XknYOb3tqZWBqRURERESUDmktrrZv346FCxfiww8/xJYtWxAKhTB79mx4vd5THvvPf/4TdXV1sdv06dNjj+3cuRPz58/H7bffjr1792LevHn4/+3dfXBU1R3G8SdhyRthk5BXMEHCWIQSSkKLGImmtTQZa6Wx7ZQJ1dZOaauEAaQFTUuNaDvUUqa1VBSxBOuYhloQGbRQa8CCxrZooFlEQEykFBJ8yxsGyMvpH0x2WLOQAPfu3g3fz8zOuPeePXvuw+GQn3f3pKioSB6Px87LCZqOrm51SxoRH63wcO5aAQAAAMEQZowxwR5Ej/fee08pKSl6+eWXdcMNN/htU19fr8zMTNXU1Cg7O9tvmxkzZujEiRPavHmz99i1116r7OxsPfbYY32Oo6WlRXFxcWpubpbb7b6oa7HSux+c0FvHWjUiPtrv+eOtJzVsSIQmpsdTXAEAAAAWupDawFHfuWpubpYkDRs2zHvsjjvu0Oc///lebadPn66UlBTl5eVp06ZNPueqq6s1bdo0n2OFhYWqrq72+76nTp1SS0uLzyNUdHR1q6vb6IoE7loBAAAAweSY4qq7u1vz58/X1KlTlZWV5T0+fPhwjRw50vs8NjZWy5cv1zPPPKPnn39eeXl5Kioq8imwGhoalJqa6tN/amqqGhoa/L730qVLFRcX531kZGRYfHX2afq4Q4mxEUocEhnsoQAAAACXNVewB9CjpKREHo9HO3fu9Dm+dOlSn+dJSUlasGCB9/nkyZN19OhRLVu2TNOnT7+o9y4tLfXps6WlJSQKrM6ubnV2dysjIUaDuGsFAAAABJUjiqs5c+Zo8+bN+sc//qH09PQLfv2UKVP04osvep+npaWpsbHRp01jY6PS0tL8vj4yMlKRkaF356epvUPDhkQoMTb0xg4AAAAMNEH9WKAxRnPmzNGzzz6rqqoqZWZmXlQ/u3fv1vDhw73Pc3Nz9dJLL/m0efHFF5Wbm3tJ43WSrm6j051dyhjGXSsAAADACYJ656qkpEQVFRV67rnnNHToUO93ouLi4hQdfWZnvNLSUv3vf//TH//4R0nSk08+qYiICOXk5EiSNmzYoDVr1uiJJ57w9jtv3jzl5+dr+fLluvnmm1VZWaldu3bp8ccfD/AV2qfp49MaFhupxCH8XisAAADACYJaXD366KOS1Gs3wPLyct1xxx2SpGPHjunw4cM+5x988EG9++67crlcGjt2rNatW6dvfOMb3vPXXXedKioqtHjxYv3kJz/Rpz71KW3cuNFno4xQ1tVtdLKzS2MT3HINcsyeJAAAAMBlzVG/58opnP57rj5oO6WYyEGaNDKB4goAAACwUcj+niv07cxdq25lDIuhsAIAAAAchJ/OQ0xze4fiYwYriR0CAQAAAEehuAohZ+5adSpjWIwGc9cKAAAAcBR+Qg8hLe0diouOUDJ3rQAAAADHobgKEcZIH3d0Kj0hWhEu/tgAAAAAp+Gn9BDR3tGl+OgIJQ/lrhUAAADgRBRXIWKwK0xXJEQp0jUo2EMBAAAA4AfFVYgYFhOhFHdUsIcBAAAA4BworkJAdMQgjUqK4a4VAAAA4GCuYA8AfUsZyh0rAAAAwOm4cwUAAAAAFqC4AgAAAAALUFwBAAAAgAUorgAAAADAAhRXAAAAAGABiisAAAAAsADFFQAAAABYgOIKAAAAACxAcQUAAAAAFqC4AgAAAAALUFwBAAAAgAUorgAAAADAAhRXAAAAAGABiisAAAAAsADFFQAAAABYgOIKAAAAACxAcQUAAAAAFqC4AgAAAAALuII9ACcyxkiSWlpagjwSAAAAAMHUUxP01AjnQ3HlR2trqyQpIyMjyCMBAAAA4AStra2Ki4s7b5sw058S7DLT3d2to0ePaujQoQoLCwv2cNTS0qKMjAz997//ldvtDvZwBhzytRf52ot87UW+9iJfe5GvvcjXXk7K1xij1tZWjRgxQuHh5/9WFXeu/AgPD1d6enqwh9GL2+0O+uQayMjXXuRrL/K1F/nai3ztRb72Il97OSXfvu5Y9WBDCwAAAACwAMUVAAAAAFiA4ioEREZGqqysTJGRkcEeyoBEvvYiX3uRr73I117kay/ytRf52itU82VDCwAAAACwAHeuAAAAAMACFFcAAAAAYAGKKwAAAACwAMUVAAAAAFiA4soiS5cu1eTJkzV06FClpKSoqKhI+/fv92lz8uRJlZSUKDExUbGxsfr617+uxsZG7/k9e/aouLhYGRkZio6O1rhx4/Twww/3eq/t27dr0qRJioyM1FVXXaW1a9f2Ob7//Oc/uv766xUVFaWMjAz96le/uuRrDjQnZ1xfX6+wsLBej9dee82Saw+EQOV77NgxzZw5U2PGjFF4eLjmz5/fr/EdPnxYN998s2JiYpSSkqKFCxeqs7Pzkq87UJyer7/5W1lZecnXHSiBynfDhg360pe+pOTkZLndbuXm5mrr1q19ji/U12An58v6e0Z/8t25c6emTp2qxMRERUdHa+zYsfrNb37T5/iYv/bly/w9o78/n/V45ZVX5HK5lJ2d3ef4Aj5/DSxRWFhoysvLjcfjMbt37zZf/vKXzciRI01bW5u3zZ133mkyMjLMSy+9ZHbt2mWuvfZac91113nP/+EPfzBz584127dvN4cOHTJPPfWUiY6ONitWrPC2eeedd0xMTIxZsGCBefPNN82KFSvMoEGDzJYtW845tubmZpOammq+9a1vGY/HY/70pz+Z6Ohos2rVKnvCsImTM66rqzOSzN///ndz7Ngx7+P06dP2hGGDQOVbV1dn5s6da5588kmTnZ1t5s2b1+fYOjs7TVZWlpk2bZqpqakxL7zwgklKSjKlpaWWZmAnJ+drjDGSTHl5uc/8bW9vt+z67RaofOfNm2ceeugh869//cscOHDAlJaWmsGDB5s33njjnGMbCGuwk/Nl/T2jP/m+8cYbpqKiwng8HlNXV2eeeuopExMTc965yPw9w658mb9n9CffHh999JEZPXq0KSgoMBMnTjzv2IIxfymubHL8+HEjybz88svGGGOamprM4MGDzTPPPONts2/fPiPJVFdXn7Of2bNnmy984Qve54sWLTLjx4/3aTNjxgxTWFh4zj5WrlxpEhISzKlTp7zH7rnnHnP11Vdf8HU5iZMy7lkca2pqLvJqnMeufM+Wn5/frx/+X3jhBRMeHm4aGhq8xx599FHjdrt95nUocVK+xpwprp599tl+j9/pApFvj09/+tNmyZIl5zw/ENdgJ+XL+ntp+d56663mtttuO+d55q+9+TJ/LzzfGTNmmMWLF5uysrI+i6tgzF8+FmiT5uZmSdKwYcMkSa+//ro6Ojo0bdo0b5uxY8dq5MiRqq6uPm8/PX1IUnV1tU8fklRYWHjePqqrq3XDDTcoIiLC5zX79+/XRx99dGEX5iBOyrjH9OnTlZKSory8PG3atOmCrsdp7Mr3YlRXV2vChAlKTU31HissLFRLS4v27t17SX0Hi5Py7VFSUqKkpCRdc801WrNmjUwI/xrEQOXb3d2t1tbW87YZiGuwk/Ltwfrrv5/zZVdTU6NXX31V+fn552zD/LU33x7MX//9fDLf8vJyvfPOOyorK+vXWIIxf1229HqZ6+7u1vz58zV16lRlZWVJkhoaGhQREaH4+HiftqmpqWpoaPDbz6uvvqp169bp+eef9x5raGjw+QGzp4+Wlha1t7crOjq6Vz8NDQ3KzMzs9ZqecwkJCRd8jcHmtIxjY2O1fPlyTZ06VeHh4Vq/fr2Kioq0ceNGTZ8+/RKvNvDszPdinOvPpOdcqHFavpL0wAMP6MYbb1RMTIz+9re/afbs2Wpra9PcuXMvue9AC2S+v/71r9XW1qZvfvOb52wz0NZgp+XL+nvh+aanp+u9995TZ2en7r//fs2aNeuc42H+2psv87f/+R48eFD33nuvduzYIZerfyVMMOYvxZUNSkpK5PF4tHPnzovuw+Px6Ktf/arKyspUUFBg4egGBqdlnJSUpAULFnifT548WUePHtWyZctCcnF0Wr4DjRPz/dnPfub975ycHJ04cULLli0LyeIqUPlWVFRoyZIleu6555SSknLR7xVqnJYv629vfeW7Y8cOtbW16bXXXtO9996rq666SsXFxZcy7JDhtHyZv735y7erq0szZ87UkiVLNGbMGKuGaws+FmixOXPmaPPmzdq2bZvS09O9x9PS0nT69Gk1NTX5tG9sbFRaWprPsTfffFNf/OIX9YMf/ECLFy/2OZeWluazu0pPH2632+8dlfO9pudcqHFixv5MmTJFb7/9dr/bO4Xd+V6MgTSHnZivP1OmTNGRI0d06tQpW/q3S6Dyrays1KxZs/TnP/+518eIP4n5a2++/rD+nj/fzMxMTZgwQd///vd199136/777z/nmJi/9ubrD/O3d76tra3atWuX5syZI5fLJZfLpQceeEB79uyRy+VSVVWV3zEFZf7a9m2uy0x3d7cpKSkxI0aMMAcOHOh1vufLfH/5y1+8x956661eX+bzeDwmJSXFLFy40O/7LFq0yGRlZfkcKy4u7teGFmfvPFNaWhpyX0Z1csb+zJo1y+Tk5FzQa4IpUPme7UI3tGhsbPQeW7VqlXG73ebkyZN9vt4JnJyvPz//+c9NQkLCRb02GAKZb0VFhYmKijIbN27s19gGwhrs5Hz9Yf3te33osWTJEnPllVee8zzz1958/WH+9s63q6vL1NbW+jzuuusuc/XVV5va2lqfnQnPFoz5S3FlkbvuusvExcWZ7du3+2yl+fHHH3vb3HnnnWbkyJGmqqrK7Nq1y+Tm5prc3Fzv+draWpOcnGxuu+02nz6OHz/ubdOzTfjChQvNvn37zCOPPNJrm/AVK1aYG2+80fu8qanJpKammttvv914PB5TWVnZ59agTuTkjNeuXWsqKirMvn37zL59+8wvfvELEx4ebtasWWNzKtYJVL7GGFNTU2NqamrMZz/7WTNz5kxTU1Nj9u7d6z2/YcMGn4WvZyv2goICs3v3brNlyxaTnJwcUluxOznfTZs2mdWrV5va2lpz8OBBs3LlShMTE2Puu+8+GxOxVqDyffrpp43L5TKPPPKIT5umpiZvm4G4Bjs5X9bfM/qT7+9//3uzadMmc+DAAXPgwAHzxBNPmKFDh5qf/vSn3jbM38Dmy/w9o7//vp3N326BTpi/FFcWkeT3UV5e7m3T3t5uZs+ebRISEkxMTIy59dZbzbFjx7zny8rK/Pbxyf/jsW3bNpOdnW0iIiLM6NGjfd6jp59PvmbPnj0mLy/PREZGmiuuuML88pe/tDgB+zk547Vr15px48aZmJgY43a7zTXXXOOz5WgoCGS+fbUpLy83n7yxXl9fb2666SYTHR1tkpKSzI9+9CPT0dFhRxS2cHK+f/3rX012draJjY01Q4YMMRMnTjSPPfaY6erqsisOywUq3/z8fL9tvvOd7/j0M9DWYCfny/p7Rn/y/d3vfmfGjx/vzSonJ8esXLnS5+868zew+TJ/z+jvv29n81dcOWH+hhkTwnvtAgAAAIBDsKEFAAAAAFiA4goAAAAALEBxBQAAAAAWoLgCAAAAAAtQXAEAAACABSiuAAAAAMACFFcAAAAAYAGKKwAAAACwAMUVAAAAAFiA4goAMOAZYzRt2jQVFhb2Ordy5UrFx8fryJEjQRgZAGAgobgCAAx4YWFhKi8v1z//+U+tWrXKe7yurk6LFi3SihUrlJ6ebul7dnR0WNofAMD5KK4AAJeFjIwMPfzww/rxj3+suro6GWP0ve99TwUFBcrJydFNN92k2NhYpaam6vbbb9f777/vfe2WLVuUl5en+Ph4JSYm6itf+YoOHTrkPV9fX6+wsDCtW7dO+fn5ioqK0tNPPx2MywQABFGYMcYEexAAAARKUVGRmpub9bWvfU0PPvig9u7dq/Hjx2vWrFn69re/rfb2dt1zzz3q7OxUVVWVJGn9+vUKCwvTZz7zGbW1tem+++5TfX29du/erfDwcNXX1yszM1OjRo3S8uXLlZOTo6ioKA0fPjzIVwsACCSKKwDAZeX48eMaP368PvzwQ61fv14ej0c7duzQ1q1bvW2OHDmijIwM7d+/X2PGjOnVx/vvv6/k5GTV1tYqKyvLW1z99re/1bx58wJ5OQAAB+FjgQCAy0pKSop++MMfaty4cSoqKtKePXu0bds2xcbGeh9jx46VJO9H/w4ePKji4mKNHj1abrdbo0aNkiQdPnzYp+/Pfe5zAb0WAICzuII9AAAAAs3lcsnlOvNPYFtbm2655RY99NBDvdr1fKzvlltu0ZVXXqnVq1drxIgR6u7uVlZWlk6fPu3TfsiQIfYPHgDgWBRXAIDL2qRJk7R+/XqNGjXKW3Cd7YMPPtD+/fu1evVqXX/99ZKknTt3BnqYAIAQwMcCAQCXtZKSEn344YcqLi7Wv//9bx06dEhbt27Vd7/7XXV1dSkhIUGJiYl6/PHH9fbbb6uqqkoLFiwI9rABAA5EcQUAuKyNGDFCr7zyirq6ulRQUKAJEyZo/vz5io+PV3h4uMLDw1VZWanXX39dWVlZuvvuu7Vs2bJgDxsA4EDsFggAAAAAFuDOFQAAAABYgOIKAAAAACxAcQUAAAAAFqC4AgAAAAALUFwBAAAAgAUorgAAAADAAhRXAAAAAGABiisAAAAAsADFFQAAAABYgOIKAAAAACxAcQUAAAAAFvg/i09gv8R6Gi0AAAAASUVORK5CYII=" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "execution_count": 68 + ] } ], "metadata": { diff --git a/project/Modeling.ipynb b/project/Modeling.ipynb index 150238a..dd54b75 100644 --- a/project/Modeling.ipynb +++ b/project/Modeling.ipynb @@ -22,11 +22,1849 @@ "Copy over the important cells from the previous step that read in and cleaned your data to this new notebook file. You do not need to copy over all your EDA and plots describing your data, only the code that prepares your data for modeling. This notebook is about exploring the development of predictive models. Some initial preliminary work on applying some modeling techniques should be completed.\n", "Be sure to commit and push all supporting code that you've completed in this file. Include in this notebook a summary cell at the top that details your accomplishments, challenges, and what you expect to accomplish for your final steps. Be sure to update your readme.md in your repository." ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "# Importing Libraries\n", + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "import os\n", + "\n", + "import fastf1\n", + "import fastf1.plotting\n", + "from fastf1.ergast.structure import FastestLap\n", + "\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.preprocessing import StandardScaler\n", + "from sklearn.linear_model import LinearRegression\n", + "from sklearn.ensemble import RandomForestRegressor\n", + "from sklearn.metrics import mean_squared_error, r2_score\n", + "from sklearn.tree import DecisionTreeRegressor\n", + "from sklearn.ensemble import GradientBoostingRegressor\n", + "from sklearn.svm import SVR\n", + "import xgboost as xgb" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# FastF1 general setup\n", + "cache_dir = '../data/cache'\n", + "if not os.path.exists(cache_dir):\n", + " os.makedirs(cache_dir)\n", + "\n", + "fastf1.Cache.enable_cache(cache_dir)\n", + "fastf1.plotting.setup_mpl(misc_mpl_mods=False, color_scheme=None)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# Define years and sessions of interest\n", + "years = [2021, 2022, 2023, 2024]\n", + "sessions = ['Q', 'Race'] # Qualifying and Race sessions\n", + "# events = ['Brazil', 'Australia', 'Italy', 'United States'] \n", + "events = ['Great Britain', 'Mexico', 'Brazil', 'Bahrain', 'United States'] " + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "core INFO \tLoading data for São Paulo Grand Prix - Qualifying [v3.4.4]\n", + "req INFO \tNo cached data found for session_info. Loading data...\n", + "_api INFO \tFetching session info data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for driver_info. Loading data...\n", + "_api INFO \tFetching driver list...\n", + "req INFO \tData has been written to cache!\n", + "logger WARNING \tFailed to load result data from Ergast!\n", + "core WARNING \tNo result data for this session available on Ergast! (This is expected for recent sessions)\n", + "req INFO \tNo cached data found for session_status_data. Loading data...\n", + "_api INFO \tFetching session status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for track_status_data. Loading data...\n", + "_api INFO \tFetching track status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for _extended_timing_data. Loading data...\n", + "_api INFO \tFetching timing data...\n", + "_api INFO \tParsing timing data...\n", + "_api WARNING \tDriver 9: Ignoring late data for a previously processed lap.The data may contain errors (previous: 9; current 10)\n", + "_api WARNING \tDriver 10: Ignoring late data for a previously processed lap.The data may contain errors (previous: 16; current 17)\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for timing_app_data. Loading data...\n", + "_api INFO \tFetching timing app data...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tProcessing timing data...\n", + "req INFO \tNo cached data found for car_data. Loading data...\n", + "_api INFO \tFetching car data...\n", + "_api INFO \tParsing car data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for position_data. Loading data...\n", + "_api INFO \tFetching position data...\n", + "_api INFO \tParsing position data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for weather_data. Loading data...\n", + "_api INFO \tFetching weather data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for race_control_messages. Loading data...\n", + "_api INFO \tFetching race control messages...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tFinished loading data for 20 drivers: ['44', '33', '77', '11', '10', '55', '16', '4', '3', '14', '31', '5', '22', '7', '99', '18', '6', '63', '47', '9']\n", + "core INFO \tLoading data for São Paulo Grand Prix - Race [v3.4.4]\n", + "req INFO \tNo cached data found for session_info. Loading data...\n", + "_api INFO \tFetching session info data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for driver_info. Loading data...\n", + "_api INFO \tFetching driver list...\n", + "req INFO \tData has been written to cache!\n", + "logger WARNING \tFailed to load result data from Ergast!\n", + "core WARNING \tNo result data for this session available on Ergast! (This is expected for recent sessions)\n", + "req INFO \tNo cached data found for session_status_data. Loading data...\n", + "_api INFO \tFetching session status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for lap_count. Loading data...\n", + "_api INFO \tFetching lap count data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for track_status_data. Loading data...\n", + "_api INFO \tFetching track status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for _extended_timing_data. Loading data...\n", + "_api INFO \tFetching timing data...\n", + "_api INFO \tParsing timing data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for timing_app_data. Loading data...\n", + "_api INFO \tFetching timing app data...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tProcessing timing data...\n", + "logger WARNING \tFailed to add first lap time from Ergast!\n", + "req INFO \tNo cached data found for car_data. Loading data...\n", + "_api INFO \tFetching car data...\n", + "_api INFO \tParsing car data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for position_data. Loading data...\n", + "_api INFO \tFetching position data...\n", + "_api INFO \tParsing position data...\n", + "_api WARNING \tDriver 241: Position data is incomplete!\n", + "_api WARNING \tDriver 242: Position data is incomplete!\n", + "_api WARNING \tDriver 243: Position data is incomplete!\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for weather_data. Loading data...\n", + "_api INFO \tFetching weather data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for race_control_messages. Loading data...\n", + "_api INFO \tFetching race control messages...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tFinished loading data for 20 drivers: ['77', '33', '55', '11', '4', '16', '10', '31', '5', '44', '3', '14', '99', '18', '22', '6', '63', '47', '9', '7']\n", + "events WARNING \tCorrecting user input 'Australia' to 'Austrian Grand Prix'\n", + "core INFO \tLoading data for Austrian Grand Prix - Qualifying [v3.4.4]\n", + "req INFO \tNo cached data found for session_info. Loading data...\n", + "_api INFO \tFetching session info data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for driver_info. Loading data...\n", + "_api INFO \tFetching driver list...\n", + "req INFO \tData has been written to cache!\n", + "logger WARNING \tFailed to load result data from Ergast!\n", + "core WARNING \tNo result data for this session available on Ergast! (This is expected for recent sessions)\n", + "req INFO \tNo cached data found for session_status_data. Loading data...\n", + "_api INFO \tFetching session status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for track_status_data. Loading data...\n", + "_api INFO \tFetching track status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for _extended_timing_data. Loading data...\n", + "_api INFO \tFetching timing data...\n", + "_api INFO \tParsing timing data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for timing_app_data. Loading data...\n", + "_api INFO \tFetching timing app data...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tProcessing timing data...\n", + "req INFO \tNo cached data found for car_data. Loading data...\n", + "_api INFO \tFetching car data...\n", + "_api INFO \tParsing car data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for position_data. Loading data...\n", + "_api INFO \tFetching position data...\n", + "_api INFO \tParsing position data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for weather_data. Loading data...\n", + "_api INFO \tFetching weather data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for race_control_messages. Loading data...\n", + "_api INFO \tFetching race control messages...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tFinished loading data for 20 drivers: ['33', '4', '11', '44', '77', '10', '22', '5', '63', '18', '55', '16', '3', '14', '99', '7', '31', '6', '47', '9']\n", + "events WARNING \tCorrecting user input 'Australia' to 'Austrian Grand Prix'\n", + "core INFO \tLoading data for Austrian Grand Prix - Race [v3.4.4]\n", + "req INFO \tNo cached data found for session_info. Loading data...\n", + "_api INFO \tFetching session info data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for driver_info. Loading data...\n", + "_api INFO \tFetching driver list...\n", + "req INFO \tData has been written to cache!\n", + "logger WARNING \tFailed to load result data from Ergast!\n", + "core WARNING \tNo result data for this session available on Ergast! (This is expected for recent sessions)\n", + "req INFO \tNo cached data found for session_status_data. Loading data...\n", + "_api INFO \tFetching session status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for lap_count. Loading data...\n", + "_api INFO \tFetching lap count data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for track_status_data. Loading data...\n", + "_api INFO \tFetching track status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for _extended_timing_data. Loading data...\n", + "_api INFO \tFetching timing data...\n", + "_api INFO \tParsing timing data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for timing_app_data. Loading data...\n", + "_api INFO \tFetching timing app data...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tProcessing timing data...\n", + "logger WARNING \tFailed to add first lap time from Ergast!\n", + "req INFO \tNo cached data found for car_data. Loading data...\n", + "_api INFO \tFetching car data...\n", + "_api INFO \tParsing car data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for position_data. Loading data...\n", + "_api INFO \tFetching position data...\n", + "_api INFO \tParsing position data...\n", + "_api WARNING \tDriver 241: Position data is incomplete!\n", + "_api WARNING \tDriver 242: Position data is incomplete!\n", + "_api WARNING \tDriver 243: Position data is incomplete!\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for weather_data. Loading data...\n", + "_api INFO \tFetching weather data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for race_control_messages. Loading data...\n", + "_api INFO \tFetching race control messages...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tFinished loading data for 20 drivers: ['33', '4', '11', '44', '77', '10', '22', '63', '18', '55', '5', '16', '3', '14', '99', '7', '31', '6', '47', '9']\n", + "events WARNING \tCorrecting user input 'Italy' to 'Italian Grand Prix'\n", + "core INFO \tLoading data for Italian Grand Prix - Qualifying [v3.4.4]\n", + "req INFO \tNo cached data found for session_info. Loading data...\n", + "_api INFO \tFetching session info data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for driver_info. Loading data...\n", + "_api INFO \tFetching driver list...\n", + "req INFO \tData has been written to cache!\n", + "logger WARNING \tFailed to load result data from Ergast!\n", + "core WARNING \tNo result data for this session available on Ergast! (This is expected for recent sessions)\n", + "req INFO \tNo cached data found for session_status_data. Loading data...\n", + "_api INFO \tFetching session status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for track_status_data. Loading data...\n", + "_api INFO \tFetching track status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for _extended_timing_data. Loading data...\n", + "_api INFO \tFetching timing data...\n", + "_api INFO \tParsing timing data...\n", + "_api WARNING \tDriver 16: Encountered 1 timing integrity error(s) near lap(s): [6].\n", + "This might be a bug and should be reported.\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for timing_app_data. Loading data...\n", + "_api INFO \tFetching timing app data...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tProcessing timing data...\n", + "core WARNING \tDriver 16: Lap timing integrity check failed for 1 lap(s)\n", + "req INFO \tNo cached data found for car_data. Loading data...\n", + "_api INFO \tFetching car data...\n", + "_api INFO \tParsing car data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for position_data. Loading data...\n", + "_api INFO \tFetching position data...\n", + "_api INFO \tParsing position data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for weather_data. Loading data...\n", + "_api INFO \tFetching weather data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for race_control_messages. Loading data...\n", + "_api INFO \tFetching race control messages...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tFinished loading data for 20 drivers: ['77', '44', '33', '4', '3', '10', '55', '16', '11', '99', '5', '18', '14', '31', '63', '6', '22', '47', '88', '9']\n", + "events WARNING \tCorrecting user input 'Italy' to 'Italian Grand Prix'\n", + "core INFO \tLoading data for Italian Grand Prix - Race [v3.4.4]\n", + "req INFO \tNo cached data found for session_info. Loading data...\n", + "_api INFO \tFetching session info data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for driver_info. Loading data...\n", + "_api INFO \tFetching driver list...\n", + "req INFO \tData has been written to cache!\n", + "logger WARNING \tFailed to load result data from Ergast!\n", + "core WARNING \tNo result data for this session available on Ergast! (This is expected for recent sessions)\n", + "req INFO \tNo cached data found for session_status_data. Loading data...\n", + "_api INFO \tFetching session status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for lap_count. Loading data...\n", + "_api INFO \tFetching lap count data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for track_status_data. Loading data...\n", + "_api INFO \tFetching track status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for _extended_timing_data. Loading data...\n", + "_api INFO \tFetching timing data...\n", + "_api INFO \tParsing timing data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for timing_app_data. Loading data...\n", + "_api INFO \tFetching timing app data...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tProcessing timing data...\n", + "logger WARNING \tFailed to add first lap time from Ergast!\n", + "req INFO \tNo cached data found for car_data. Loading data...\n", + "_api INFO \tFetching car data...\n", + "_api INFO \tParsing car data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for position_data. Loading data...\n", + "_api INFO \tFetching position data...\n", + "_api INFO \tParsing position data...\n", + "_api WARNING \tDriver 241: Position data is incomplete!\n", + "_api WARNING \tDriver 242: Position data is incomplete!\n", + "_api WARNING \tDriver 243: Position data is incomplete!\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for weather_data. Loading data...\n", + "_api INFO \tFetching weather data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for race_control_messages. Loading data...\n", + "_api INFO \tFetching race control messages...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tFinished loading data for 20 drivers: ['33', '3', '4', '44', '16', '55', '99', '11', '18', '14', '5', '31', '6', '63', '22', '9', '88', '47', '77', '10']\n", + "core INFO \tLoading data for United States Grand Prix - Qualifying [v3.4.4]\n", + "req INFO \tNo cached data found for session_info. Loading data...\n", + "_api INFO \tFetching session info data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for driver_info. Loading data...\n", + "_api INFO \tFetching driver list...\n", + "req INFO \tData has been written to cache!\n", + "logger WARNING \tFailed to load result data from Ergast!\n", + "core WARNING \tNo result data for this session available on Ergast! (This is expected for recent sessions)\n", + "req INFO \tNo cached data found for session_status_data. Loading data...\n", + "_api INFO \tFetching session status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for track_status_data. Loading data...\n", + "_api INFO \tFetching track status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for _extended_timing_data. Loading data...\n", + "_api INFO \tFetching timing data...\n", + "_api INFO \tParsing timing data...\n", + "_api WARNING \tDriver 22: Ignoring late data for a previously processed lap.The data may contain errors (previous: 10; current 11)\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for timing_app_data. Loading data...\n", + "_api INFO \tFetching timing app data...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tProcessing timing data...\n", + "req INFO \tNo cached data found for car_data. Loading data...\n", + "_api INFO \tFetching car data...\n", + "_api INFO \tParsing car data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for position_data. Loading data...\n", + "_api INFO \tFetching position data...\n", + "_api INFO \tParsing position data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for weather_data. Loading data...\n", + "_api INFO \tFetching weather data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for race_control_messages. Loading data...\n", + "_api INFO \tFetching race control messages...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tFinished loading data for 20 drivers: ['33', '44', '11', '77', '16', '55', '3', '4', '10', '22', '31', '5', '99', '63', '14', '18', '6', '7', '47', '9']\n", + "core INFO \tLoading data for United States Grand Prix - Race [v3.4.4]\n", + "req INFO \tNo cached data found for session_info. Loading data...\n", + "_api INFO \tFetching session info data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for driver_info. Loading data...\n", + "_api INFO \tFetching driver list...\n", + "req INFO \tData has been written to cache!\n", + "logger WARNING \tFailed to load result data from Ergast!\n", + "core WARNING \tNo result data for this session available on Ergast! (This is expected for recent sessions)\n", + "req INFO \tNo cached data found for session_status_data. Loading data...\n", + "_api INFO \tFetching session status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for lap_count. Loading data...\n", + "_api INFO \tFetching lap count data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for track_status_data. Loading data...\n", + "_api INFO \tFetching track status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for _extended_timing_data. Loading data...\n", + "_api INFO \tFetching timing data...\n", + "_api INFO \tParsing timing data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for timing_app_data. Loading data...\n", + "_api INFO \tFetching timing app data...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tProcessing timing data...\n", + "core WARNING \tDriver 7: Lap timing integrity check failed for 1 lap(s)\n", + "req INFO \tNo cached data found for car_data. Loading data...\n", + "_api INFO \tFetching car data...\n", + "_api INFO \tParsing car data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for position_data. Loading data...\n", + "_api INFO \tFetching position data...\n", + "_api INFO \tParsing position data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for weather_data. Loading data...\n", + "_api INFO \tFetching weather data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for race_control_messages. Loading data...\n", + "_api INFO \tFetching race control messages...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tFinished loading data for 20 drivers: ['33', '44', '11', '16', '55', '3', '4', '10', '77', '22', '31', '99', '18', '6', '7', '47', '9', '5', '14', '63']\n", + "core INFO \tLoading data for São Paulo Grand Prix - Qualifying [v3.4.4]\n", + "req INFO \tNo cached data found for session_info. Loading data...\n", + "_api INFO \tFetching session info data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for driver_info. Loading data...\n", + "_api INFO \tFetching driver list...\n", + "req INFO \tData has been written to cache!\n", + "logger WARNING \tFailed to load result data from Ergast!\n", + "core WARNING \tNo result data for this session available on Ergast! (This is expected for recent sessions)\n", + "req INFO \tNo cached data found for session_status_data. Loading data...\n", + "_api INFO \tFetching session status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for track_status_data. Loading data...\n", + "_api INFO \tFetching track status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for _extended_timing_data. Loading data...\n", + "_api INFO \tFetching timing data...\n", + "_api INFO \tParsing timing data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for timing_app_data. Loading data...\n", + "_api INFO \tFetching timing app data...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tProcessing timing data...\n", + "req INFO \tNo cached data found for car_data. Loading data...\n", + "_api INFO \tFetching car data...\n", + "_api INFO \tParsing car data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for position_data. Loading data...\n", + "_api INFO \tFetching position data...\n", + "_api INFO \tParsing position data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for weather_data. Loading data...\n", + "_api INFO \tFetching weather data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for race_control_messages. Loading data...\n", + "_api INFO \tFetching race control messages...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tFinished loading data for 20 drivers: ['20', '1', '63', '4', '55', '31', '14', '44', '11', '16', '23', '10', '5', '3', '18', '6', '24', '77', '22', '47']\n", + "core INFO \tLoading data for São Paulo Grand Prix - Race [v3.4.4]\n", + "req INFO \tNo cached data found for session_info. Loading data...\n", + "_api INFO \tFetching session info data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for driver_info. Loading data...\n", + "_api INFO \tFetching driver list...\n", + "req INFO \tData has been written to cache!\n", + "logger WARNING \tFailed to load result data from Ergast!\n", + "core WARNING \tNo result data for this session available on Ergast! (This is expected for recent sessions)\n", + "req INFO \tNo cached data found for session_status_data. Loading data...\n", + "_api INFO \tFetching session status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for lap_count. Loading data...\n", + "_api INFO \tFetching lap count data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for track_status_data. Loading data...\n", + "_api INFO \tFetching track status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for _extended_timing_data. Loading data...\n", + "_api INFO \tFetching timing data...\n", + "_api INFO \tParsing timing data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for timing_app_data. Loading data...\n", + "_api INFO \tFetching timing app data...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tProcessing timing data...\n", + "logger WARNING \tFailed to add first lap time from Ergast!\n", + "req INFO \tNo cached data found for car_data. Loading data...\n", + "_api INFO \tFetching car data...\n", + "_api INFO \tParsing car data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for position_data. Loading data...\n", + "_api INFO \tFetching position data...\n", + "_api INFO \tParsing position data...\n", + "_api WARNING \tDriver 241: Position data is incomplete!\n", + "_api WARNING \tDriver 242: Position data is incomplete!\n", + "_api WARNING \tDriver 243: Position data is incomplete!\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for weather_data. Loading data...\n", + "_api INFO \tFetching weather data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for race_control_messages. Loading data...\n", + "_api INFO \tFetching race control messages...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tFinished loading data for 20 drivers: ['63', '44', '1', '11', '16', '4', '55', '20', '5', '10', '3', '47', '24', '77', '18', '31', '14', '6', '23', '22']\n", + "core INFO \tLoading data for Australian Grand Prix - Qualifying [v3.4.4]\n", + "req INFO \tNo cached data found for session_info. Loading data...\n", + "_api INFO \tFetching session info data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for driver_info. Loading data...\n", + "_api INFO \tFetching driver list...\n", + "req INFO \tData has been written to cache!\n", + "logger WARNING \tFailed to load result data from Ergast!\n", + "core WARNING \tNo result data for this session available on Ergast! (This is expected for recent sessions)\n", + "req INFO \tNo cached data found for session_status_data. Loading data...\n", + "_api INFO \tFetching session status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for track_status_data. Loading data...\n", + "_api INFO \tFetching track status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for _extended_timing_data. Loading data...\n", + "_api INFO \tFetching timing data...\n", + "_api INFO \tParsing timing data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for timing_app_data. Loading data...\n", + "_api INFO \tFetching timing app data...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tProcessing timing data...\n", + "req INFO \tNo cached data found for car_data. Loading data...\n", + "_api INFO \tFetching car data...\n", + "_api INFO \tParsing car data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for position_data. Loading data...\n", + "_api INFO \tFetching position data...\n", + "_api INFO \tParsing position data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for weather_data. Loading data...\n", + "_api INFO \tFetching weather data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for race_control_messages. Loading data...\n", + "_api INFO \tFetching race control messages...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tFinished loading data for 20 drivers: ['16', '1', '11', '4', '44', '63', '3', '31', '55', '14', '10', '77', '22', '24', '47', '23', '20', '5', '6', '18']\n", + "core INFO \tLoading data for Australian Grand Prix - Race [v3.4.4]\n", + "req INFO \tNo cached data found for session_info. Loading data...\n", + "_api INFO \tFetching session info data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for driver_info. Loading data...\n", + "_api INFO \tFetching driver list...\n", + "req INFO \tData has been written to cache!\n", + "logger WARNING \tFailed to load result data from Ergast!\n", + "core WARNING \tNo result data for this session available on Ergast! (This is expected for recent sessions)\n", + "req INFO \tNo cached data found for session_status_data. Loading data...\n", + "_api INFO \tFetching session status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for lap_count. Loading data...\n", + "_api INFO \tFetching lap count data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for track_status_data. Loading data...\n", + "_api INFO \tFetching track status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for _extended_timing_data. Loading data...\n", + "_api INFO \tFetching timing data...\n", + "_api INFO \tParsing timing data...\n", + "_api WARNING \tDriver 3: Ignoring late data for a previously processed lap.The data may contain errors (previous: 28; current 29)\n", + "_api WARNING \tSkipping lap alignment (no suitable lap)!\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for timing_app_data. Loading data...\n", + "_api INFO \tFetching timing app data...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tProcessing timing data...\n", + "logger WARNING \tFailed to add first lap time from Ergast!\n", + "req INFO \tNo cached data found for car_data. Loading data...\n", + "_api INFO \tFetching car data...\n", + "_api INFO \tParsing car data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for position_data. Loading data...\n", + "_api INFO \tFetching position data...\n", + "_api INFO \tParsing position data...\n", + "_api WARNING \tDriver 241: Position data is incomplete!\n", + "_api WARNING \tDriver 242: Position data is incomplete!\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for weather_data. Loading data...\n", + "_api INFO \tFetching weather data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for race_control_messages. Loading data...\n", + "_api INFO \tFetching race control messages...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tFinished loading data for 20 drivers: ['16', '1', '11', '4', '44', '63', '3', '31', '55', '14', '10', '77', '22', '24', '47', '20', '5', '6', '18', '23']\n", + "events WARNING \tCorrecting user input 'Italy' to 'Italian Grand Prix'\n", + "core INFO \tLoading data for Italian Grand Prix - Qualifying [v3.4.4]\n", + "req INFO \tNo cached data found for session_info. Loading data...\n", + "_api INFO \tFetching session info data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for driver_info. Loading data...\n", + "_api INFO \tFetching driver list...\n", + "req INFO \tData has been written to cache!\n", + "logger WARNING \tFailed to load result data from Ergast!\n", + "core WARNING \tNo result data for this session available on Ergast! (This is expected for recent sessions)\n", + "req INFO \tNo cached data found for session_status_data. Loading data...\n", + "_api INFO \tFetching session status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for track_status_data. Loading data...\n", + "_api INFO \tFetching track status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for _extended_timing_data. Loading data...\n", + "_api INFO \tFetching timing data...\n", + "_api INFO \tParsing timing data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for timing_app_data. Loading data...\n", + "_api INFO \tFetching timing app data...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tProcessing timing data...\n", + "req INFO \tNo cached data found for car_data. Loading data...\n", + "_api INFO \tFetching car data...\n", + "_api INFO \tParsing car data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for position_data. Loading data...\n", + "_api INFO \tFetching position data...\n", + "_api INFO \tParsing position data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for weather_data. Loading data...\n", + "_api INFO \tFetching weather data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for race_control_messages. Loading data...\n", + "_api INFO \tFetching race control messages...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tFinished loading data for 20 drivers: ['16', '1', '55', '11', '44', '63', '4', '3', '10', '14', '31', '77', '45', '24', '22', '6', '5', '18', '20', '47']\n", + "events WARNING \tCorrecting user input 'Italy' to 'Italian Grand Prix'\n", + "core INFO \tLoading data for Italian Grand Prix - Race [v3.4.4]\n", + "req INFO \tNo cached data found for session_info. Loading data...\n", + "_api INFO \tFetching session info data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for driver_info. Loading data...\n", + "_api INFO \tFetching driver list...\n", + "req INFO \tData has been written to cache!\n", + "logger WARNING \tFailed to load result data from Ergast!\n", + "core WARNING \tNo result data for this session available on Ergast! (This is expected for recent sessions)\n", + "req INFO \tNo cached data found for session_status_data. Loading data...\n", + "_api INFO \tFetching session status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for lap_count. Loading data...\n", + "_api INFO \tFetching lap count data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for track_status_data. Loading data...\n", + "_api INFO \tFetching track status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for _extended_timing_data. Loading data...\n", + "_api INFO \tFetching timing data...\n", + "_api INFO \tParsing timing data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for timing_app_data. Loading data...\n", + "_api INFO \tFetching timing app data...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tProcessing timing data...\n", + "logger WARNING \tFailed to add first lap time from Ergast!\n", + "req INFO \tNo cached data found for car_data. Loading data...\n", + "_api INFO \tFetching car data...\n", + "_api INFO \tParsing car data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for position_data. Loading data...\n", + "_api INFO \tFetching position data...\n", + "_api INFO \tParsing position data...\n", + "_api WARNING \tDriver 241: Position data is incomplete!\n", + "_api WARNING \tDriver 242: Position data is incomplete!\n", + "_api WARNING \tDriver 243: Position data is incomplete!\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for weather_data. Loading data...\n", + "_api INFO \tFetching weather data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for race_control_messages. Loading data...\n", + "_api INFO \tFetching race control messages...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tFinished loading data for 20 drivers: ['16', '63', '4', '3', '10', '14', '1', '45', '24', '6', '5', '18', '11', '31', '77', '20', '47', '55', '44', '22']\n", + "events WARNING \tCorrecting user input 'United States' to 'United States Grand Prix'\n", + "core INFO \tLoading data for United States Grand Prix - Qualifying [v3.4.4]\n", + "req INFO \tNo cached data found for session_info. Loading data...\n", + "_api INFO \tFetching session info data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for driver_info. Loading data...\n", + "_api INFO \tFetching driver list...\n", + "req INFO \tData has been written to cache!\n", + "logger WARNING \tFailed to load result data from Ergast!\n", + "core WARNING \tNo result data for this session available on Ergast! (This is expected for recent sessions)\n", + "req INFO \tNo cached data found for session_status_data. Loading data...\n", + "_api INFO \tFetching session status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for track_status_data. Loading data...\n", + "_api INFO \tFetching track status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for _extended_timing_data. Loading data...\n", + "_api INFO \tFetching timing data...\n", + "_api INFO \tParsing timing data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for timing_app_data. Loading data...\n", + "_api INFO \tFetching timing app data...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tProcessing timing data...\n", + "req INFO \tNo cached data found for car_data. Loading data...\n", + "_api INFO \tFetching car data...\n", + "_api INFO \tParsing car data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for position_data. Loading data...\n", + "_api INFO \tFetching position data...\n", + "_api INFO \tParsing position data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for weather_data. Loading data...\n", + "_api INFO \tFetching weather data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for race_control_messages. Loading data...\n", + "_api INFO \tFetching race control messages...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tFinished loading data for 20 drivers: ['55', '16', '1', '11', '44', '63', '18', '4', '14', '77', '23', '5', '10', '24', '22', '20', '3', '31', '47', '6']\n", + "events WARNING \tCorrecting user input 'United States' to 'United States Grand Prix'\n", + "core INFO \tLoading data for United States Grand Prix - Race [v3.4.4]\n", + "req INFO \tNo cached data found for session_info. Loading data...\n", + "_api INFO \tFetching session info data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for driver_info. Loading data...\n", + "_api INFO \tFetching driver list...\n", + "req INFO \tData has been written to cache!\n", + "logger WARNING \tFailed to load result data from Ergast!\n", + "core WARNING \tNo result data for this session available on Ergast! (This is expected for recent sessions)\n", + "req INFO \tNo cached data found for session_status_data. Loading data...\n", + "_api INFO \tFetching session status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for lap_count. Loading data...\n", + "_api INFO \tFetching lap count data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for track_status_data. Loading data...\n", + "_api INFO \tFetching track status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for _extended_timing_data. Loading data...\n", + "_api INFO \tFetching timing data...\n", + "_api INFO \tParsing timing data...\n", + "_api WARNING \tDriver 10: Ignoring late data for a previously processed lap.The data may contain errors (previous: 6; current 7)\n", + "_api WARNING \tDriver 20: Ignoring late data for a previously processed lap.The data may contain errors (previous: 31; current 32)\n", + "_api WARNING \tSkipping lap alignment (no suitable lap)!\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for timing_app_data. Loading data...\n", + "_api INFO \tFetching timing app data...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tProcessing timing data...\n", + "logger WARNING \tFailed to add first lap time from Ergast!\n", + "req INFO \tNo cached data found for car_data. Loading data...\n", + "_api INFO \tFetching car data...\n", + "_api INFO \tParsing car data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for position_data. Loading data...\n", + "_api INFO \tFetching position data...\n", + "_api INFO \tParsing position data...\n", + "_api WARNING \tDriver 241: Position data is incomplete!\n", + "_api WARNING \tDriver 242: Position data is incomplete!\n", + "_api WARNING \tDriver 243: Position data is incomplete!\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for weather_data. Loading data...\n", + "_api INFO \tFetching weather data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for race_control_messages. Loading data...\n", + "_api INFO \tFetching race control messages...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tFinished loading data for 20 drivers: ['55', '1', '44', '63', '18', '4', '77', '23', '11', '5', '10', '16', '20', '14', '3', '47', '6', '24', '22', '31']\n", + "core INFO \tLoading data for São Paulo Grand Prix - Qualifying [v3.4.4]\n", + "req INFO \tNo cached data found for session_info. Loading data...\n", + "_api INFO \tFetching session info data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for driver_info. Loading data...\n", + "_api INFO \tFetching driver list...\n", + "req INFO \tData has been written to cache!\n", + "logger WARNING \tFailed to load result data from Ergast!\n", + "core WARNING \tNo result data for this session available on Ergast! (This is expected for recent sessions)\n", + "req INFO \tNo cached data found for session_status_data. Loading data...\n", + "_api INFO \tFetching session status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for track_status_data. Loading data...\n", + "_api INFO \tFetching track status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for _extended_timing_data. Loading data...\n", + "_api INFO \tFetching timing data...\n", + "_api INFO \tParsing timing data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for timing_app_data. Loading data...\n", + "_api INFO \tFetching timing app data...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tProcessing timing data...\n", + "req INFO \tNo cached data found for car_data. Loading data...\n", + "_api INFO \tFetching car data...\n", + "_api INFO \tParsing car data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for position_data. Loading data...\n", + "_api INFO \tFetching position data...\n", + "_api INFO \tParsing position data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for weather_data. Loading data...\n", + "_api INFO \tFetching weather data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for race_control_messages. Loading data...\n", + "_api INFO \tFetching race control messages...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tFinished loading data for 20 drivers: ['1', '16', '18', '14', '44', '63', '4', '55', '11', '81', '27', '31', '10', '20', '23', '22', '3', '77', '2', '24']\n", + "core INFO \tLoading data for São Paulo Grand Prix - Race [v3.4.4]\n", + "req INFO \tNo cached data found for session_info. Loading data...\n", + "_api INFO \tFetching session info data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for driver_info. Loading data...\n", + "_api INFO \tFetching driver list...\n", + "req INFO \tData has been written to cache!\n", + "logger WARNING \tFailed to load result data from Ergast!\n", + "core WARNING \tNo result data for this session available on Ergast! (This is expected for recent sessions)\n", + "req INFO \tNo cached data found for session_status_data. Loading data...\n", + "_api INFO \tFetching session status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for lap_count. Loading data...\n", + "_api INFO \tFetching lap count data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for track_status_data. Loading data...\n", + "_api INFO \tFetching track status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for _extended_timing_data. Loading data...\n", + "_api INFO \tFetching timing data...\n", + "_api INFO \tParsing timing data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for timing_app_data. Loading data...\n", + "_api INFO \tFetching timing app data...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tProcessing timing data...\n", + "logger WARNING \tFailed to add first lap time from Ergast!\n", + "req INFO \tNo cached data found for car_data. Loading data...\n", + "_api INFO \tFetching car data...\n", + "_api INFO \tParsing car data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for position_data. Loading data...\n", + "_api INFO \tFetching position data...\n", + "_api INFO \tParsing position data...\n", + "_api WARNING \tDriver 241: Position data is incomplete!\n", + "_api WARNING \tDriver 242: Position data is incomplete!\n", + "_api WARNING \tDriver 243: Position data is incomplete!\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for weather_data. Loading data...\n", + "_api INFO \tFetching weather data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for race_control_messages. Loading data...\n", + "_api INFO \tFetching race control messages...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tFinished loading data for 20 drivers: ['1', '16', '18', '14', '44', '4', '55', '63', '11', '81', '27', '20', '23', '31', '10', '22', '3', '77', '2', '24']\n", + "core INFO \tLoading data for Australian Grand Prix - Qualifying [v3.4.4]\n", + "req INFO \tNo cached data found for session_info. Loading data...\n", + "_api INFO \tFetching session info data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for driver_info. Loading data...\n", + "_api INFO \tFetching driver list...\n", + "req INFO \tData has been written to cache!\n", + "logger WARNING \tFailed to load result data from Ergast!\n", + "core WARNING \tNo result data for this session available on Ergast! (This is expected for recent sessions)\n", + "req INFO \tNo cached data found for session_status_data. Loading data...\n", + "_api INFO \tFetching session status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for track_status_data. Loading data...\n", + "_api INFO \tFetching track status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for _extended_timing_data. Loading data...\n", + "_api INFO \tFetching timing data...\n", + "_api INFO \tParsing timing data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for timing_app_data. Loading data...\n", + "_api INFO \tFetching timing app data...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tProcessing timing data...\n", + "req INFO \tNo cached data found for car_data. Loading data...\n", + "_api INFO \tFetching car data...\n", + "_api INFO \tParsing car data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for position_data. Loading data...\n", + "_api INFO \tFetching position data...\n", + "_api INFO \tParsing position data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for weather_data. Loading data...\n", + "_api INFO \tFetching weather data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for race_control_messages. Loading data...\n", + "_api INFO \tFetching race control messages...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tFinished loading data for 20 drivers: ['1', '63', '44', '14', '55', '18', '16', '23', '10', '27', '31', '22', '4', '20', '21', '81', '24', '2', '77', '11']\n", + "core INFO \tLoading data for Australian Grand Prix - Race [v3.4.4]\n", + "req INFO \tNo cached data found for session_info. Loading data...\n", + "_api INFO \tFetching session info data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for driver_info. Loading data...\n", + "_api INFO \tFetching driver list...\n", + "req INFO \tData has been written to cache!\n", + "logger WARNING \tFailed to load result data from Ergast!\n", + "core WARNING \tNo result data for this session available on Ergast! (This is expected for recent sessions)\n", + "req INFO \tNo cached data found for session_status_data. Loading data...\n", + "_api INFO \tFetching session status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for lap_count. Loading data...\n", + "_api INFO \tFetching lap count data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for track_status_data. Loading data...\n", + "_api INFO \tFetching track status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for _extended_timing_data. Loading data...\n", + "_api INFO \tFetching timing data...\n", + "_api INFO \tParsing timing data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for timing_app_data. Loading data...\n", + "_api INFO \tFetching timing app data...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tProcessing timing data...\n", + "logger WARNING \tFailed to add first lap time from Ergast!\n", + "req INFO \tNo cached data found for car_data. Loading data...\n", + "_api INFO \tFetching car data...\n", + "_api INFO \tParsing car data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for position_data. Loading data...\n", + "_api INFO \tFetching position data...\n", + "_api INFO \tParsing position data...\n", + "_api WARNING \tDriver 241: Position data is incomplete!\n", + "_api WARNING \tDriver 242: Position data is incomplete!\n", + "_api WARNING \tDriver 243: Position data is incomplete!\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for weather_data. Loading data...\n", + "_api INFO \tFetching weather data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for race_control_messages. Loading data...\n", + "_api INFO \tFetching race control messages...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tFinished loading data for 20 drivers: ['1', '63', '44', '14', '55', '18', '16', '23', '10', '27', '31', '22', '4', '20', '21', '81', '24', '2', '77', '11']\n", + "core INFO \tLoading data for Italian Grand Prix - Qualifying [v3.4.4]\n", + "req INFO \tNo cached data found for session_info. Loading data...\n", + "_api INFO \tFetching session info data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for driver_info. Loading data...\n", + "_api INFO \tFetching driver list...\n", + "req INFO \tData has been written to cache!\n", + "logger WARNING \tFailed to load result data from Ergast!\n", + "core WARNING \tNo result data for this session available on Ergast! (This is expected for recent sessions)\n", + "req INFO \tNo cached data found for session_status_data. Loading data...\n", + "_api INFO \tFetching session status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for track_status_data. Loading data...\n", + "_api INFO \tFetching track status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for _extended_timing_data. Loading data...\n", + "_api INFO \tFetching timing data...\n", + "_api INFO \tParsing timing data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for timing_app_data. Loading data...\n", + "_api INFO \tFetching timing app data...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tProcessing timing data...\n", + "req INFO \tNo cached data found for car_data. Loading data...\n", + "_api INFO \tFetching car data...\n", + "_api INFO \tParsing car data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for position_data. Loading data...\n", + "_api INFO \tFetching position data...\n", + "_api INFO \tParsing position data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for weather_data. Loading data...\n", + "_api INFO \tFetching weather data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for race_control_messages. Loading data...\n", + "_api INFO \tFetching race control messages...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tFinished loading data for 20 drivers: ['55', '1', '16', '63', '11', '23', '81', '44', '4', '14', '22', '40', '27', '77', '2', '24', '10', '31', '20', '18']\n", + "core INFO \tLoading data for Italian Grand Prix - Race [v3.4.4]\n", + "req INFO \tNo cached data found for session_info. Loading data...\n", + "_api INFO \tFetching session info data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for driver_info. Loading data...\n", + "_api INFO \tFetching driver list...\n", + "req INFO \tData has been written to cache!\n", + "logger WARNING \tFailed to load result data from Ergast!\n", + "core WARNING \tNo result data for this session available on Ergast! (This is expected for recent sessions)\n", + "req INFO \tNo cached data found for session_status_data. Loading data...\n", + "_api INFO \tFetching session status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for lap_count. Loading data...\n", + "_api INFO \tFetching lap count data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for track_status_data. Loading data...\n", + "_api INFO \tFetching track status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for _extended_timing_data. Loading data...\n", + "_api INFO \tFetching timing data...\n", + "_api INFO \tParsing timing data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for timing_app_data. Loading data...\n", + "_api INFO \tFetching timing app data...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tProcessing timing data...\n", + "logger WARNING \tFailed to add first lap time from Ergast!\n", + "req INFO \tNo cached data found for car_data. Loading data...\n", + "_api INFO \tFetching car data...\n", + "_api INFO \tParsing car data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for position_data. Loading data...\n", + "_api INFO \tFetching position data...\n", + "_api INFO \tParsing position data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for weather_data. Loading data...\n", + "_api INFO \tFetching weather data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for race_control_messages. Loading data...\n", + "_api INFO \tFetching race control messages...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tFinished loading data for 20 drivers: ['55', '1', '16', '63', '11', '23', '81', '44', '4', '14', '22', '40', '27', '77', '2', '24', '10', '31', '20', '18']\n", + "events WARNING \tCorrecting user input 'United States' to 'United States Grand Prix'\n", + "core INFO \tLoading data for United States Grand Prix - Qualifying [v3.4.4]\n", + "req INFO \tNo cached data found for session_info. Loading data...\n", + "_api INFO \tFetching session info data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for driver_info. Loading data...\n", + "_api INFO \tFetching driver list...\n", + "req INFO \tData has been written to cache!\n", + "logger WARNING \tFailed to load result data from Ergast!\n", + "core WARNING \tNo result data for this session available on Ergast! (This is expected for recent sessions)\n", + "req INFO \tNo cached data found for session_status_data. Loading data...\n", + "_api INFO \tFetching session status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for track_status_data. Loading data...\n", + "_api INFO \tFetching track status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for _extended_timing_data. Loading data...\n", + "_api INFO \tFetching timing data...\n", + "_api INFO \tParsing timing data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for timing_app_data. Loading data...\n", + "_api INFO \tFetching timing app data...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tProcessing timing data...\n", + "req INFO \tNo cached data found for car_data. Loading data...\n", + "_api INFO \tFetching car data...\n", + "_api INFO \tParsing car data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for position_data. Loading data...\n", + "_api INFO \tFetching position data...\n", + "_api INFO \tParsing position data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for weather_data. Loading data...\n", + "_api INFO \tFetching weather data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for race_control_messages. Loading data...\n", + "_api INFO \tFetching race control messages...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tFinished loading data for 20 drivers: ['16', '4', '44', '55', '63', '1', '10', '31', '11', '81', '22', '24', '77', '20', '3', '27', '14', '23', '18', '2']\n", + "events WARNING \tCorrecting user input 'United States' to 'United States Grand Prix'\n", + "core INFO \tLoading data for United States Grand Prix - Race [v3.4.4]\n", + "req INFO \tNo cached data found for session_info. Loading data...\n", + "_api INFO \tFetching session info data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for driver_info. Loading data...\n", + "_api INFO \tFetching driver list...\n", + "req INFO \tData has been written to cache!\n", + "logger WARNING \tFailed to load result data from Ergast!\n", + "core WARNING \tNo result data for this session available on Ergast! (This is expected for recent sessions)\n", + "req INFO \tNo cached data found for session_status_data. Loading data...\n", + "_api INFO \tFetching session status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for lap_count. Loading data...\n", + "_api INFO \tFetching lap count data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for track_status_data. Loading data...\n", + "_api INFO \tFetching track status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for _extended_timing_data. Loading data...\n", + "_api INFO \tFetching timing data...\n", + "_api INFO \tParsing timing data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for timing_app_data. Loading data...\n", + "_api INFO \tFetching timing app data...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tProcessing timing data...\n", + "logger WARNING \tFailed to add first lap time from Ergast!\n", + "req INFO \tNo cached data found for car_data. Loading data...\n", + "_api INFO \tFetching car data...\n", + "_api INFO \tParsing car data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for position_data. Loading data...\n", + "_api INFO \tFetching position data...\n", + "_api INFO \tParsing position data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for weather_data. Loading data...\n", + "_api INFO \tFetching weather data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for race_control_messages. Loading data...\n", + "_api INFO \tFetching race control messages...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tFinished loading data for 20 drivers: ['16', '4', '44', '55', '63', '1', '10', '31', '11', '81', '22', '24', '77', '3', '23', '2', '20', '27', '14', '18']\n", + "core INFO \tLoading data for São Paulo Grand Prix - Qualifying [v3.4.4]\n", + "req INFO \tNo cached data found for session_info. Loading data...\n", + "_api INFO \tFetching session info data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for driver_info. Loading data...\n", + "_api INFO \tFetching driver list...\n", + "req INFO \tData has been written to cache!\n", + "logger WARNING \tFailed to load result data from Ergast!\n", + "core WARNING \tNo result data for this session available on Ergast! (This is expected for recent sessions)\n", + "req INFO \tNo cached data found for session_status_data. Loading data...\n", + "_api INFO \tFetching session status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for track_status_data. Loading data...\n", + "_api INFO \tFetching track status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for _extended_timing_data. Loading data...\n", + "_api INFO \tFetching timing data...\n", + "_api INFO \tParsing timing data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for timing_app_data. Loading data...\n", + "_api INFO \tFetching timing app data...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tProcessing timing data...\n", + "req INFO \tNo cached data found for car_data. Loading data...\n", + "_api INFO \tFetching car data...\n", + "_api INFO \tParsing car data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for position_data. Loading data...\n", + "_api INFO \tFetching position data...\n", + "_api INFO \tParsing position data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for weather_data. Loading data...\n", + "_api INFO \tFetching weather data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for race_control_messages. Loading data...\n", + "_api INFO \tFetching race control messages...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tFinished loading data for 20 drivers: ['4', '63', '22', '31', '30', '16', '23', '81', '14', '18', '77', '1', '11', '55', '10', '44', '50', '43', '27', '24']\n", + "core INFO \tLoading data for São Paulo Grand Prix - Race [v3.4.4]\n", + "req INFO \tNo cached data found for session_info. Loading data...\n", + "_api INFO \tFetching session info data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for driver_info. Loading data...\n", + "_api INFO \tFetching driver list...\n", + "req INFO \tData has been written to cache!\n", + "logger WARNING \tFailed to load result data from Ergast!\n", + "core WARNING \tNo result data for this session available on Ergast! (This is expected for recent sessions)\n", + "req INFO \tNo cached data found for session_status_data. Loading data...\n", + "_api INFO \tFetching session status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for lap_count. Loading data...\n", + "_api INFO \tFetching lap count data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for track_status_data. Loading data...\n", + "_api INFO \tFetching track status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for _extended_timing_data. Loading data...\n", + "_api INFO \tFetching timing data...\n", + "_api INFO \tParsing timing data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for timing_app_data. Loading data...\n", + "_api INFO \tFetching timing app data...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tProcessing timing data...\n", + "core WARNING \tNo lap data for driver 23\n", + "core WARNING \tFailed to perform lap accuracy check - all laps marked as inaccurate (driver 23)\n", + "logger WARNING \tFailed to add first lap time from Ergast!\n", + "req INFO \tNo cached data found for car_data. Loading data...\n", + "_api INFO \tFetching car data...\n", + "_api INFO \tParsing car data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for position_data. Loading data...\n", + "_api INFO \tFetching position data...\n", + "_api INFO \tParsing position data...\n", + "_api WARNING \tDriver 241: Position data is incomplete!\n", + "_api WARNING \tDriver 242: Position data is incomplete!\n", + "_api WARNING \tDriver 243: Position data is incomplete!\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for weather_data. Loading data...\n", + "_api INFO \tFetching weather data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for race_control_messages. Loading data...\n", + "_api INFO \tFetching race control messages...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tFinished loading data for 20 drivers: ['4', '63', '22', '31', '30', '16', '23', '81', '14', '18', '77', '11', '10', '44', '50', '43', '1', '27', '24', '55']\n", + "core INFO \tLoading data for Australian Grand Prix - Qualifying [v3.4.4]\n", + "req INFO \tNo cached data found for session_info. Loading data...\n", + "_api INFO \tFetching session info data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for driver_info. Loading data...\n", + "_api INFO \tFetching driver list...\n", + "req INFO \tData has been written to cache!\n", + "logger WARNING \tFailed to load result data from Ergast!\n", + "core WARNING \tNo result data for this session available on Ergast! (This is expected for recent sessions)\n", + "req INFO \tNo cached data found for session_status_data. Loading data...\n", + "_api INFO \tFetching session status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for track_status_data. Loading data...\n", + "_api INFO \tFetching track status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for _extended_timing_data. Loading data...\n", + "_api INFO \tFetching timing data...\n", + "_api INFO \tParsing timing data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for timing_app_data. Loading data...\n", + "_api INFO \tFetching timing app data...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tProcessing timing data...\n", + "req INFO \tNo cached data found for car_data. Loading data...\n", + "_api INFO \tFetching car data...\n", + "_api INFO \tParsing car data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for position_data. Loading data...\n", + "_api INFO \tFetching position data...\n", + "_api INFO \tParsing position data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for weather_data. Loading data...\n", + "_api INFO \tFetching weather data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for race_control_messages. Loading data...\n", + "_api INFO \tFetching race control messages...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tFinished loading data for 19 drivers: ['1', '55', '11', '4', '16', '81', '63', '22', '18', '14', '44', '23', '77', '20', '31', '27', '10', '3', '24']\n", + "core INFO \tLoading data for Australian Grand Prix - Race [v3.4.4]\n", + "req INFO \tNo cached data found for session_info. Loading data...\n", + "_api INFO \tFetching session info data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for driver_info. Loading data...\n", + "_api INFO \tFetching driver list...\n", + "req INFO \tData has been written to cache!\n", + "logger WARNING \tFailed to load result data from Ergast!\n", + "core WARNING \tNo result data for this session available on Ergast! (This is expected for recent sessions)\n", + "req INFO \tNo cached data found for session_status_data. Loading data...\n", + "_api INFO \tFetching session status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for lap_count. Loading data...\n", + "_api INFO \tFetching lap count data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for track_status_data. Loading data...\n", + "_api INFO \tFetching track status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for _extended_timing_data. Loading data...\n", + "_api INFO \tFetching timing data...\n", + "_api INFO \tParsing timing data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for timing_app_data. Loading data...\n", + "_api INFO \tFetching timing app data...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tProcessing timing data...\n", + "logger WARNING \tFailed to add first lap time from Ergast!\n", + "req INFO \tNo cached data found for car_data. Loading data...\n", + "_api INFO \tFetching car data...\n", + "_api INFO \tParsing car data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for position_data. Loading data...\n", + "_api INFO \tFetching position data...\n", + "_api INFO \tParsing position data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for weather_data. Loading data...\n", + "_api INFO \tFetching weather data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for race_control_messages. Loading data...\n", + "_api INFO \tFetching race control messages...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tFinished loading data for 19 drivers: ['1', '55', '4', '16', '81', '11', '63', '22', '18', '14', '44', '23', '77', '20', '31', '27', '10', '3', '24']\n", + "events WARNING \tCorrecting user input 'Italy' to 'Italian Grand Prix'\n", + "core INFO \tLoading data for Italian Grand Prix - Qualifying [v3.4.4]\n", + "req INFO \tNo cached data found for session_info. Loading data...\n", + "_api INFO \tFetching session info data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for driver_info. Loading data...\n", + "_api INFO \tFetching driver list...\n", + "req INFO \tData has been written to cache!\n", + "logger WARNING \tFailed to load result data from Ergast!\n", + "core WARNING \tNo result data for this session available on Ergast! (This is expected for recent sessions)\n", + "req INFO \tNo cached data found for session_status_data. Loading data...\n", + "_api INFO \tFetching session status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for track_status_data. Loading data...\n", + "_api INFO \tFetching track status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for _extended_timing_data. Loading data...\n", + "_api INFO \tFetching timing data...\n", + "_api INFO \tParsing timing data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for timing_app_data. Loading data...\n", + "_api INFO \tFetching timing app data...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tProcessing timing data...\n", + "req INFO \tNo cached data found for car_data. Loading data...\n", + "_api INFO \tFetching car data...\n", + "_api INFO \tParsing car data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for position_data. Loading data...\n", + "_api INFO \tFetching position data...\n", + "_api INFO \tParsing position data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for weather_data. Loading data...\n", + "_api INFO \tFetching weather data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for race_control_messages. Loading data...\n", + "_api INFO \tFetching race control messages...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tFinished loading data for 20 drivers: ['4', '81', '63', '16', '55', '44', '1', '11', '23', '27', '14', '3', '20', '10', '31', '22', '18', '43', '77', '24']\n", + "events WARNING \tCorrecting user input 'Italy' to 'Italian Grand Prix'\n", + "core INFO \tLoading data for Italian Grand Prix - Race [v3.4.4]\n", + "req INFO \tNo cached data found for session_info. Loading data...\n", + "_api INFO \tFetching session info data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for driver_info. Loading data...\n", + "_api INFO \tFetching driver list...\n", + "req INFO \tData has been written to cache!\n", + "logger WARNING \tFailed to load result data from Ergast!\n", + "core WARNING \tNo result data for this session available on Ergast! (This is expected for recent sessions)\n", + "req INFO \tNo cached data found for session_status_data. Loading data...\n", + "_api INFO \tFetching session status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for lap_count. Loading data...\n", + "_api INFO \tFetching lap count data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for track_status_data. Loading data...\n", + "_api INFO \tFetching track status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for _extended_timing_data. Loading data...\n", + "_api INFO \tFetching timing data...\n", + "_api INFO \tParsing timing data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for timing_app_data. Loading data...\n", + "_api INFO \tFetching timing app data...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tProcessing timing data...\n", + "logger WARNING \tFailed to add first lap time from Ergast!\n", + "req INFO \tNo cached data found for car_data. Loading data...\n", + "_api INFO \tFetching car data...\n", + "_api INFO \tParsing car data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for position_data. Loading data...\n", + "_api INFO \tFetching position data...\n", + "_api INFO \tParsing position data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for weather_data. Loading data...\n", + "_api INFO \tFetching weather data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for race_control_messages. Loading data...\n", + "_api INFO \tFetching race control messages...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tFinished loading data for 20 drivers: ['4', '81', '63', '16', '55', '44', '1', '11', '23', '27', '14', '3', '20', '10', '31', '22', '18', '43', '77', '24']\n", + "events WARNING \tCorrecting user input 'United States' to 'United States Grand Prix'\n", + "core INFO \tLoading data for United States Grand Prix - Qualifying [v3.4.4]\n", + "req INFO \tNo cached data found for session_info. Loading data...\n", + "_api INFO \tFetching session info data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for driver_info. Loading data...\n", + "_api INFO \tFetching driver list...\n", + "req INFO \tData has been written to cache!\n", + "logger WARNING \tFailed to load result data from Ergast!\n", + "core WARNING \tNo result data for this session available on Ergast! (This is expected for recent sessions)\n", + "req INFO \tNo cached data found for session_status_data. Loading data...\n", + "_api INFO \tFetching session status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for track_status_data. Loading data...\n", + "_api INFO \tFetching track status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for _extended_timing_data. Loading data...\n", + "_api INFO \tFetching timing data...\n", + "_api INFO \tParsing timing data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for timing_app_data. Loading data...\n", + "_api INFO \tFetching timing app data...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tProcessing timing data...\n", + "req INFO \tNo cached data found for car_data. Loading data...\n", + "_api INFO \tFetching car data...\n", + "_api INFO \tParsing car data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for position_data. Loading data...\n", + "_api INFO \tFetching position data...\n", + "_api INFO \tParsing position data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for weather_data. Loading data...\n", + "_api INFO \tFetching weather data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for race_control_messages. Loading data...\n", + "_api INFO \tFetching race control messages...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tFinished loading data for 20 drivers: ['4', '1', '55', '16', '81', '63', '10', '14', '20', '11', '22', '27', '31', '18', '30', '23', '43', '77', '44', '24']\n", + "events WARNING \tCorrecting user input 'United States' to 'United States Grand Prix'\n", + "core INFO \tLoading data for United States Grand Prix - Race [v3.4.4]\n", + "req INFO \tNo cached data found for session_info. Loading data...\n", + "_api INFO \tFetching session info data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for driver_info. Loading data...\n", + "_api INFO \tFetching driver list...\n", + "req INFO \tData has been written to cache!\n", + "logger WARNING \tFailed to load result data from Ergast!\n", + "core WARNING \tNo result data for this session available on Ergast! (This is expected for recent sessions)\n", + "req INFO \tNo cached data found for session_status_data. Loading data...\n", + "_api INFO \tFetching session status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for lap_count. Loading data...\n", + "_api INFO \tFetching lap count data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for track_status_data. Loading data...\n", + "_api INFO \tFetching track status data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for _extended_timing_data. Loading data...\n", + "_api INFO \tFetching timing data...\n", + "_api INFO \tParsing timing data...\n", + "_api WARNING \tSkipping lap alignment (no suitable lap)!\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for timing_app_data. Loading data...\n", + "_api INFO \tFetching timing app data...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tProcessing timing data...\n", + "logger WARNING \tFailed to add first lap time from Ergast!\n", + "req INFO \tNo cached data found for car_data. Loading data...\n", + "_api INFO \tFetching car data...\n", + "_api INFO \tParsing car data...\n", + "_api WARNING \tDriver 2: Car data is incomplete!\n", + "_api WARNING \tDriver 3: Car data is incomplete!\n", + "_api WARNING \tDriver 30: Car data is incomplete!\n", + "_api WARNING \tDriver 43: Car data is incomplete!\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for position_data. Loading data...\n", + "_api INFO \tFetching position data...\n", + "_api INFO \tParsing position data...\n", + "_api WARNING \tDriver 2: Position data is incomplete!\n", + "_api WARNING \tDriver 3: Position data is incomplete!\n", + "_api WARNING \tDriver 30: Position data is incomplete!\n", + "_api WARNING \tDriver 43: Position data is incomplete!\n", + "_api WARNING \tDriver 241: Position data is incomplete!\n", + "_api WARNING \tDriver 242: Position data is incomplete!\n", + "_api WARNING \tDriver 243: Position data is incomplete!\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for weather_data. Loading data...\n", + "_api INFO \tFetching weather data...\n", + "req INFO \tData has been written to cache!\n", + "req INFO \tNo cached data found for race_control_messages. Loading data...\n", + "_api INFO \tFetching race control messages...\n", + "req INFO \tData has been written to cache!\n", + "core INFO \tFinished loading data for 20 drivers: ['4', '1', '55', '16', '81', '10', '14', '20', '11', '22', '27', '31', '18', '23', '43', '77', '44', '24', '30', '63']\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Weather Data:\n", + " Time AirTemp Humidity Pressure Rainfall TrackTemp \\\n", + "0 0 days 00:00:10.357000 16.0 79.7 930.2 False 26.1 \n", + "1 0 days 00:01:10.367000 16.0 80.0 930.3 False 25.9 \n", + "2 0 days 00:02:10.371000 16.0 80.0 930.4 False 26.0 \n", + "3 0 days 00:03:10.354000 16.0 80.1 930.3 False 25.9 \n", + "4 0 days 00:04:10.356000 15.9 80.1 930.3 False 25.9 \n", + "\n", + " WindDirection WindSpeed Year Session \n", + "0 154 0.4 2021 Q \n", + "1 129 0.3 2021 Q \n", + "2 150 0.4 2021 Q \n", + "3 190 0.2 2021 Q \n", + "4 190 0.2 2021 Q \n", + "Lap Data:\n", + " Time Driver DriverNumber LapTime \\\n", + "0 0 days 00:19:42.333000 RIC 3 NaT \n", + "1 0 days 00:20:52.007000 RIC 3 0 days 00:01:09.674000 \n", + "2 0 days 00:22:32.617000 RIC 3 0 days 00:01:40.610000 \n", + "3 0 days 00:23:48.713000 RIC 3 0 days 00:01:16.096000 \n", + "4 0 days 00:26:39.889000 RIC 3 NaT \n", + "\n", + " LapNumber Stint PitOutTime PitInTime \\\n", + "0 1.0 1.0 0 days 00:18:10.839000 NaT \n", + "1 2.0 1.0 NaT NaT \n", + "2 3.0 1.0 NaT NaT \n", + "3 4.0 1.0 NaT 0 days 00:23:45.604000 \n", + "4 5.0 2.0 0 days 00:25:19.110000 0 days 00:26:36.878000 \n", + "\n", + " Sector1Time Sector2Time ... LapStartDate \\\n", + "0 NaT 0 days 00:00:49.553000 ... 2021-11-12 19:03:10.848 \n", + "1 0 days 00:00:17.988000 0 days 00:00:35.404000 ... 2021-11-12 19:04:42.342 \n", + "2 0 days 00:00:27.817000 0 days 00:00:54.938000 ... 2021-11-12 19:05:52.016 \n", + "3 0 days 00:00:17.961000 0 days 00:00:35.501000 ... 2021-11-12 19:07:32.626 \n", + "4 NaT 0 days 00:00:39.997000 ... 2021-11-12 19:08:48.722 \n", + "\n", + " TrackStatus Position Deleted DeletedReason FastF1Generated IsAccurate \\\n", + "0 1 NaN False False False \n", + "1 1 NaN False False True \n", + "2 1 NaN False False True \n", + "3 1 NaN False False False \n", + "4 1 NaN False False False \n", + "\n", + " Year Event Session \n", + "0 2021 Brazil Q \n", + "1 2021 Brazil Q \n", + "2 2021 Brazil Q \n", + "3 2021 Brazil Q \n", + "4 2021 Brazil Q \n", + "\n", + "[5 rows x 34 columns]\n" + ] + } + ], + "source": [ + "# Data holders\n", + "weather_data_list = []\n", + "lap_data_list = []\n", + "\n", + "# Loop through years and sessions\n", + "for year in years:\n", + " for event_name in events: \n", + " for session_name in sessions:\n", + " try:\n", + " # Load the session\n", + " session = fastf1.get_session(year, event_name, session_name)\n", + " session.load()\n", + " \n", + " # Process weather data\n", + " weather_data = session.weather_data\n", + " weather_df = pd.DataFrame(weather_data)\n", + " weather_df['Year'] = year\n", + " weather_df['Session'] = session_name\n", + " weather_data_list.append(weather_df)\n", + "\n", + " # Process lap data\n", + " lap_data = session.laps\n", + " lap_df = pd.DataFrame(lap_data)\n", + " lap_df['Year'] = year\n", + " lap_df['Event'] = event_name\n", + " lap_df['Session'] = session_name\n", + " lap_data_list.append(lap_df)\n", + " \n", + " except Exception as e:\n", + " print(f\"Error with {event_name} {session_name} ({year}): {e}\")\n", + "\n", + "# Combine weather and lap data into separate DataFrames\n", + "if weather_data_list:\n", + " weather_data_combined = pd.concat(weather_data_list, ignore_index=True)\n", + " print(\"Weather Data:\")\n", + " print(weather_data_combined.head())\n", + "\n", + "if lap_data_list:\n", + " lap_data_combined = pd.concat(lap_data_list, ignore_index=True)\n", + " print(\"Lap Data:\")\n", + " print(lap_data_combined.head())" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# Convert lap times to seconds for easier modeling\n", + "def convert_timedelta_to_seconds(td):\n", + " if pd.isna(td):\n", + " return None\n", + " return td.total_seconds()\n", + "\n", + "# Process lap times\n", + "lap_data_combined['LapTime_seconds'] = lap_data_combined['LapTime'].apply(convert_timedelta_to_seconds)\n", + "lap_data_combined['Sector1Time_seconds'] = lap_data_combined['Sector1Time'].apply(convert_timedelta_to_seconds)\n", + "lap_data_combined['Sector2Time_seconds'] = lap_data_combined['Sector2Time'].apply(convert_timedelta_to_seconds)\n", + "lap_data_combined['Sector3Time_seconds'] = lap_data_combined['Sector3Time'].apply(convert_timedelta_to_seconds)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Time Driver DriverNumber LapTime LapNumber Stint \\\n", + "0 2024-01-01 00:13:21.079 ZHO 24 NaT 1.0 1.0 \n", + "1 2024-01-01 00:13:25.515 OCO 31 NaT 1.0 1.0 \n", + "2 2024-01-01 00:13:28.581 GAS 10 NaT 1.0 1.0 \n", + "3 2024-01-01 00:13:33.760 MAG 20 NaT 1.0 1.0 \n", + "4 2024-01-01 00:13:39.639 HUL 27 NaT 1.0 1.0 \n", + "\n", + " PitOutTime PitInTime Sector1Time Sector2Time ... \\\n", + "0 0 days 00:11:34.445000 NaT NaT 0 days 00:00:36.406000 ... \n", + "1 0 days 00:11:43.198000 NaT NaT 0 days 00:00:33.336000 ... \n", + "2 0 days 00:11:47.409000 NaT NaT 0 days 00:00:33.379000 ... \n", + "3 0 days 00:11:50.367000 NaT NaT 0 days 00:00:35.836000 ... \n", + "4 0 days 00:11:56.096000 NaT NaT 0 days 00:00:36.690000 ... \n", + "\n", + " Sector3Time_seconds AirTemp Humidity Pressure Rainfall TrackTemp \\\n", + "0 34.895 14.7 59.0 1019.0 False 21.2 \n", + "1 35.205 30.3 37.0 991.2 False 36.8 \n", + "2 33.669 26.2 47.0 1014.5 False 40.3 \n", + "3 30.358 28.5 40.0 1005.4 False 38.6 \n", + "4 30.625 35.3 12.0 993.5 False 42.4 \n", + "\n", + " WindDirection WindSpeed Year_weather Session_weather \n", + "0 156 1.1 2023 Q \n", + "1 90 4.0 2022 Q \n", + "2 280 1.7 2022 Race \n", + "3 187 2.5 2024 Q \n", + "4 282 2.2 2023 Q \n", + "\n", + "[5 rows x 47 columns]\n" + ] + } + ], + "source": [ + "# Merge weather data with lap data\n", + "# Convert timedelta to datetime for merging\n", + "def convert_time_for_merge(df, base_date='2024-01-01'):\n", + " if 'Time' in df.columns:\n", + " # Create a base datetime and add the timedelta\n", + " base = pd.Timestamp(base_date)\n", + " if df['Time'].dtype == 'timedelta64[ns]':\n", + " df['Time'] = base + df['Time']\n", + " return df\n", + "\n", + "# Process both dataframes\n", + "weather_data_combined = convert_time_for_merge(weather_data_combined)\n", + "lap_data_combined = convert_time_for_merge(lap_data_combined)\n", + "\n", + "# Now merge based on nearest timestamp\n", + "merged_data = pd.merge_asof(\n", + " lap_data_combined.sort_values('Time'),\n", + " weather_data_combined.sort_values('Time'),\n", + " on='Time',\n", + " suffixes=('_lap', '_weather')\n", + ")\n", + "\n", + "print(merged_data.head())" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# Select features for modeling\n", + "feature_columns = [\n", + " 'TrackTemp', 'AirTemp', 'Humidity', 'Pressure', 'WindSpeed',\n", + " 'TyreLife', 'SpeedI1', 'SpeedI2', 'SpeedFL', 'SpeedST'\n", + "]\n", + "\n", + "target_column = 'LapTime_seconds'\n", + "\n", + "# Remove rows with missing values\n", + "model_data = merged_data[feature_columns + [target_column]].dropna()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X = model_data[feature_columns]\n", + "y = model_data[target_column]\n", + "\n", + "X_train, X_test, y_train, y_test = train_test_split(\n", + " X, y, test_size=0.2, random_state=42\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "# Scale the features\n", + "scaler = StandardScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "# Train and evaluate multiple models\n", + "\n", + "# Initialize models\n", + "models = {\n", + " 'Linear Regression': LinearRegression(),\n", + " 'Random Forest': RandomForestRegressor(n_estimators=100, random_state=42),\n", + " 'Decision Tree': DecisionTreeRegressor(random_state=42),\n", + " 'Gradient Boosting': GradientBoostingRegressor(n_estimators=100, random_state=42),\n", + " 'Support Vector Regressor': SVR(kernel='rbf', C=1.0, epsilon=0.1),\n", + " 'XGBoost': xgb.XGBRegressor(n_estimators=100, random_state=42)\n", + "}" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Linear Regression model trained.\n", + "Predictions made with Linear Regression model.\n", + "Metrics calculated with Linear Regression model.\n", + "Random Forest model trained.\n", + "Predictions made with Random Forest model.\n", + "Metrics calculated with Random Forest model.\n", + "Decision Tree model trained.\n", + "Predictions made with Decision Tree model.\n", + "Metrics calculated with Decision Tree model.\n", + "Gradient Boosting model trained.\n", + "Predictions made with Gradient Boosting model.\n", + "Metrics calculated with Gradient Boosting model.\n", + "Support Vector Regressor model trained.\n", + "Predictions made with Support Vector Regressor model.\n", + "Metrics calculated with Support Vector Regressor model.\n", + "XGBoost model trained.\n", + "Predictions made with XGBoost model.\n", + "Metrics calculated with XGBoost model.\n" + ] + } + ], + "source": [ + "# Train and evaluate each model\n", + "results = {}\n", + "for name, model in models.items():\n", + " # Train the model\n", + " model.fit(X_train_scaled, y_train)\n", + " print(f\"{name} model trained.\")\n", + " \n", + " # Make predictions\n", + " y_pred = model.predict(X_test_scaled)\n", + " print(f\"Predictions made with {name} model.\")\n", + " \n", + " # Calculate metrics\n", + " mse = mean_squared_error(y_test, y_pred)\n", + " rmse = np.sqrt(mse)\n", + " r2 = r2_score(y_test, y_pred)\n", + " print(f\"Metrics calculated with {name} model.\")\n", + " \n", + " results[name] = {\n", + " 'RMSE': rmse,\n", + " 'R2': r2\n", + " }" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Model Performance:\n", + "\n", + "Linear Regression:\n", + "RMSE: 7.85 seconds\n", + "R2 Score: 0.703\n", + "\n", + "Random Forest:\n", + "RMSE: 3.86 seconds\n", + "R2 Score: 0.928\n", + "\n", + "Decision Tree:\n", + "RMSE: 5.71 seconds\n", + "R2 Score: 0.843\n", + "\n", + "Gradient Boosting:\n", + "RMSE: 4.37 seconds\n", + "R2 Score: 0.908\n", + "\n", + "Support Vector Regressor:\n", + "RMSE: 5.99 seconds\n", + "R2 Score: 0.827\n", + "\n", + "XGBoost:\n", + "RMSE: 3.96 seconds\n", + "R2 Score: 0.924\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAJOCAYAAACqS2TfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gc1dXA4d/M9qbeLFvuxgWbanooxhjTIQRMCc2UkBDgoyY4EDqG0JMQICHEEAimQwi9d1ONAZvmblm2etveZr4/1lppbZVdaVdaSed9Hj1Ys+3O7NWy5557z1V0XdcRQgghhBBCCCFE2qkD3QAhhBBCCCGEEGKokqBbCCGEEEIIIYTIEAm6hRBCCCGEEEKIDJGgWwghhBBCCCGEyBAJuoUQQgghhBBCiAyRoFsIIYQQQgghhMgQCbqFEEIIIYQQQogMkaBbCCGEEEIIIYTIEAm6hRBCCCGEEEKIDJGgWwghRJ/85S9/QVEUpk+f3uvn2LRpE9deey3Lli1LX8O6ccABB3DAAQf0y2t1Z+zYsSiKEv9xOp3sscce/Pvf/+6X13/ooYdQFIV169bFj/X22ixcuJDnn38+bW1rs27dOhRF4aGHHur2fu+++y6KovD000+nvQ2puPbaaxPe065+DjjggKTPTQghxOBmHOgGCCGEGNz+9a9/AbBixQo+/fRT9thjj5SfY9OmTVx33XWMHTuWnXbaKc0tzG777LMPt99+OwAbN27k9ttv5/TTT8fr9fKb3/ym39tz77339upxCxcu5LjjjuOYY45Jb4MGmbPPPptDDjkk/vvmzZs59thjueCCCzj55JPjx3NychgxYgRLlixhwoQJA9FUIYQQ/USCbiGEEL32xRdf8PXXX3P44Yfz0ksv8eCDD/Yq6B7O8vLy2HPPPeO/H3TQQYwZM4Y777yzy6A7Go0SiUSwWCxpb8+0adPS/pzDyahRoxg1alT897ZZBKNHj054n9t0dkwIIcTQItPLhRBC9NqDDz4IwC233MLee+/N448/js/n2+Z+VVVV/OpXv6KiogKz2Ux5eTnHHXccNTU1vPvuu+y2224AzJ8/Pz799tprrwW6nu58xhlnMHbs2IRj1113HXvssQcFBQXk5OSwyy678OCDD6LresrndswxxzBmzBg0Tdvmtj322INddtkl/vtTTz3FHnvsQW5uLna7nfHjx3PmmWem/JoQC8InT57M+vXrgfbp1bfeeis33ngj48aNw2Kx8M477wCxgY+jjjqKgoICrFYrO++8M08++eQ2z/vJJ5+wzz77YLVaKS8vZ8GCBYTD4W3u19n1DgaDXH/99UydOhWr1UphYSGzZs3i448/BkBRFLxeLw8//HDC9Ok21dXVnHvuuYwaNQqz2cy4ceO47rrriEQiCa+zadMm5s2bh8vlIjc3lxNOOIHq6upeXceuJNtHxo4dyxFHHMFzzz3HDjvsgNVqZfz48fzlL39JW1s6m17eNj39m2++4fjjjyc3N5eCggIuueQSIpEIP/74I4cccggul4uxY8dy6623bvO8ra2tXHbZZYwbNw6z2czIkSO56KKL8Hq9CfdLZ78VQgjRNcl0CyGE6BW/38/ixYvZbbfdmD59OmeeeSZnn302Tz31FKeffnr8flVVVey2226Ew2H+8Ic/sMMOO9DQ0MBrr71GU1MTu+yyC4sWLWL+/PlcddVVHH744QAJ2cJkrVu3jnPPPZfRo0cDsUDzggsuoKqqiquvvjql5zrzzDM5+uijefvttznooIPix3/44Qc+++yzePC1ZMkSTjjhBE444QSuvfZarFYr69ev5+233065/QDhcJj169dTXFyccPwvf/kL2223Hbfffjs5OTlMmjSJd955h0MOOYQ99tiD+++/n9zcXB5//HFOOOEEfD4fZ5xxBgDfffcds2fPZuzYsTz00EPY7XbuvfdeHnvssR7bE4lEOPTQQ/nggw+46KKLOPDAA4lEInzyySds2LCBvffemyVLlnDggQcya9Ys/vjHPwKx6dMQC7h33313VFXl6quvZsKECSxZsoQbb7yRdevWsWjRIiDWnw466CA2bdrEzTffzHbbbcdLL73ECSec0Kvr2JVU+siyZcu46KKLuPbaaykrK+M///kP//d//0coFOKyyy5La7u2Nm/ePE455RTOPfdc3njjDW699VbC4TBvvvkm5513HpdddhmPPfYYv//975k4cSLHHnssAD6fj/3335+NGzfG/95WrFjB1Vdfzbfffsubb76Joihp77dCCCG6oQshhBC98O9//1sH9Pvvv1/XdV13u9260+nU991334T7nXnmmbrJZNK/++67Lp/r888/1wF90aJF29y2//776/vvv/82x08//XR9zJgxXT5nNBrVw+Gwfv311+uFhYW6pmk9PmdH4XBYLy0t1U8++eSE47/73e90s9ms19fX67qu67fffrsO6M3Nzd0+X2fGjBmjH3bYYXo4HNbD4bC+du1a/fTTT9cB/fLLL9d1XdfXrl2rA/qECRP0UCiU8PgpU6boO++8sx4OhxOOH3HEEfqIESP0aDSq67qun3DCCbrNZtOrq6vj94lEIvqUKVN0QF+7dm38+NbXpu19fuCBB7o9F4fDoZ9++unbHD/33HN1p9Opr1+/PuF423VbsWKFruu6ft999+mA/t///jfhfuecc06XfaOjd955Rwf0p556qtv7ddRdHxkzZoyuKIq+bNmyhMfMmTNHz8nJ0b1eb1Kv0fb+3XbbbV3e1vHcrrnmGh3Q77jjjoT77rTTTjqgP/vss/Fj4XBYLy4u1o899tj4sZtvvllXVVX//PPPEx7/9NNP64D+8ssv67ret34rhBAiNTK9XAghRK88+OCD2Gw2TjzxRACcTifHH388H3zwAStXrozf75VXXmHWrFlMnTo1421qy0rn5uZiMBgwmUxcffXVNDQ0UFtbm9JzGY1GTjnlFJ599llaWlqA2FrqRx55hKOPPprCwkKA+NT4efPm8eSTT1JVVZXS67z88suYTCZMJhPjxo3jySef5IILLuDGG29MuN9RRx2FyWSK/75q1Sp++OEHfvnLXwKxjHTbz2GHHcbmzZv58ccfAXjnnXeYPXs2paWl8ccbDIakssivvPIKVqu119OOX3zxRWbNmkV5eXlCGw899FAA3nvvvXgbXS4XRx11VMLjOxYfS4dU+sj222/PjjvuuE17WltbWbp0aVrbtbUjjjgi4fepU6eiKEr8ukGsj06cODG+FAFi13v69OnstNNOCdd77ty5KIrCu+++C/S93wohhEieBN1CCCFStmrVKt5//30OP/xwdF2nubmZ5uZmjjvuOKC9ojlAXV1dr6aKp+qzzz7j4IMPBuCBBx7go48+4vPPP+fKK68EYtOXU3XmmWcSCAR4/PHHAXjttdfYvHkz8+fPj99nv/324/nnnycSiXDaaacxatQopk+fzuLFi5N6jZ/97Gd8/vnnfPHFF3z33Xc0Nzfzl7/8BbPZnHC/ESNGJPxeU1MDwGWXXRYP2tt+zjvvPADq6+sBaGhooKysbJvX7uzY1urq6igvL0dVe/eVoaamhv/973/btHH77bffpo0dBwVSaWOyUu0j3V2zhoaGtLWrMwUFBQm/m81m7HY7Vqt1m+OBQCD+e01NDd98880219vlcqHrevx697XfCiGESJ6s6RZCCJGyf/3rX+i6ztNPP93pvsgPP/wwN954IwaDgeLiYjZu3Njr17JarfFMc0dtwUObxx9/HJPJxIsvvpgQmPRl7+hp06ax++67s2jRIs4991wWLVpEeXl5PHBrc/TRR3P00UcTDAb55JNPuPnmmzn55JMZO3Yse+21V7evkZuby8yZM3tsi6IoCb8XFRUBsGDBgvh63q1NnjwZgMLCwk4LkiVTpKy4uJgPP/wQTdN6FXgXFRWxww47cNNNN3V6e3l5ebyNn332Wa/amKxU+0h316xtpkO2KSoqwmazJQx8bX17m770WyGEEMmToFsIIURKotEoDz/8MBMmTOCf//znNre/+OKL3HHHHbzyyiscccQRHHrooTzyyCP8+OOP8SBwa21bX3WWjR47dixPPfUUwWAwfr+GhgY+/vjjeLEuiAWlRqMRg8EQP+b3+3nkkUf6dL7z58/nN7/5DR9++CH/+9//uOSSSxJeY+vz2H///cnLy+O1117jq6++yljwMnnyZCZNmsTXX3/NwoULu73vrFmzeOGFF6ipqYlnk6PRKE888USPr3PooYeyePFiHnrooW6nmFsslk7fvyOOOIKXX36ZCRMmkJ+f320bn3zySV544YWEKebJFHtLVqp9ZMWKFXz99dcJU8wfe+wxXC5XQvX6bHLEEUewcOFCCgsLGTduXFKP6c9+K4QQw5EE3UIIIVLyyiuvsGnTJv70pz91upXX9OnTueeee3jwwQc54ogjuP7663nllVfYb7/9+MMf/sCMGTNobm7m1Vdf5ZJLLmHKlClMmDABm83Gf/7zH6ZOnYrT6aS8vJzy8nJOPfVU/v73v3PKKadwzjnn0NDQwK233poQcAMcfvjh3HnnnZx88sn86le/oqGhgdtvv73Pe1mfdNJJXHLJJZx00kkEg8F4RfA2V199NRs3bmT27NmMGjWK5uZm/vznP2Mymdh///379No9+fvf/86hhx7K3LlzOeOMMxg5ciSNjY18//33LF26lKeeegqAq666ihdeeIEDDzyQq6++Grvdzt/+9rdttpDqzEknncSiRYv49a9/zY8//sisWbPQNI1PP/2UqVOnxtf0z5gxg3fffZf//e9/jBgxApfLxeTJk7n++ut544032HvvvbnwwguZPHkygUCAdevW8fLLL3P//fczatQoTjvtNO666y5OO+00brrpJiZNmsTLL7/Ma6+9ltI1+eSTTzo9vv/++6fcR8rLyznqqKO49tprGTFiBI8++ihvvPEGf/rTn7Db7Sm1q79cdNFFPPPMM+y3335cfPHF7LDDDmiaxoYNG3j99de59NJL2WOPPQa03wohxLAzwIXchBBCDDLHHHOMbjab9dra2i7vc+KJJ+pGozFeLbuyslI/88wz9bKyMt1kMunl5eX6vHnz9JqamvhjFi9erE+ZMkU3mUw6oF9zzTXx2x5++GF96tSputVq1adNm6Y/8cQTnVYv/9e//qVPnjxZt1gs+vjx4/Wbb75Zf/DBB3us0N2Tk08+WQf0ffbZZ5vbXnzxRf3QQw/VR44cqZvNZr2kpEQ/7LDD9A8++KDH5x0zZox++OGHd3uf7qpf67quf/311/q8efP0kpIS3WQy6WVlZfqBBx4Yryrf5qOPPtL33HNP3WKx6GVlZfrll1+u/+Mf/0jq2vj9fv3qq6/WJ02apJvNZr2wsFA/8MAD9Y8//jh+n2XLlun77LOPbrfbdSDhOerq6vQLL7xQHzdunG4ymfSCggJ911131a+88krd4/HE77dx40b9F7/4he50OnWXy6X/4he/0D/++OOUqpd39fPOO+/oup58H2l7b55++ml9++23181msz527Fj9zjvv7LYdW+tt9fK6urqE+55++um6w+HY5jn2339/ffvtt0845vF49KuuukqfPHmybjab9dzcXH3GjBn6xRdfHP+b7Eu/FUIIkRpF13W9vwN9IYQQQohsNnbsWKZPn86LL7440E0RQggxyEn1ciGEEEIIIYQQIkMk6BZCCCGEEEIIITJEppcLIYQQQgghhBAZIpluIYQQQgghhBAiQyToFkIIIZL00EMPoShK/MdoNDJixAhOPPFEVq5cOWDtuvbaa1EUZcBef2vvvvtuwnXq+HPccccNdPM6de+99/LQQw8NdDOEEEIMQbJPtxBCCJGiRYsWMWXKFAKBAB999BE33XQT77zzDj/88AP5+fkD3byssXDhQmbNmpVwrLCwcIBa0717772XoqKibfZhF0IIIfpKgm4hhBAiRdOnT2fmzJkAHHDAAUSjUa655hqef/555s+fP8Ctyx6TJk1izz33TPvz+v1+rFZrVmX3hRBCiK7I9HIhhBCij9oC8JqamvixQCDApZdeyk477URubi4FBQXstdde/Pe//93m8YqicP755/PII48wdepU7HY7O+64Y6d7RL/00kvstNNOWCwWxo0bx+23395pmwKBAAsWLGDcuHGYzWZGjhzJb3/7W5qbmxPuN3bsWI444ghefPFFdt55Z2w2G1OnTo2/9kMPPcTUqVNxOBzsvvvufPHFF729TNv48MMPmT17Ni6XC7vdzt57781LL72UcJ+2Kf2vv/46Z555JsXFxdjtdoLBIABPPPEEe+21Fw6HA6fTydy5c/nqq68SnmPNmjWceOKJlJeXY7FYKC0tZfbs2Sxbtix+DVasWMF7770XnwY/duzYtJ2nEEKI4U0y3UIIIUQfrV27FoDtttsufiwYDNLY2Mhll13GyJEjCYVCvPnmmxx77LEsWrSI0047LeE5XnrpJT7//HOuv/56nE4nt956Kz//+c/58ccfGT9+PABvvfUWRx99NHvttRePP/440WiUW2+9NSHYB9B1nWOOOYa33nqLBQsWsO+++/LNN99wzTXXsGTJEpYsWYLFYonf/+uvv2bBggVceeWV5Obmct1113HssceyYMEC3nrrLRYuXIiiKPz+97/niCOOYO3atdhsth6vi6ZpRCKRhGNGY+yrx3vvvcecOXPYYYcdePDBB7FYLNx7770ceeSRLF68mBNOOCHhcWeeeSaHH344jzzyCF6vF5PJxMKFC7nqqquYP38+V111FaFQiNtuu419992Xzz77jGnTpgFw2GGHxa/V6NGjqa+v5+OPP44PQDz33HMcd9xx5Obmcu+99wIkXB8hhBCiT3QhhBBCJGXRokU6oH/yySd6OBzW3W63/uqrr+plZWX6fvvtp4fD4S4fG4lE9HA4rJ911ln6zjvvnHAboJeWluqtra3xY9XV1bqqqvrNN98cP7bHHnvo5eXlut/vjx9rbW3VCwoK9I7/S3/11Vd1QL/11lsTXueJJ57QAf0f//hH/NiYMWN0m82mb9y4MX5s2bJlOqCPGDFC93q98ePPP/+8DugvvPBCt9fpnXfe0YFOf1auXKnruq7vueeeeklJie52uxOu0fTp0/VRo0bpmqbput5+zU877bSE19iwYYNuNBr1Cy64IOG42+3Wy8rK9Hnz5um6ruv19fU6oN99993dtnn77bfX999//27vI4QQQvSGTC8XQgghUrTnnntiMplwuVwccsgh5Ofn89///jeexW3z1FNPsc8+++B0OjEajZhMJh588EG+//77bZ5z1qxZuFyu+O+lpaWUlJSwfv16ALxeL59//jnHHnssVqs1fj+Xy8WRRx6Z8Fxvv/02wDZFwY4//ngcDgdvvfVWwvGddtqJkSNHxn+fOnUqEFuvbrfbtzne1qae/OlPf+Lzzz9P+KmoqMDr9fLpp59y3HHH4XQ64/c3GAyceuqpbNy4kR9//DHhuX7xi18k/P7aa68RiUQ47bTTiEQi8R+r1cr+++/Pu+++C0BBQQETJkzgtttu48477+Srr75C07Sk2i+EEEKkgwTdQgghRIr+/e9/8/nnn/P2229z7rnn8v3333PSSScl3OfZZ59l3rx5jBw5kkcffZQlS5bw+eefc+aZZxIIBLZ5zs6qelssFvx+PwBNTU1omkZZWdk299v6WENDA0ajkeLi4oTjiqJQVlZGQ0NDwvGCgoKE381mc7fHO2t/Z8aPH8/MmTMTfiwWC01NTei6zogRI7Z5THl5efwcOtr6vm1T6nfbbTdMJlPCzxNPPEF9fX38nN966y3mzp3Lrbfeyi677EJxcTEXXnghbrc7qfMQQggh+kLWdAshhBApmjp1arx42qxZs4hGo/zzn//k6aefju9D/eijjzJu3DieeOKJhCrbbQXAUpWfn4+iKFRXV29z29bHCgsLiUQi1NXVJQTeuq5TXV3Nbrvt1qs2pEt+fj6qqrJ58+Ztbtu0aRMARUVFCce3rlTedvvTTz/NmDFjun29MWPG8OCDDwLw008/8eSTT3LttdcSCoW4//77e30eQgghRDIk0y2EEEL00a233kp+fj5XX311fOqyoiiYzeaEYLG6urrT6uXJaKse/uyzzyZkmt1uN//73/8S7jt79mwgFvh39Mwzz+D1euO3DxSHw8Eee+zBs88+G8/kQ6zw2qOPPsqoUaMSitJ1Zu7cuRiNRlavXr1NNr3tpzPbbbcdV111FTNmzGDp0qXx4x1nFQghhBDpJJluIYQQoo/y8/NZsGABv/vd73jsscc45ZRTOOKII3j22Wc577zzOO6446isrOSGG25gxIgRrFy5slevc8MNN3DIIYcwZ84cLr30UqLRKH/6059wOBw0NjbG7zdnzhzmzp3L73//e1pbW9lnn33i1ct33nlnTj311HSdeq/dfPPNzJkzh1mzZnHZZZdhNpu59957Wb58OYsXL+5xD+6xY8dy/fXXc+WVV7JmzZr42vqamho+++wzHA4H1113Hd988w3nn38+xx9/PJMmTcJsNvP222/zzTffcMUVV8Sfb8aMGTz++OM88cQTjB8/HqvVyowZMzJ9GYQQQgwDEnQLIYQQaXDBBRdwzz33cP3113PSSScxf/58amtruf/++/nXv/7F+PHjueKKK9i4cSPXXXddr15jzpw5PP/881x11VWccMIJlJWVcd555+H3+xOeU1EUnn/+ea699loWLVrETTfdRFFREaeeeioLFy7Miu2w9t9/f95++22uueYazjjjDDRNY8cdd+SFF17giCOOSOo5FixYwLRp0/jzn//M4sWLCQaDlJWVsdtuu/HrX/8aiK13nzBhAvfeey+VlZUoisL48eO54447uOCCC+LPdd1117F582bOOecc3G43Y8aMYd26dZk4dSGEEMOMouu6PtCNEEIIIYQQQgghhiJZ0y2EEEIIIYQQQmSIBN1CCCGEEEIIIUSGSNAthBBCCCGEEEJkiATdQgghhBBCCCFEhkjQLYQQQgghhBBCZIgE3UIIIYQQQgghRIZI0C2EEEIIIYQQQmSIcaAbkA00TWPTpk24XC4URRno5gghhBBCCCGEyHK6ruN2uykvL0dVu85nS9ANbNq0iYqKioFuhhBCCCGEEEKIQaayspJRo0Z1ebsE3YDL5QJiFysnJ2eAWyOEEEIIIYQQItu1trZSUVERjye7IkE3xKeU5+TkSNAthBBCCCGEECJpPS1RlkJqQgghhBBCCCFEhkjQLYQQQgghhBBCZIgE3UIIIYQQQgghRIZI0C2EEEIIIYQQQmSIBN1CCCGEEEIIIUSGSNAthBBCCCGEEEJkiATdQgghhBBCCCFEhkjQLYQQQgghhBBCZIgE3UIIIYQQQgghRIZI0C2EEEIIIYQQQmSIBN1CCCGEEEIIIUSGSNAthBBCCCGEEEJkiATdQgghhBBCCCFEhkjQLYQQQgghhBBCZIgE3UIIIYQQQgghRIZI0C2EEEIIIYQQQmSIBN1CCCGEEEIIIUSGSNAthBBCCCGEECJ7tLYOdAvSSoJuIYQQQgghhBDZIxiE778f6FakjQTdQgghhBBCCCEGjqYl/l5cDA0NoOsD0540k6BbCCGEEEIIIUT/Cwbh7rthyhRoakq8beedIRodkGalmwTdQgghhBBCCCH6TzQK//43TJ4MF18MK1fCLbck3sfhAKNxYNqXZkPjLIQQQgghhBBCZDddh5degj/8Ab79NvG2+vrY7YoyMG3LIMl0CyGEEEIIIYTIrI8/hv32gyOPTAy4586FpUvhwQeHZMANkukWQgghhBBCCJEpVVVw3nnwwguJx3ffPTalfNasgWlXP5JMtxBCCCGEEEKIzHA64cMP23+fPBmeeQY++WRYBNwgQbcQQgghhBBCiHQJhRJ/z82NreEeORIeeACWL4djjx2yU8k7I0G3EEIIIYQQQoi+8Xrhxhth7FjYvDnxtvPPj1UoP/vsIVORPBUSdAshhBBCCCGE6J1wGO69FyZMgD/+MRZw33BD4n0sFrDZBqZ9WWD4DTMIIYQQQgghhOgbTYMnn4SrroLVq9uPGwygqkN2+6/ekEy3EEIIIYQQQojk6Dq8/jrMnAknnZQYcB93HKxYAffcIwF3B5LpFkIIIYQQQgjRs8pKOOMMePvtxOOzZsW2/9p99wFpVraToFsIIYQQQgghRM8KC+H779t/32mnWLB98MGS2e6GTC8XQgghhBBCCLEtrzfxd7sdrrkGxo+Hxx6DL7+EuXMl4O6BBN1CCCGEEEIIIdo1N8OCBTBqFKxbl3jbWWfFst0nnRQrmCZ6JFdJCCGEEEIIIQT4/XDbbbFM9i23xILvq69OvI/RCGbzgDRvsJI13UIIIYQQQggxnEUi8PDDsanjVVXtx81mKCmR7b/6SIJuIYQQQgghhBiOdB2eew6uvBJ++KH9uKLAaafBddfBmDED174hQoJuIYQQQgghhBhuKivh+OPh008Tjx95JCxcCNOnD0y7hiAJuoUQQgghhBBiuCkthbq69t/32Se2jvtnPxu4Ng1RUkhNCCGEEEIIIYa6xsbE381muOEG2H57eOEF+OCDAQm4NU2nstHHD9WtVDb60DS939uQaZLpFkIIIYQQQoihqqYGbrwR/vlPWLoUpk5tv+3EE+GEE8BgGJCmrap189ryGlbXeQhEoliNBiYUO5k7vZSJJa4BaVMmSKZbCCGEEEIIIYaa1tZYNfIJE+CeeyAQiBVM60hVBzTgXvTROr6tasagQo7VhEGFb6uaWfTROlbVugekXZkgmW4hhBBCCCGEGCqCQbj//lh2u76+/bjdHiuOpmmxYHsAaZrOa8tr2NDgI6JprGvwEYlqGA0q+XYT3mCU11fUML7IiaoO/q3KJOgWQgghhBBCiMEuGoXHHoOrr4Z169qPG41w7rlw1VVQVjZgzeuoqtnPV5VN1LoDRDUdp9WEyWokHNWpcwcxqApLNzRR1eynosA+0M3tMwm6hRBCCCGEEGIw27gRDjsMvv028fiJJ8aKpU2cODDt6oI7GGZDo49oVKfQaUZRYtlsi1HB7DDT4AlR2ejDHQwPcEvTQ9Z0CyGEEEIIIcRgNmJEbNp4m7lzY0XTFi/OuoAbwBOI4A9FsZjUeMDdRlEULCYVXyiKJxAZoBamlwTdQgghhBBCCDGYVFUl/m4wwMKFsNtu8Pbb8OqrsPPOA9O2JDgtRmwmA8FwFF1P3CJM13WC4Sh2swGnZWhMzJagWwghhBBCCCEGg8pKOPNMGDMGvvwy8bYjj4RPP4VZswambSlwWU2MLrRjMqo0ekMEI1E0XScYidLoDWE0qFQU2HFZTQPd1LSQoFsIIYQQQgghsllDA1x2GUyaBIsWxYqmLViQeB9Fif0MAiPzbOxckU+xy0qx00IgrNHsCxEIaxS7LJTkWNlldD4j82wD3dS0GBr5eiGEEEIIIYQYarxeuPtuuPXW2L7bbfLyYPbsrNj+qzdUVWHu9FI2tfhp8IQYVWDHoCpENR13IEKh08zB25cOie3CQIJuIYQQQgghhMgu4TD8859w/fVQXd1+3GqFCy+EK66A/PyBa18aTCxxMX+fsby2vIbVdR58oQgWo4EdRuVy8PalTCxxDXQT00aCbiGEEEIIIYTIFlVVcMABsGpV+zFVja3lvuYaGDVqwJqWbhNLXIw/wElVsx9vKILDbGRknm3IZLjbSNAthBBCCCGEENmivDwxi33ssXDTTTBlysC1KYNUVaGiwD7QzciowbcAQAghhBBCCCGGih9/TPxdUeCWW2JVyD/9FJ55ZsgG3MOFBN1CCCGEEEII0d9++gmOPz4WUL/3XuJtBx4Ib70Fu+8+MG0TaSVBtxBCCCGEEEL0l02b4NxzYdo0ePrp2LErrgBdT7zfINn+S/RM1nQLIYQQQgghRKY1N8e2/rr7bvD724+XlMApp8S2/zIYBqp1IoMk6BZCCCGEEEKITAkE4J57YOFCaGpqP+5yweWXw8UXg9M5cO0TGSdBtxBCCCGEEEJkQnU17LYbbNzYfsxshvPOgz/8AYqLB65tot/Imm4hhBBCCCGEyITSUpg0KfZvRYHTTotVK7/rLgm4hxEJuoUQQgghhBAiHb78MrEgWtv2X0ccAV9/DQ8/DGPHDljzxMCQoFsIIYQQQggh+mLZMjj0UJg5E155JfG23XeH//0PZswYkKaJgSdBtxBCCCGEEEL0xpo18Mtfws47w6uvxo5dcQVEowPbLpFVpJCaEEIIIYQQQqSipgZuvBH+/ncIh9uPjx4Nl146cO0SWUmCbiGEEEIIIYRIRmsr3HFH7MfrbT9eWAhXXgm/+Q1YrQPXPpGVBnR6+fvvv8+RRx5JeXk5iqLw/PPPd3nfc889F0VRuPvuuxOOB4NBLrjgAoqKinA4HBx11FFs7FiSXwghhBBCCCH6qq4OJk6E669vD7jtdrjqKli9OrbftgTcohMDGnR7vV523HFH7rnnnm7v9/zzz/Ppp59SXl6+zW0XXXQRzz33HI8//jgffvghHo+HI444gqisoxBCCCGEEEKkS3Ex7Lln7N9GY2yv7dWr4YYbIDd3YNsmstqATi8/9NBDOfTQQ7u9T1VVFeeffz6vvfYahx9+eMJtLS0tPPjggzzyyCMcdNBBADz66KNUVFTw5ptvMnfu3Iy1XQghhBBCCDFE6Tq8+y7svz+oHfKUCxeC0xnLdk+cOGDNS5Wm6VQ1+/GGIjjMRkbm2VBVZaCbNWxk9ZpuTdM49dRTufzyy9l+++23uf3LL78kHA5z8MEHx4+Vl5czffp0Pv744y6D7mAwSDAYjP/e2tqa/sYLIYQQQgghBp8lS+D3v4cPPoDHH4cTTmi/bfp0eOyxgWtbL6yqdfPa8hpW13kIRKJYjQYmFDuZO72UiSWugW7esJDVW4b96U9/wmg0cuGFF3Z6e3V1NWazmfz8/ITjpaWlVFdXd/m8N998M7m5ufGfioqKtLZbCCGEEEIIMch89x0ccwzsvXcs4IZYcbSO1ckHmVW1bhZ9tI7lm1rIs5sYX+Qkz25i+aYWFn20jlW17oFu4rCQtUH3l19+yZ///GceeughFCW1qQ+6rnf7mAULFtDS0hL/qays7GtzhRBCCCGEEINRZSWceSbMmAH//W/78e22g1tuia3fHoQ0Tee15TU0ekNMKnHispowqAouq4lJJU4avSFeX1GDpukD3dQhL2uD7g8++IDa2lpGjx6N0WjEaDSyfv16Lr30UsaOHQtAWVkZoVCIpqamhMfW1tZSWlra5XNbLBZycnISfoQQQgghhBDDSEMDXHYZTJoEixaBpsWOjxgR2397xQo47jhIMQGYLaqa/ayu8zAi17pNQlJRFEbkWllV66Gq2T9ALRw+snbY5tRTT40XR2szd+5cTj31VObPnw/Arrvuislk4o033mDevHkAbN68meXLl3Prrbf2e5uFEEIIIYQQg0BjY6wQWnNz+7HcXLjiCrjwwthWYIOcNxQhEIliN9s6vd1mNlDTGsAbivRzy4afAQ26PR4Pq1ativ++du1ali1bRkFBAaNHj6awsDDh/iaTibKyMiZPngxAbm4uZ511FpdeeimFhYUUFBRw2WWXMWPGjG0CdiGEEEIIIYQAoKAADjssVhTNaoULLogF3AUFA92ytHGYjViNBnyhCC6raZvb/aEoFqMBhzlr87BDxoBe4S+++IJZs2bFf7/kkksAOP3003nooYeSeo677roLo9HIvHnz8Pv9zJ49m4ceegiDwZCJJgshhBBCCCEGE02DF1+MBdkd12ffcAM4HHD11TBq1MC1L0NG5tmYUOxk+aYWnBZjwhRzXdfZ3BJgxshcRuZ1ngkX6aPouj7sV863traSm5tLS0uLrO8WQgghhBBiqHjzzVgG+8sv4Z//hLPOGugW9au26uWN3hAjcq3YzAb8oSibWwIUOMzM32esbBvWB8nGkRJ0I0G3EEIIIYQQQ8qXX8aC7TffbD82ciSsWhWbTj6MdNynOxiJTSmfWOLk4O1ln+6+SjaOlAn8QgghhBBCiKFh5Uq46ip48snE4zvuGNv+y2IZmHYNoIklLsYf4KSq2Y83FMFhNjIyz4aqDs6q7IORBN1CCCGEEEKIwW3zZrjuutgU8mi0/fi4cXDjjXDiiaBm7W7JGaeqChUFg78i+2AlQbcQQgghhBBi8GppgSlToLW1/VhJCfzxj/CrX4HZPHBtEwIYvsM9QgghhBBCiMEvNzeWyQZwuWIZ79Wr4fzzJeAWWUEy3UIIIYQQQojBIRKBxx+H449PXJ99zTWx7b8WLIDi4oFrnxCdkEy3EEIIIYQQIrvpOjz/POywA5x6Ktx3X+Lt5eVw550ScIusJEG3EEIIIYQQInu9/z7ssw/8/Ofw/fexYzfdBD7fwLZLiCRJ0C2EEEIIIYTIPt98A4cfDvvvD0uWtB/fe2947jmwD1w1bk3TqWz08UN1K5WNPjRNH7C2iOwna7qFEEIIIYQQ2WPtWrj6avjPf2LTyttsvz0sXAhHHgnKwO0xvarWzWvLa1hd5yEQiWI1GphQ7GTu9FImlrgGrF2p0jRd9u7uJxJ0CyGEEEIIIbKD2w077hj7b5uKCrj++thaboNh4NpGLOBe9NE6Gr0hRuRasZtt+EIRlm9qYVOLn/n7jB0UgfdQGTgYLGR6uRBCCCGEECI7uFxwzjmxfxcUwB13wE8/wRlnDHjArWk6ry2vodEbYlKJE5fVhEFVcFlNTCpx0ugN8fqKmqyfat42cLB8Uwt5dhPji5zk2U0s39TCoo/WsarW3fOTiJRIplsIIYQQQgjR/4JB+Ne/Yhlsp7P9+B/+EPv9kktie3BniapmP6vrPIzItaJsNb1dURRG5FpZVeuhqtlPRcHArTfvztYDB23n4bKacFqMrKz18PqKGsYXOWWqeRpJplsIIYQQQgjRfzQNHn0UpkyB886Du+9OvL2wEK67LqsCbgBvKEIgEsVu7jxvaTMbCEaieEORfm5Z8lIZOBDpI0G3EEIIIYQQIil9qtqt6/DSS7DzzrHs9rp1seO3347W6s76auAOsxGr0YCvi6DaH4piMRpwdBGUZ4OhMHAwGGVvjxBCCCGEEGIYytaq0n0qvrVkCfz+9/DBBwmH9TkHs+w3l/Pfd9ezuSWAqijYTNlZ1Gtkno0JxU6Wb2rBaTEmZIp1XWdzS4AZI3MZmWcbwFZ2r+PAgctq2ub2bBg4yNb+3xcSdAshhBBCCJElsrWqdK+rdn/3XWyN9n//m3h8t92o+v3VPGgaxzs/1uIPV+OwGCl2WrDlWbOyGriqKsydXsqmFj8ra2NTtG1mA/5QlM0tAQocZg7evjSrA8RsHzjI1v7fVxJ0CyGEEEIIkQWydTuqXhff8nph772hpaX92HbbwU03sWrfg/nXR+v4YnU9mg6j8m1ENJ16TxBvKMKOo3Jp2FINPJuKek0scTF/n7HxwLCmNYDFaGDGyFwO3j77A8NMDhz0NUOdrf0/HSToFkIIIYQQYoBlc1XpXlftdjjgootiRdFGjIBrr4X589EMRl57dzVVzX5UIN9hxqCqGFQwO1QavSHW1PuYXOrMymrgE0tcjD/AOWinQGdi4KCvGeps7v/pIEG3EEIIIYQQAyybt6NqL77V+ZRjm9lAU20Tlrtuh0sugPz89hsvvTS29/ZvfgP2WLurGn2srvOQbzdT1eTHZGg/X0VRcFqNNHpDRDWytqiXqipZNRCQqnQOHKQjQ53N/T8dJOgWQgghhBBigCUT2Na0BgYkAO2u+JYaCTPtf09w7uL7yGmuh7APbrml/Q4uVyzw7qDtXIscFowGlXBUx2JsD7RMBhVvMEJrIDzgRb2GsnQMHKQrQ53N/T8dZMswIYQQQgghBlg2b0fVVnxrc0sAXd+ylZemsd17L3PaOYdz+H03xAJugL/9DVpbu32+tnM1qJBvN+MJhNufFwhHNVRFockXYmKJM6urgQ936dr3u2P/13WdVn+Yek+QVn+sb2RDVfW+GJytFkIIIYRI0VDchkYMHdlcVXrr4lt7r/2KOY/cTdnKFYl3/PnP4aabICen2+freK4Tih14ghEavSGcViNGVaHJG8JiNDAqz5711cCHu3RlqNv6xCdrG4hENJr8YSKahlFVybeZMBpV9hpfOGgHYCToFkIIIcSQN1S3oRFDR1+qSvfHgNLEEhe/djbBjQuoWPpxwm3+vX+G7Y7bYM89k3qujufa4A0xqcRBVbOfek8IbzCCzWTgZ5OKOHmP0fL3uUW2Dhqma99vVVWYMsLFc8uqcAfCFDrM5NpM+ENR1jR4ybGamFzmyopz7g0JuoUQQggxpA3lbWjE0NKbqtL9NqDk91Nx0rHQ0BA/FJo+A+Mtt2A77FBQUguGtj7XQoeZPJuZ8jwbs6eWsPeEokEbYCUjlSA6mwcN0zVDQ9N0ftjsZkSOlWKnmSZfmBZ/GKOqMr7IgVFV+bHazazJJYOyX0jQLYQQQogha6hvQyOGnlSqSvfrgJLNBldcAZdfDuPGwQ03YD7pJFB7XyIq1Qra2ZrtTVUqQXS2Dxqma9/vtrXhk0qdOC1G3IEIoaiG2aDishrxBCNSvVwIIYQQIhsN9W1oxNCUTFXpjA4otbTA7bfDb38LZWXtx88/P7Ze+4wzwGxO8aw6l2wF7WzO9qYilSC643s8sdiBJxilyRfCbFCZWOxgVZ03KwYN07Hvd8e14YqikGNLnKo+2KuXS9AthBBCiCFrqG9DI4avjAwoBQKx6uMLF0JjIzQ1wT33tN9utcKvfpXGs0hOtmd7k5XqQEnbe2wzqXyxvpkmX4hIVMNoUMm3mxmRa8maQcO+7vudrrXh2Uq2DBNCCCHEkJXN2zAJ0RftA0qd912b2UAwEk1uQCkahUWLYLvt4LLLYgE3wEMPQXNz2trcG1sHqi6rCYOq4LKamFTipNEb4vUVNWia3vOTDbBUt9fyhiLUe4L8WOOhzh3AajKQ7zBjNRmocwf4scZDvSeYNYOGbbMWppTlUFFgTyn73um2dFu0rQ0fzNvHSdAthBBCiCFrqH+RE8NXWgaUdB3++1/YYQc480yorIwdVxQ49VRYvhzy8tLf+BSkax/obJDqQInNZKDeE8ITiFDgMGMxqqiKgsWoUuAw4wlEqPeEsJkM/XkafaZpOpWNPn6obqWy0Yem6fG14QUOMytrPbgDsS3D3IEwK2s9Sa8Nz1YyrCuEEEKIIStdRX6ESEZ/Fvrqc9Xo99+PFUZbsiTx+OGHx6aX77BDym3KxPkPpSUiqU6hjl05HYWusvix2zL56ZXu97Sntfl9XRuerSToFkIIIcSQNpS/yA0GQ6XidE/6u9BXnwaUgkE48UTYvLn92F57wZ/+BPvu26v2ZOr8B9Na3576eqoDJb5wlCKnhQYFGr0hnFYjJoNKOKrhCURwWo0UOiz4wtGMnE+639Nk1+b3ZW14thr43imEEEIIkWFD9YtcthsqFad7MlCFvno9oGSxwNVXw29+A9OmxTLbRx2V8l7bbTJ5/unaBzrTkunrqQ6UOMxGipwWipxmqluCNPpCeIMRDKpKSY6VshwLoGRkwCHd72mqReQGujBcuknQLYQQQoh+MdAZz6H4RS6bDZWK0z0Z6L3gexxQqq2NBdUXXQRjx7Y/8KyzIDcX5s0DQ+/XBEciGk9+Xsn6Bi8Ti53xwDhd5z8Yloik0tdTGSjpOOCw65g8PMFofO9qp8XAqjpvRgYcMtGnh/v2jRJ0CyGEECLjhkvGU8QMdCDan7IhmOh0QMnthjvvjO237fHEtv96+OH2200mOOmkPr3uqlo3T36+kVeWV2NQod4TosBuZkKJgwKHJW3nn81LRHrT15OdedNxwGFVnZcRuVby7Cb8oSir6rwZG3DIRJ8eSmvze0OCbiGEEEJk1HDJeIp22RCI9pesCyZCIfj73+GGG6Curv34s8/GgvDCwrS8TNvf9foGLwZVodBpJqrp1LoDuINhdqrIo8BhSdv5Z+sSkd729WRn3gzEgEMm+vRgWpufCUPzrIQQQgiRFYZTxlO0y7pANIP6K5jocXmGpsHixfDHP8Late3HDQY455zYGu40Bdwd/64nFjup94SIamAxGjA7VBq9IVbXecm3m9MaTGXjEpH+6Ov9PeCQiT49WNbmZ4oE3UIIIYTImOGU8RTthlNWqz+CiW6XZxQ74dVXYcEC+PrrxAfOmwc33giTJvX6tTvT8e/aaTGSbzdT5w5gdphRFAWn1UijN0SrP0yNOzikg6n+6uv9OeCQiT49GNbmZ5I60A0QQgghxNDVngXq/AunzWwgGIkOiYynaNf2pX1zSwBdT9xjuO1L+8QS55AIxNqCiQKHmZW1HtyBMBFNwx0Is7LW0+dgom0a9/JNLeTZTYwvcpJnN7F8UwuLPlrHqk1N8NvfJgbcc+bAF1/AE0+kPeCGxL9rRVGYWOLEZo4F2sFIFIOqEAhHWFXX9/PPdkOxr2eqT7dNlZ9enkuzL8y6ei/NvjAzRuYO+WVGg394UQghhBBZazhlPEW74ZbVytS626SWZ/zUyPjrrkc97VTYdVe45RY46KB0nt42tv67LnCY2akij1W1Hpp8IQLhKFENppXnMG9mxZAOpoZqX89Un87WtfmZpuhbD8kMQ62treTm5tLS0kJOTs5AN0cIIYQYMjRN5753V7N8U0tC0ACxLNDKWg8zRuby6/0nDPkvXcNRx2nRwUhsgGViiXPAK05nSrq3xats9HHXGz+RZzfFAu3azez56D18edyZNI2egDsQptkX5uLZE6n45F047DBQMz+Rtau/a13XafWHWVXnYfvyXC4/eDJG4/CYWDtU+/pAb/WY7ZKNI2VYWQghhBAZM1SzQCI5wy2r1XHdbWfBCpDStWibxl0QCLDnvx9gp/8+ijEcwupp5cWr/9pepCuiwRFH9Ms5Qvd/1zXuIGMKHRw/c9Q2AfdQDuCGal/PxuJ1g5EE3UIIIYTIqGzeY1dk3nD80t5Z4bM8uwl0aPaHk96r3hkJcfiLDzH7fw9j9brjxyuWfYKtqYFaW86ALc9I9e+622JwQ+QzYDj2dZEcmV6OTC8XQggh+kM2ZbmyqS1i6NA0nY9X1/PYZxvwBiOML3LgsJjY1Ozj83VNAOw2Np/yPDu+UCQ+22ObIlLhMDz4IPr116Ns3hw/HDGZWXbMqXx2wq8IuHKzYnlGMn9LbcXgGr0hRuRasZuN3Z+/EIOETC8XQgghRFbJlizQcMi4if63qtbNq8urefnbzTR4Q+TbTIQiOhOKHVS3BDEbFFAUqluDjMq3d75XvQI8/TRceSWsXElb6KqpKkv2PZLPTr+ASPnI2PKMNFRGT4ee/q6TKgbXdv4y8CWGKAm6hRBCCDFsbJtxs+ELRVi+qYVNLf5tMm6SERfJaOtXG5t8BCMapTkWVEWlzh2g0RskFNXItcWq9zd6Q7gDEXJspm33qs+1wLXXwsqV7U/+859TeckfWBbKo7LOQ7DeO6iWZ3Tc07tjIUVg2/PPgkE50bV0fB4O189UCbqFEEIIMSykmnGTjLhIRsd+NTLPRlWzH4vRgKoomB1mNrcE8IYiFDrMKIqCJxghFNXij48XQwtFwGCHhQvhmGNg//1j23/tuSdjgN8M0mClfU/vzvepTjh/kbXS8Xk4nD9TJegWQgghxJDSVSYllYxbMBJNKSMuhq+O/UrXwaiqhKMaFqMBRVFwWYy0+MN4Q1EsRhWjqmI2qORWrWefh+7mvWPOwDJiUnsxtKOOgvffh5/9DDr002xZnpGqrff03po/FB2wYnAiOanOEMrUcwxm0ruFEEIIMWR0l0mJaHpSGTd3MMw739fJGlSRlI6ZXFWBAruZWncAs0NFURTsFgMmVcHtDxMyGZiseTjmH/cx/dWnMUQjRBsbifz5kfiWYigK7LvvwJ5UGo3MszGh2MnyTS04LcaEAS9d19ncEmDGyNz28xdZJR1r8mVdvwTdQgghhBgiesqkHDK9LKmMmycQkTWoImlbZ3InlDhwB8M0ekM4rUY0HewWIxavm9M+fJITPn4WSzAQf/zo9T9yaJGelcFGOtbfdrend1v18oEuBie6lo41+bKuX4JuIYQQQgwByWRSvqlsYXyRgxWbW7vNuDktRlmDKpK2dSa3wGFhp4o8Vtd6afAG8bd6Oe2rl/jl2//B7m6JPy5gtfPNCWdTePXvmTC+fADPoHOprL/tKThPdU9vkT3SsSZf1vVL0C2EEEKIfpaJ6rXJZFJW13k4dpeRbG4NdJtxsxgNsgZVJK2zTG6OzcTkEjsjX3iJY194gIKGmvj9dZOJptPOwn/575k5aUxWZnhTWX+bbHA+scTF+AOcg7IY3HCWjjX5sq5fgm4hhBBC9KNMVa9NNpNS5LL0mHHTNF3WoPbCcN0KCLrI5BpUfvPxf9sDbkWBU05Bue46CsaNS3h8Nl27VNbfrqn3pFQca7AWgxvO0rEmX9b1S9AthBBCiH6Syeq1qWRSKgrs3Wbchsoa1P4M5LJxK6D+DmQ7y+QWFd4JB8+Bww+PbQW2ww7bPC7brl2y6283NvmGfXGs4SAdn4dD5TO1LyToFkIIIUTGZbp6baqZlJ4yboN9DWp/BnLZuBVQvwey334LCxag/u53VOy3X/vxOQfBsmWw445dtjPbrl2ys0bW1HuHfXGs4SIdn4eD/TO1ryToFkIIIUSf9ZRVzHT12kxkUgbrGtT+DOSycSugfg1k162Dq6+GRx8FXYfGRvjoo4T9tbsKuLPx2kHys0aAtBXHyqbp9aJz6fg8HKyfqekgQbcQQggh+iSZrGJ/VK/NRCZlsK1B7e9Arm0wpSzHgjsQIRTVMBtUXFbjgGQ7Uzn/tvb36st/XR3cdBPcdx+EQu3HKyuhqgpGjerxKbJ1G6VkZ42MK3KkpThWT58fEpBnj3R8Hg62z9R0kaBbCCGEGOb68qU22axif1WvHc6ZFOj/QM4bilDvCbKp2U+zP0wkqmE0qOTbzUwscZJjM/brVkDJnv/Hq+v5urIl9ennHg/ceSfcfju43e3HCwrgD3+A884DW3LFoLJ1G6VkZ41U5Nv7XByrp8+PA6eU8MNmd9asdxeityToFkIIIYaxvqx9TSWr2J/Va5PNpAzFDFp/B3J17iCVjT40HfIdZkxWI+GoTp07gCcYYVKJo1+3Akrm/FfVenjssw3oOslPP9c0uPdeuOEGqK3t8IQ2uPhiuPxyyMtLqa3ZvI1SsrNG+rKko6fPj682NPOXt1YyItdGeV52rHcXorck6BZCCCGGqb6ufU01q5pN1Wv7o9DWQAT1/RnIaZrO15XNmAwqUU3DbFBQFAWLUcHsMNPgDbF8UytH71jeb1sB9XT+vmAsM68osOOovOSn3ysKPPNMe8BtMMA558TWc48Y0au2Zvs2SsnMGunLko7uPj8AfKEIde4gO1fkxd/LgV7vLkRvSdAthBBCDEPpWPubalY1W6rX9mWwIdlAeqC2gerPQK6q2c+aOi/TR+awstZDozeE02rEZFAJRzUiUQ1NU9ixIi8tgVEy176n819T7wUUxhc5uh8oavLFZku03UdR4JZbYK+94Pjj4cYbYdKkPp3PYNhGKZlZI71d0tHd54c7EMEdjGA2KoQ1PeE2qYwuBiMJuoUQQohhKB1rf3uTVR3oNdd9GWxINpAeyG2g+jOQawuaxhc5cViMrK710ugL4Q1GMKgqI/JsmA0qRS5Ln18r2Wvf0/k7LUZ0HRyWbfsrxAaKbEu/oOAvF8JVC+DQQ9tv3GMPWLkSJkzo07lsPXhw+t5jeGNF7aDeRqk3xbG6+/wIRTVCEQ2L0YDZoG7z2IFa7y5Eb0nQLYQQQgxD6Vj729us6kBWr+3tYEOygXQ2bAPVXzMKOgZNBQ4L+WPNtPrDNPnDoIPJoBDV9D5PZU91EKO7858xKpfnllZ1Gujlb1jNHv+8g6mfvBU7sKAV5s4FtUPQt1XAneoSgq4GD+ZMK+Uoc/mQqi/Qk+4+P0yqQiiiUeg047Ju238Gcr27EL3Rq54aDoeprq7G5/NRXFxMQUFButslhBBCiAxKx9rfwTA9dmu9GWxIJZDOlm2g+mNGwdZBU5MvzKpaD02+EJGohi8UZUKJE38o2uvX6O0gRlfnD/BNZUtCoOesq2bPR/7K9q8/i6pp7S/u9cLGjTB6dKdtS3UJQTKDB1PKcnp9rQZSb+oXdPf5Ud0aoNhlwd7J5082rHcXIlVJB90ej4f//Oc/LF68mM8++4xgMBi/bdSoURx88MH86le/YrfddstIQ4UQQgiRPula+5st67ST1ZvBhlQC6WzaBirTMwo6Bk1fbWim1h0gEtWxmFR0XSfHFruGDy9Z1+sp9X0ZxOjq/NvaXLWmil+8/ii7vfQYplD799pISSnG666Fs84CU+fT0FPNvmfDDIhM6Uv9gq4+P3YYlcfxM128/UPtoBnQE6I7SQXdd911FzfddBNjx47lqKOO4oorrmDkyJHYbDYaGxtZvnw5H3zwAXPmzGHPPffkr3/9K5P6WFxCCCGEEJmTziz1QK/TTkVvBhvaAmmbyUqrP0woqmE2qLisscd3DKSzeRuoTJhY4uL0vcdww/++xx2IYDeraDqU5tqYUOwg327uU0CZiUGMicVOLv7yWZx/vhOrpzV+POhw4rnwEgqv/B04HF0+vjcBdLbMgEi3dNQv6O7zY0yhfdAM6AnRnaQ+8T/++GPeeecdZsyY0entu+++O2eeeSb3338/Dz74IO+9954E3UIIIUSWS2eWeiDXaaeiN4MNDrORUETjkzUNeENRIpqGUVUpsJuZUOLAZFDjgXS2bwOVCTaTkSKnmRG5RZiMasKABNCngDIjgxiKQtHXX8CWgFuzWPCcfS7Oa/5IYXFRjw/vTQC99eCBruu4A5H4AI7NbCAYGVyFwboafHBajJS6LKyq8/DkF5VcdtBkajzBbgfkuvr8GEwDekJ0J6lPqKeeeiqpJ7NYLJx33nl9apAQQggh+s9w/FKb6mCDPxzbL7i6NUBZjgWX0Uw4qlHrDtAaCJHvsLDX+ML4dRts69z7yhuKEIxqjMy3Y+jkvPoypT4tgxj6li2nOgbICxfCq6/CqaeiXnstOV2s2+5Mb7LvHQcPwlEtXum9bQDHYTaQ7zAPqhkQnQ0+NHqD8XPzhyOsqvXw1fpmcu0mzEa1V1vnDZYBvXTpzfp4kf36/Jfd2trK22+/zeTJk5k6dWo62iSEEEKIfjTcvtRC8oMNmqbzxopacqwmopqONxhFURRMBhWHxUh1awCjqnLQ1PZAerCtc++rTE6p7/MgxltvwRVXwOWXw7x57cdnzIANG2DEiJTb1JvzbRs8+GRtA03eIIGwtmVPcyOhSJSNzX4imo4/PHgy3VsPPjR6gyyrbMYfiuK0GlEVIw0eH6vrPZS4LOwyOh+rydAvW+cNVn1ZHy+yW8qffvPmzWO//fbj/PPPx+/3M3PmTNatW4eu6zz++OP84he/yEQ7hRBCCCHSKpnBhrZs3qRSJ+GoHq/O7QlGMKoqo/Jt5NvN2MyGhMcNpxkEmZ5S36tBjKVLY8H2G2/Efr/ySvj5zxMLo/Ui4Ibena+qKsyZVsrr31VT5wlRlmPFZFAJRzW8wSjFTgs5VhNvflfLxGJX1vaTjlnYVn8Yi0HFF4rg3LJPuz8UpcBhBqC6JQDAqDwrvpDGugYfM8fkM6nEOagLx2VKOtbHi+yVctD9/vvvc+WVVwLw3HPPoes6zc3NPPzww9x4440SdAshhBBiyOiYzTOoCruNzd9qLa7K+gZfp1Onh8sMgnRMqe9pSm3SgxirVsFVV8ETTyQet9th0yYYM2bAztdmNlDssmBUFbyhKN5QbOCmJMfKhGInJoOS1cXUts7CWgwq9Z4Q9d4QE4ocNPpCOLes5Q+EIniDEZxWI1aTEVXVaPSGcAci5NhMg7ZwXKYM5er2IibloLulpSW+L/err77KL37xC+x2O4cffjiXX3552hsohBBCCDFQtp5KrCgKObb2bKk7EB5S1ch7qy9T6pOdUtvtIEZ1NVx/PTzwAEQ6DICMHQs33AAnnwyqmqaz7d35ekMRzEaVPccX4gtFt6mCH9G0fttOLlVdZWHrPSE2twTwBiP4wxEcFgvBSJRGXxhFUShyWOLLMbzB2GAV9O/WeckayLXUQ7W6vWiX8v8hKioqWLJkCQUFBbz66qs8/vjjADQ1NWG1WtPeQCGEEEKIgTIcq5H3Vm+m1PdmSm1CcGQyMOruW1DuvBN8vvY7FRfDH/8Iv/oVWCxZcb5tAzj+cDRh4KZNtm4n110WdufRebChmUAkgqZBgyeE1bQlo29QMBpiAx3hqIZBjVW2h+w714FeS52JrfFEdkm5p1900UX88pe/xOl0MmbMGA444AAgNu28qy3FhBBCCCEGo+FYjbwvts5Ga5pOZaOv06A0mSm1ry2vwbSjij8cxWE24g9FeeO7xODo1x8vY7u2gNvphMsug0suAVfmg6VUlhAM1gGcnrKwk0qdNHqCTCx2UdnkY2KxE5fVyBfrm6lzBzDZTXgCEUpyrLisxqw712xYS53JYoQiO6T8zp133nnsvvvuVFZWMmfOHNQtU3XGjx/PjTfemPYGCiGEEEIMpOFWjTxdesoe9hTM2UwqL327iW82NmMwKIQiGg0tPlw2ExPLcuPB0SOHnc1VH7+F/5TTybvpOigpGaAz7t5gHcBJJgsb1nQOm1LCez/VUeMOoqoKY4vsNHqDbGjyk2czMbbQjicYyapzzZa11IN1QEYkr1fDJTNnzmTmzJkJxw4//PC0NEgIIYQQItsMp2rk6ZBM9jCi6V0Gc43eID/WuGn0htiu1MXIXCuR/77Agufu58XZ86ifdwoGVcFlNaHPmMKCu19m4naj+HVRMelbuZ1+g3EAJ9ks7NQROYwvdsTPLRiJUlFgpySiYTGqtPjDBMJaVp1rtqylHqwDMiJ5SQXdl1xySdJPeOedd/a6MUIIIYQQ2Wq4VCPvq2Szh0fsMKLTYE7XdVbXevEEIuTZTOywbjkHPXwno39YBsBJLy/itzMPZvuJpeRsKW6XV148aApNZWoAJ1OFwFLJwqqqss25jcixsnnLeuRsG6zKprXUg3FARiQvqaD7q6++Svj9yy+/JBqNMnnyZAB++uknDAYDu+66a/pbKIQQQgghBo3usocATouBL9c3scuYPMYXO1ixqTUhmHMHIjR4g4zfvJYL3l7ELt98lPD4alcRzes38oFmoDTHyoQSBzk2U9qCo/6oYp3uAZxMFgJLNQvb2bll60BItq2llhk1Q1dSPeidd96J//vOO+/E5XLx8MMPk5+fD8Qql8+fP5999903M60UQgghhBCDQlfZw0ZviFW1Hhq8QVr9YR54fw1jChwYVCUhmFPWr+P//n03h3z9Fqquxx+/umg0f519Bh9P34ewBiUGhVp3AHcwzKQSZ1qCo4GuYt0b/VEIbKhmYbNxLbXMqBmaUv5kuuOOO3j99dfjATdAfn4+N954IwcffDCXXnppWhsohBBCCDEUDeS+wL1tSzL32zp7qOs6lY1+lm9qIRSJYjcbyLWZKHRY2NwawKDG1s42e0Psff+d7P/6E5gi4fjzuYvKeOzQM/nnuJ8RMRgwKQqqAjaTAbNRpcETZHlVK0fvNLJPwVE2VLFOVX8WAhuKWVhZSy36S8pBd2trKzU1NWy//fYJx2tra3G73WlrmBBCCCHEUJWOjGpPAfDWt3e1tjbZtvR0v7bXcwfCFDktbGj0UuTUWF3nYWWtB38oitWo4g5EGF1opyzXShmwstZDocPMGXuPJedFQzzg9jhz+fKkc/lwzjw+qPJSiE6DJ4Q3GMVlM2I0KISiGhENNF1nh4rcXgdH2VLFOlX9XQhsKGZhh2oWX2SXlIPun//858yfP5877riDPffcE4BPPvmEyy+/nGOPPTbtDRRCCCGEGAySzRanI6PaUwC89e2hiEYwrGExqZiNavz+U0a4ePuH2h7b0lObD5xSwg+b3QmvV9noY1llC0YVIlENq0klEtXRAW8wSmuLj3yHiRG5VlbXeWMF0f50E7z6Io2nzOdvM49hE1YsUZVwNIrDYsJmMqCqCjaTgWZ/GKOqUpZrxWJUKXZZev3eZUsV61RlQyGwbJqx0VtDMYsvskvKQff999/PZZddximnnEI4HBuJNBqNnHXWWdx2221pb6AQQgghRLZLNlucjoxqMgFwx0A6EFZZuqGJJl+YPJuJXccUYDWpfFvVzOvfVZNjM7FzRV6XbRlb4Oi2zV9taOYvb61kRK6N8rxYe7zBMCtrPfjCEZxmA+GoHtviy2Yi36Ky+6evc/bCh/josJOp+/mpBMKRWGA4ciRUVlJgs3HSlmv6TVUzgbAGRBhVYGd8kQOTQSUU1TAbVECnxR9JWM+daiCYDcFrbwx0IbDBuAa+K4M9iz8UBj+GspT/Au12O/feey+33XYbq1evRtd1Jk6ciMPhyET7hBBCCDHEDfYvi6lkrvuaUe0paP+pxs1DH6/DYTayXakTgB82u4lEdUbn22jyhVnX4GXmmHzKcqx8s7EFoyGxHbqu4w5EsBhVvt7YzBcbGrutRu4LRahzB9m5Iq9D4KdgM6pgM+GymjAbVewmA7v9+Dkn//d+Jm9eDcCsZx7g7op9sBTkUecOMqUMsMUC37bs48YmH//6cB1rGzzsMDIXVW3fiVvXdVbWehKKXfUmEBzo4LW3BrIQ2GBcAz9UDaXBj6Gq158cDoeDHXbYIZ1tEUIIIcQwM9i/LKaauU41o7r1gISu690G7S6rkRWbWtlrfCGKotDqD9PoC+G0GlFVFafVSKM3hDsQIazpmI0qnkAEdyBCjs1EozfI6lovjb4Q4WiUQFhj8acbaPKFKe8kcHMHIriDEcxGhbDWXmk8ttZaJ9duIhTW2KN2FSc8ey+7rPk64fGrSsdhaW2mzmzj8c8qGZFrTXjfVVVhVL6dg6aV8NhnAb6pamF8kQO7xdhpsaveBoLZWMU6GQNVCGywroEfijrr895ghM/WNbBicwsn7T6afSYUyfswwFIOur1eL7fccgtvvfUWtbW1aJqWcPuaNWvS1jghhBBCDF1DIVOWauY6lYzq1gMSFoOKQVVZ3+DFaclF1/VtXtOgKoSjWvwLdiz41TAZYl/5TAYVTzASn5ptNqoEI1FCUY1Gb5Bllc34Q1GcViNmowpEqG4NUNsapMhppqKgfWajrus0ekN4AhGsRhVTh4y52aBiNKiMqt7ASS/8nX2//SChncvLJnL7rDNYut1MLEaVXJPKyprY+Y4/oD1Q63gNPIEI9Z4gde4QRU4zRU5LQrGrvgSCg7mKdTKFwNI9m2SwroEfajrr820DZw3eIC3+MOvqfRw2vYxDZpRl/efpUJZy0H322Wfz3nvvceqppzJixIhOpxkJIYQQQnRnqGTKUs1cJ5tR9YcjPPzx+g7rsg38WN1KZZMPTyBCrTtARb6DCSUOChztBcSimo7JoKJtyTqbDSpGVSUc1bAYDYSjGkZVxWxQcVmNuCxGNgciGFVYWePFH4pS4DADsX21S3Os7FKRy+vf1bJ8U+uWYE2N77ld0+qnwRvCYTbwY7WbiSVOChwWXFYjF//3rxz03rMY9PYEzbr8Edy+72m8PGUfVINKgUmlLMeKqiq4AxG+qWqOB2pbD8qU58UyeGvqPTgsRn6+y8iEDF5fA8HBXMW6u0JgfZ1N0lnAPljXwA81W/f5rQfOLCYD3mCEz9c3srk1MCgGMoeqlIPuV155hZdeeol99tknE+0RQgghxDAwEJmyTKwdT3UtcDIZ1YOmlvLGivYBiSZfmG+rWvCHIozIsbIh6scdiFLd6scdDLNTRR4FDkt8LfbYIgetgQhluo7LaqTAbqbWHcBkV/AEIpTkWHFZY+2xm40UuSws29hCdUsAp8VAMKLhDUawmY1MKHZiMBiYPjKHrzY0801VC4UOMz/WxDLP6Bq5NiNGVaW2NYAnGIm3x+myxQPuBlcBf/3ZSTw5Yw5hgxGTqmA2qOg6gIJpS0E0XyiKNxTpclAmx2Zix1F5rKz18O3GFvaZUBS/1ukIBNNZxbq/axV0Vgisr7NJugrYd6zI7bLf67pObWuQQDhKqz+MpulZPXA2mHXs87qus7q2feBMURQ0XccXig32NXpDg2Igc6hKOejOz8+noKAgE20RQgghxDDR35myTK0d781a4J4yqhajIT4gEWu7B38oEv8iXZpjobolSFTTafXHqoRPLVOobg1S6LRw/Jbq5W1B/dgiOw3eIBua/OTZzYwptOMJRtjcEsCgKkSiGusbffiDUeoVsBhVRhc6tgTPsaz3iDwb9Z4QYwscfL6+iUZvkFybiUKnjSKnmU2bGvGGQ7Rqerw9zx16OlM/fp1X9j6av+98BPWaMb6O3GE2YlTBH9Zo9IYodJoABbs5NkDRm0GZVAZAuguI01HFurP+Nr7YwY4VeRS7LP0ShPd1Nkl3AXtVs488u4nNLYGEft/oDbKqxsP6Rh8uq5HFn27g87VNg6ZGw2DTsc/rOvH6DW3vR9vMFovRwIhcg0z5H0ApB9033HADV199NQ8//DB2u7xhQgghhEhdf1aLzuTa8d6uBe4uo/pDdWt8QMIdiNDkC+G0mhKCJn8oSp7djCcYobLRR+6WDHDbNOgxhfZ40BeMRKkosFOyZZ/uVn+YYFjDZjKwYlMrwUiUMpeFeiWETuyLenWLnxZ/KB50+0NRipwWDtuhjGp3gMmlTvLsZnJMMOO1Z9n9kXt4ed+f88C+J7a3Z8oYvvvgK774upo9DAo/VXtY3+gFwKgqKAqYjSr+cIQmr47VZGSHkXmMzLPxU6075UGZpKfuh6Lc9+7qjBXv66y/bWr28cKyTTzz5UYqCuwUOS0ZLxjYl9kkyQTs5bkG8u3meL8PhKN8ub6JZn+YPLuZXUfnYzWpg6pGw2DTsc/n200J9Rt0XU+Y2RLVdZnyP4BS/j/ZHXfcwerVqyktLWXs2LGYTIn/o1y6dGnaGieEEEKIoam/qkX3x9rx3q4F7iqj2nFAIhTViEQ1TNb2r2zhqIbNbGTnijyius66Bi8n7T6a/SYVx8+hs6B+RI6VzVu+dFsNKlc9v5xgJMrofBuhiIYnFCUQjpJnM9IaiLKsspkxBQ4Uhfj74bKZMKgKI/NsTPnodfZ+6C4KNq4D4Odv/Ic1x/6S78PWeHt+qnUTjGqMzHdiNRnwhaOxL/7BCBaTAV3X8IWiGA0qO1S4mDs9NkDRm0GZZAZAJpe5eHhJ5or3dVXYamWth6imoekQisSm5Gc6GO3LbJJkAvYmX5if7zKSbypbWFXrZsXmVjyBCOOLHEwsccUHbAZTjYbBpmOf39jkQ9chGImiKrGlJG1LRBRFwR+MZOW2d8NFylf9mGOOyUAzhBBCCDGc9Fe16P5aO57OtcAdByRKXRaMBpVwVMdiVBKyVzk2E55ghGKnlQnFnVfk3vqc2n7/bG0D6xt9OC0GNrcE8YejhKMawYhGKKJhNig0eUOsrnej60r8/bAYDUz/4UuOfuKvjFy5POG5K3fcA3skSLHTFW9Px+C5wGFhz/EFfLuxhY3NfvyhCJquYzao7DepiHP3nxAPPns7KNPdAMhB00p4Y0VtRgdgtu5vHdfZFjothKIazf4woDCpxJnRYNRmMhCN6mxs8pFvN+OyJl7H7maTJBuwF7ss/OaACXyxvpG/v7eGAoeJEbm2bf7WnBYDX65v4ov1jcwcUyCBdxq19flXl1dT595MbWuQPJuJkpzY50KBw5zV294NFykH3ddcc03aXvz999/ntttu48svv2Tz5s0899xz8aA+HA5z1VVX8fLLL7NmzRpyc3M56KCDuOWWWygvL48/RzAY5LLLLmPx4sX4/X5mz57Nvffey6hRo9LWTiGEEKIv+rug0mDRH9Wi+3PteDrWArc9T9uARHVrAIfZQLMvjG414A1GsZkNTCiObd3V9kV6RI6VykZf0n2swRvCH4riD+lE9dg0b4vRiMkQxRuK4g9vKYDmCbH/diWx96NqFfrvr+C8N15PeK6N02fy4VmXsmnazqys9TCjxBn/Yr918FzgsLDfdsW0BsI0ekNsavazy+h8fjd3Ckajus01qGr28/XGZvLtZnKsJgwqVLcGux2U6WoApD8GYLbub+5AJGGdbcct2zK5tdaqWjevLq+msslHgzdEvs1EvsOypbp8z0FYKjMNVFUhx2bCYlIpzUkMuNuq3Dd4g7T6w/z9vdV8PlrWeKfbxBIX5x3gZKeKPB77bAPeYCS+n707EM76be+Gg17PL/jyyy/5/vvvURSFadOmsfPOO6f8HF6vlx133JH58+fzi1/8IuE2n8/H0qVL+eMf/8iOO+5IU1MTF110EUcddRRffPFF/H4XXXQR//vf/3j88ccpLCzk0ksv5YgjjuDLL7/EYDD09vSEEEKIlHQVWGeqgNdQkc4McWf6c+14OnUckPiqsok6T5A6d5QReVYml7owqgpfb2zGYTFS6DRz//urWVPnTbqPFdhNhKIauq7jsppoi5OsJgNmg0prIIyCwil7juHwGeWovz4XHniAju/KxoqJfHDGxWzcexb+sMbmWs82X+y7mtGgKgrhqM7kshzm7VaREHB3ZDWq1LlDrKz1oAC5NhN7ji/k5D1Gd/v309kASH8MwGzd37beJ73jlm3pes2tdVxTPqXMxY81bryBCJua/bQGwkwudeIPa90GYanONOjs76zRG9qyfVUEs1GNFd5zWGSNd4aoqsLPJhVTlmuN/z+n1h0cNNveDXUp/x+mtraWE088kXfffZe8vDx0XaelpYVZs2bx+OOPU1xcnPRzHXrooRx66KGd3pabm8sbb7yRcOyvf/0ru+++Oxs2bGD06NG0tLTw4IMP8sgjj3DQQQcB8Oijj1JRUcGbb77J3LlzUz09IYQQImVdBdZTRrh4+4fajK0fHSrSlSHuTH+tHe8oXTMbOg5IfF/dyhdrG6lzB9nY5KfeE0JBxxuMcP+7qzEZVKaPzGF8kTOpPlaSY8ViNOAJRtB1fZvMr6YruKxGpo/MjbW9rKz9xjFjqLn8D7yw3f6savQTbPB1+8W+NzMaOgaOe4zLJ6pBayBMky9EIBxN+VpC/wzAbN3fOu6Tbjao22zZlu5Bn87WlDssRlbXemnwBmnwBPlBh8NnlDF3elm39QZSWf6x9XlDe9X9fLuJJl+YkhwrZblWykDWeGdQpgcyRe+k/Bd+wQUX0NrayooVK5g6dSoA3333HaeffjoXXnghixcvTnsj27S0tKAoCnl5eUAs2x4Ohzn44IPj9ykvL2f69Ol8/PHHEnQLIYRIWaoBU1eVsb+tauH176rJsZrYeXReRtaPDhYDOb0+3WvHezqXZGY2pHI92gYkKgrsHDSllI9W17P4sw0oCowrdPBDtRtNh6imsbLWg2PLFO6e+lgwojGm0MbqOi+tgQg2swGTqhDWdAytrRSYDIwoKCYYiU0z57LL4Omn4dxz4de/ptRi4dcpnEcqgUBXxe/yHWZGF9h7/beTzgGYrt7DrftbWY6FPJuJzS1+jAYVe4fCVpkY9OlsCn2Bw0L+WHO8Er4/HOXIHcsZXejo9rlSGSzZ+rydFgMN3iBmo0qTLxxfEtHWpkxNqxcxmRzIFL2TctD96quv8uabb8YDboBp06bxt7/9LSH4TbdAIMAVV1zBySefTE5ODgDV1dWYzWby8/MT7ltaWkp1dXWXzxUMBgkGg/HfW1tbM9NoIYQQg0qqU8G7q4xdlqPzzcZmjIZtg4JMruXMNtkwvT5da8d7Opefqt387Z1VNHiDlOfaGFfowB+OJmSdgT5dj28qW9B12HFUHu5AhGZ/mHyHGbNBodEbYnWdl3y7ucc+5jAbGV3gIM9u4sdqDy3+MNFQkJO/fJFzPnyCj2cdw5s7XNyegc3JgeXLQU1cd51K3032/smsvV5Z4+aL9Y3k2ExJD+SkawCmp36wdX8zG1VURcGgKkwqcZBjy9w6266m0CtKbN213WJgXb0XX5KzBVIZLOl43ks3NNHqD5MbL+jloMBhid83E9PqhchmKQfdmqZts00YgMlkQtO0tDRqa+FwmBNPPBFN07j33nt7vH9n06Q6uvnmm7nuuuvS2UQhhBCDXG/2cu4uOAhrOiZjbNsWdyBCji3x/53D4UtnJvfHTlVfp1z2dC4HTC7m3x+vZ3WdB5tZpd4TosBuZkKJI16levGnG/CHNZp8vbseW/e3jtuJKYqC02qk0RuK97fu+ljHrO8x00sY+dKzzHnyPgobYkmLg954grrTzknMwKqdr7tOt57WXvvDUb7b3Mrf31uNxWRIaeCirwMwyfbprftbvTvIsg3NrKn3sq7em7F1tpmYQp/K4Erbeceqma+m0GGhrJPPx2ytpSBEpqTc0w888ED+7//+j8WLF8eriFdVVXHxxRcze/bstDcwHA4zb9481q5dy9tvvx3PcgOUlZURCoVoampKyHbX1tay9957d/mcCxYs4JJLLon/3traSkVFRdrbLoQQYnDo7V7O3QUHZoOKxWiIbcEU3XZQeqh/6eyP/bFT1dsplz2dy1cbmrnz9Z9o8YfJs5twWIyEoxq17gDuYJidKvIoy7GwZE0jxS4zO47q3XKDrfub2aAmbCdmMqh4t1TGhu77mKoqzN2+hJw3Xmb2I3+mvGpN+/kqCt/teRD7TS4ekKUP3QWOjd4QS9c34Q5EKHRYKMmxpjyQ09sBmFT7dEJ/K4O9JxRlfJnFQNQw2JqqKswcU8Dno5tYvqmFsq1ul+2rxHCU8pDlPffcg9vtZuzYsUyYMIGJEycybtw43G43f/3rX9PauLaAe+XKlbz55psUFhYm3L7rrrtiMpkSCq5t3ryZ5cuXdxt0WywWcnJyEn6EEEIMX6lsJdRRx+Bgay6rEZfFSCiiYdrqi3Xbl86JHbZWGko0TeeL9Y0s3dCIy7JtwNfdNc10uyobffxQ3Uplow9N05N6XHf9A8AbDFPTGkDXdYyqggJYjAYKHGb8oSir67yEozot/lj2O5U+1tHW/c1lNZJvN+MJhNF1nXBUw7ClMnaPfezDD5n4i8M49Zb/Swi4v99pH576x39xPrWYcTtOTur6pFtb4Li5JXZN2+i6zqpaN83+MGMK7ZTlWjGoCi6riUklThq9IV5fUZPU+9oWEE8py6GiwJ5U8Nvbz4m+vGaq2qbQFzjMrKz14A6EiWga7kCYlZ1Ul8+UbGmHENki5eH1iooKli5dyhtvvMEPP/yArutMmzYtXj08FR6Ph1WrVsV/X7t2LcuWLaOgoIDy8nKOO+44li5dyosvvkg0Go2v0y4oKMBsNpObm8tZZ53FpZdeSmFhIQUFBVx22WXMmDGjV+0RQggxPPV2K6HuskoAdouRYpeF6tYAqqr0qYDXYNG23nXphiZWbGol12ZiY5OFCSUDu6azL2vLu+sflY0+1jf68YejBMJRAhENh9lAgcOCzWyIT/l2Woyg0+mUX0juenTW3yaWOPEEIzR4Q0SiGiPybIDefWBz+unw738nHAruuhvVf7gW5wEHcPwAVzruau11bWuA9Q0+8u0mJnbINEP/1Enozz3f+yJdNQxStXVxufFFTk7fewxPf1HF6joPmq6RZzPL9lViWOr1nLY5c+YwZ86cPr34F198waxZs+K/t035Pv3007n22mt54YUXANhpp50SHvfOO+9wwAEHAHDXXXdhNBqZN28efr+f2bNn89BDD8ke3UIIIZLW23WQPRVmGl1g58ApJfyw2d2vX34HSsf1rgUOE7k2EwZVSZhm3RZ49+f0+r6uLe+qfzR6Q3y7qTV2LgYVi0klENbwhqKEogFKXRYUJZYJ39ziI9ceux6dSeZ6dNbfcmxGJpU4WL6pFU1TMBtUWvyR7vvY9Ont/54yBRYuxHLMMYzpph5Of+sscAyENVxWI7uMzk8YwGmT6aB3MO353t/bRnU2qJVnN4EOTb4QUV3HoCgUuywcNHXoffYJ0RNF7zhvJwkXXnghEydO5MILL0w4fs8997Bq1SruvvvudLavX7S2tpKbm0tLS4tMNRdCiGFI03Tue3c1yze1JKzVhNiU1pW1HmaMzOXX+0/o9Etrxy+cwUjsi/fEEmc86BnILbP6y9bXEODzdU3UuQMJ+/TOHBOrwdLTNc1Uu1J9b7t6Dl3X+XxdE5uafdR7guTYTBQ5LdS0BglFokQ1HQXQgXBUp9BppizHit1iZOeKvF61o01n/W1CsYMdK/IoclkS+1h9PSgKdFyi5/fD7NloZ55F1VHH49XYpl9mS5/t2I5Wf5jFn24g32HuNOh1B8I0+8JcPGe7jGS609GXhqJtB7WMbGr28fm6JgB2G5tPeZ4dXygSn+XTn0UUhcikZOPIlIfinnnmmXgGuqO9996bW265ZVAG3UIIIYa3vm4l1FNWaTjsmdrZete2qc9NvjBmo0q9J8jmlgCeYKTfptensg63q/eos/7RVigNwGkxYTKo2EwGynKs1LQGYtm9LRXsi10WZo4poN4TYnNLAGhmUomz18sNkspiejxw111w222x6eQd6+7YbKx6/rVY4P7Omm2m2wO8+m0131a14A1HcJiMzBiZyyEzyvo9UOr4t6NpOp+vbYpPrwdwB2KF40yqQnVrgB1G5WWsTkK693wfCjorLqfrOtUtQcwGBRSF6tYgo/LtA1pEUYiBlnLQ3dDQQG5u7jbHc3JyqK+vT0ujhBBCiP7W13WQwyGw7k5n610LHGZ2qshjVa2HBm+QVn+YRm+QXccU9Nv0+nStw+3YP1bVutnY7KfVH2Zkvo2KfDvrGrzxtdtGg4LZoBBRFMpcFn62XTGFDkusf2xoBqDJG6KmVev1coMu+1soBA88ADfcADU1sWN//ztcfDGMHw90P93+++rW+B7S0Q4FydY2ePmhxs1FB03qsp2Zzo53DHq/2tCMLxTBHYwQimiEIhrFLgvHz3RlNJAbqPXS2aqzQS13IEKjL4RryzaJHbex64+190Jko5SD7okTJ/Lqq69y/vnnJxx/5ZVXGL/lw1wIIYQYjPp7HWRXsmVqbyq6Wu9a4DCz29h8Nrf4afSGOXf/8cwcU9Bv55POdbgTS1xo2+u0+MPUtAZRFXD7wzSYQowrclDvDlHTGqDVH8agqljNKjuPzqdwy/pjRVGYVOqkyRvipD1Gk2Mzpe/91TR44gm46ipY016NHIMBzjwTzWanqtGHOxjm+aVVNHhCbFeauO2Vw2zgha830+wLUeg0k2MzYzIohKM67kCYryubWfzpBq48fNo27e1LobpUTCxxceCUEv7y1krq3EHMRgWL0UCh04zdbOTtH2oZU2jPaPCbLZ8T2aCzQa1QVCOiaZgMsb8pT4dt7CB7Cs4J0Z9SDrovueQSzj//fOrq6jjwwAMBeOutt7jjjjtkarkQQohBb6Az1v0VvKRbT5XcPcEou47J79eAu6d2pbpf8KpaNw9/vJ5Gb4jJZU60LY+vafXjDobZsSKP4hwLS9dHURSFkXm2bfpSLODQyLGZmFKWhjoyug6vvw4LFsBXXyXedvzxcOONrMobsaVPVdPoC7K61kuJy0Kxy5xQkMwdjNAaCBPWdFwWIxZjbGdZi1HB7DBT0xpkyZpGKpt8jCl0JFyXvhSqS4Wm6fyw2c2IXBs7V+QR1nTMBhWXNfaVtr+mLg/050S26GxQy2xQMaoq4S2BtnHLNnZtsqngnBD9JeXefuaZZxIMBrnpppu44YYbABg7diz33Xcfp512WtobKIQQQgwX/Rm8pFu2rnftql2+YIQ19V6cFiMzRm27bG5rna1dnVTqwhuK4ttS5GtVrYeKfBtRDVw2IxNLXNsMPqQ94PjlL2Hx4sRjs2fDLbfAzJnb9CmzUWVdvY9mX4hllc0JFeWbfGFCkSgmVUXb6mUURSHXbqLBE2RtvTcedHd2XYCMrd9tm85cnmftdOaCTF3uX50NarmsRgrsZmpa/aAolOZY44MiqQ50CTFUqD3fZVu/+c1v2LhxIzU1NbS2trJmzRoJuIUQQog+2Dp4cVlj20u5rCYmlThp9IZ4fUUNmpbSpiP9qm296/TyXJp9YdbVe2n2hZkxMndABwy2bte3G1v4dG0jde7YWtPnllZx37urWVXr7vI5Olu72rZmvcRlxWhQqWz00eKPMKHYSYnTQr49MShsCzgmljjTF3Dsu2/7v3fZJZb1fvNNmDmz0z5lMxmwmgy4rCb8oSir67xsvZGNooCh0+3Dtu17qRSqS4f26cydD1rYzAaCkahMXe4nbYNaBQ4zK2s9uANhorpOWa6FUFQnFNEoy7EQ1WNLFLrdP16IIaxXw6yRSIR3332X1atXc/LJJwOwadMmcnJycDqdaW2gEEIIMRyko8p2NsjW9a5t7fp4dT2PfbYBRYHxRQ4cFlNSswm6KsjWtma9yRdiXYOXk/cYTXmelYc/Xp/+jH9VFagqjBjRfuzss+GFF+CMM2LTydX2fEpnfcplNZJvN1PnDuCwGBKKXOXZjKhb7mcyJLZP13VafGHybCbGF7VPLU9XobpkDaa9sjMl22o+dFVcbs60UtCh2R8bgBvOBeeESPkTaf369RxyyCFs2LCBYDDInDlzcLlc3HrrrQQCAe6///5MtFMIIYQY0vo7eMmkbF7v+nVlC7oOO47KS2kqdHfBnqIomAwqxU4rE4qdVBTY01vhuqkpNl38L3+BE06Ahx5qv81kglde6fRhnfUpRVHiW7l5AhGiuoY/HEVRoKY1RHm+nRZfiEZvrPq0yRBbm+v2h9F02GN8IaPy29/b/g6C07lGfzDqrubD+KKBG+zqarANyKoBAiEGSsqfgP/3f//HzJkz+frrryksLIwf//nPf87ZZ5+d1sYJIYQQw4Vk8NplKpPXl9kEqQZ7E0tcjN3PwdLKJhq8IQodZnapyMdoTGFln98fC7RvuQWam2PH/v1vuOwymD69x4d3V1F+p4o8vtvUQq07SE1rgHy7mR1G5XL8zFE891UVP1W7cQcixKaUKxhUlR3LXZy8x+iE96K/g+BsrR3QH3ra6q3EaaHZHx6wAoxdDbZl6wCcEP0p5f9zf/jhh3z00UeYzeaE42PGjKGqqiptDRNCCCGGk+GewWvTm+rtyQbpfZlNkGqw19l5fL62KbkgKBKBRYvg2mth06b24xYL/Pa3idPLu9Fdn8q3myh2WZg5toCjdyrHZTXFr9uYQjuvLq/m26oWfKEodrOBHUbmddr2gQiCh+Ne2d0VrAtForz3Uz02s4F9JhRSbhk8BRiFGC5SDro1TSMajW5zfOPGjbhc8gcthBBC9MZwzuC16al6++l7jcVmNiQE12vqPUkH6X2dTZBssNfrKvS6Ds8+C1deCT/+2H5cVeH002NB+OjRSV/PnvpUodPC8TNHbdOWiSUuzkthXf5ABMHZWjsgU7qapaHrOmvqfKhKW3VkJV6AMRPV44UQvZNy0D1nzhzuvvtu/vGPfwCx6Vgej4drrrmGww47LO0NFEIIIYaL4ZjBa9PT1lNfVTZzw4vfUeQ0E4xqWI0G8uwmat1BopqeVHCbjtkEPQV7fdpC68QT4cknE48dfTTcdBNsv32vrmtv+1Sq6/IHIgjOltoB/VHYrKtZGu5AhEZfiFy7CV8oSijavtnbYCrAKMRQl3LQfddddzFr1iymTZtGIBDg5JNPZuXKlRQVFbF4630ihRBCCJGS4ZbBa9PdeusmX4ja1gDuQISy3EJG5jvxBiN8uLIefzjK/tsVxzPX3QW36ZpN0F2w16cq9Ece2R5077tvbC333nsnewm71F99KluC4P7Um+UQvdFxlobTYsQdiBCKaniCESJRDbPRiFFVMRsSawYMpgKMQgxlKQfd5eXlLFu2jMcff5wvv/wSTdM466yz+OUvf4nNNrTXmQkhhBg8sm1bnVRkQ/DS39fPHQzT6AtiNqroemxrK0VR0HWd1bVeIlENu9mA2WjAsKUdigKqorCm3kuBwxwPcrsLbjM9myDZdeOhn36CsjwYO7b9xpNPhpdfhl/+Eg47LHaCaZINfao/9Ge/7fUygl5om6XxydoGIhGNJn+YiKaha9DsD+ELRRlb5MBlTfxqP5wKMAqRzXr1F2iz2Zg/fz7z589Pd3uEEEKIPuuv7NNQ1d/Xb1Wtm+eXVrG61su6eh9Wk4F8u5mJJU6MqkKjL4TFZEDTiWfyQlGNqK6Tazcl7DXdprsMX3fbG1U2+voUsPW0blytqeGk/9zH+LefiU0df/rpDjeq8NhjKb1eVwbzoFNv9We/7dMygl5QVYUpI1w8t6wKdyBMocNMrs2EPxglGNEIhDUKHaYhX4BxOPZrMTSkHHQ//PDDFBUVcfjhhwPwu9/9jn/84x9MmzaNxYsXM2bMmLQ3UgghhEhWf2afhqL+vn5tr9fgCVHistDsC2E1qtS5A3iCEcYU2glHo6ArlOZa45k8s0HFqKqATkTTEtayQizDZzaotPrD/FDdus0X9K0zv+kK2LpaN272etj1qX+y0zMPYQ36Y3d+5hn47DPYffc+XMFtDcdBp/7ut31aRtALmqbzw2Y3I3KsFDvNNPnCtPjDGFWVicVOqlsD/FjtochpwW4xDskCjMOxX4uhI+Wge+HChdx3330ALFmyhHvuuYe7776bF198kYsvvphnn3027Y0UQgghktHf2aehpr+vX8fX267USbHLzLLKZjzBCA6LAU8gwrp6L75glBy7mQnFHdtkpMBupqrZh81kSFjLqus6P1W7CUY17n93NRo6+TYzE0tcnX5BT2fAtvW68VF2lb1ee4I9F/8du7u5/Y4OB1x6KUyZ0ul16W02bzgOOg3E331ftp/rjbYgf1KpM2FNt9mg4rIa2djk44dqD5taAhhVZcgVYByO/VoMLSkH3ZWVlUycOBGA559/nuOOO45f/epX7LPPPhxwwAHpbp8QQgiRtP7OPg01G5t8fFPVjN1kwB2IxNdVQ2au39bvV4HDwk4Veayu9dLoCxHVNVr8GqPy7VumnLdP11YUhfHFdiqbfMRy3LGMtz8U5evKZtY2+DCoseneFqOK2x+h3hPa5gt6JgK2iSUu5u9Zwbq7/8Eu/7qLgvrq+G26yYRy7rlw1VVQWrrNY/uSzeuP4DMbp/cOxN99X7efS1XHIF9RlISlFAAj8mwEwlHm7Taaslxr1rw36SCDqWIoSPmTwOl00tDQwOjRo3n99de5+OKLAbBarfj9/rQ3UAghhEhWf2efhpJVtW4eXbKB5RtbsJpVTAYDBXYzE0ocFDgsQPqvX2fvV4HDQv5YM+5ABH84Sk1rgBN3r+D9n+q3qTje4A2zY0UeJU4Lzf4wte4ggXCUqpYACjAy14bJqBKO6rT4wwQjsfC84xf0VAO2ZIPOiReew8SO67UB7y/mUX35HzBPmhR73FaP6Ws2L9PBZ7ZO7x2Iv/t0bD+XimSCfKvJyIRi55AbUJTBVDEU9Gqf7rPPPpudd96Zn376Kb62e8WKFYztWIFTCCGE6EG6s2b9nX0aKtqCvY1NPqxmw5YgAmrdAdzBMDtV5FHgsKT9+nX1frVl8hQF8u1mpo3IZUKxs8uK4+OLYkXR3MEw//54PepmN6PyrVhMBgAsRgWzw0yjN4QvHGFljTv+BT2VgC2loPOXv4wXSfMeeBAvnnABn+aOJrAqgnXdT9s8Lh3ZvEwGn9k8vXcg/u7Ttf1csvo7yM8mMpgqhoKUP33+9re/cdVVV1FZWckzzzxDYWEhAF9++SUnnXRS2hsohBBiaMpE1mw4fzHtrY7B3g4jcwlFdOrcsaChYEugurrOS57NlPbrl8r7papKt3tNVxTYqWz0UecOYDYqmI2GhNdSFAWnNbYWttkfin9BTzZgq3cHeWV5dadBZ+SbbzhmtzGM2WfX9gcefTT8+tdUHXwk91IRe5zd1GWwmo5sXqaCz2yf3jtQf/eZ3n6uo/4O8rOJDKaKoSDl3pmXl8c999yzzfHrrrsuLQ0SQggx9GUqazbQX0yzcb1rTzoGe6qqMrHEiScYodEbwmk1YrfEskjfVLUwKt+e1uuX6vvV017T3lCEqA4Wo4FwVMOyVeBtMqiEImFURY1/QU8mYJtensuyDc3bBJ3lLbX84uE/M/WtF9i46z5on77ffm0UBe1v9/L8u6tp3NTSY7CajmxepoLPbJ/eO5B/911tP5ep1+qvID+byGCqGAqSCro3bNjA6NGjk37SqqoqRo4c2etGCSGEGLoynTUbqC+m/b3eNV0B/tbBXoHDzE4Veayq9dDkCxGOagTCUcYVOThlzzFpP5d0vl8Os5F8mwm3P7adktmhJnxBD0U0QhGNiSXO+Bf0ZAK2HSpyeW5pVTzotLY0ssdj97PDi49hDIcBGP3Fh9T+71VKjj40/nqpBKvpyOZlKvgcDNN7BzIg7WkwKJ36M8jPFgM9mCpEOiQVdO+2224cddRRnHPOOezexV6SLS0tPPnkk/z5z3/m3HPP5YILLkhrQ4UQQgwN/ZE16+8vpgOxt3W6AvzOgr0Ch5ndxubjDkRo8oXwh6LM32ccYwodaTuHjtL1fo3MszGxxEW9N0QwEo1n62MZ7ijVrUHKcqz8YteRCc/dU8AW0XQCkSi5UY3dHv0Huz79IBafN/54vzOXV484nWk77EJJh/akEqxuV+JKSzYvE8HnYJneu3U/spkMKIAvHKWy0Tfog9OtB9q2K3EN6vNJxXDN8ouhI6lPx++//56FCxdyyCGHYDKZmDlzJuXl5VitVpqamvjuu+9YsWIFM2fO5LbbbuPQQw/t+UmFEEIMS/2VNeuv7FN/r3dNd4Df1dRNRVFwWY1UtwbYsSKPivzuK3f3NfOejverY0YMwBeM4A5GCEVChCI6I3KsXDB7EtuV5mzz2O4C/8rqZma/9TRzn3sAZ3ND/DFhi5WvjjmNd44+gxrVxszcxOveMVjtbG/ljsFqOrN56R50GkzTe9v60apaNy9+vTnrKq33VrZWju9PwzHLL4aOpILugoICbr/9dm688UZefvllPvjgA9atW4ff76eoqIhf/vKXzJ07l+nTp2e6vUIIIQa5wZI1S1Z/rnfNRICfbLC3pt7T5Zd+IGsCgo4ZsVW1bpr9YVQFJpQ4OW6XCrYr67o9XQX+o84/h4pn2rf/0lQDyw85jk9O/S2eghLW1XqYUebcJuhsC1Y/WdNARNNo8oYIhDUUBfLsJhwWE3tPKIw/Lp3ZvHQOOg226b3ZXGm9N4ba+fRFf07lFyKdUvpGY7VaOfbYYzn22GMz1R4hhBBD3GDKmiWjP9e79hTgl+VY+HpjM++vrGNCsTPpLFBPwR7Q5Zf+76tbAYhqetYEBOnOiCm/+TVsCbq/3G02n8y/CN/4ibGgs9bTZdCpqgpTRrh4blkVTd4QBgXCUY1QVKOq2Y/dbOTgaSXbTHXPxmzeYJnem+2V1lM11M5HiOFqcKQRhBBCDBmDLWvWk/7M3HcX4Dd6g6ys8VDZ5OOfH66hxGmNZ5vb9rHuLojrKtgDuO/d1Z1+6XeYDbz2XQ3oMHf7UlRVjd820AFBrzNin30GJhPsvHP7sdmzYcECKvc/mE9Mo1hd5yFY740HnQdNK8FiNPBDdWvC9dU0nR82u8m1GWn1hfAEI0R1HV2PPa0vFOHed1czIs/GnGllfW57pqvnZ+uAQEfZXmk9VUPtfIQYriToFkII0e8GS9YsGf2Vudc0nVZ/mGA4Sm1rgLIOX8IbvUGWVTbT6g9jNRkYX+jEaFDimegSl4VmX7jHqd+dBXuVjb4uv/R7glGimh7/d45Njd826AKCH3+EK6+EZ56BvfeGDz+Ejue7cCEVwG+2Cmz9oShvrOh8ar3FaGBVrRt0sJgMRDSdiKZjNqqYDArhiE6TL8ydr//EmAJHt1Pfe9Jfa34zOb03HYMGg6HSeiqG2vkIMVxJ0C2EEGJADIasWTI6y9xbTSp17iCbWwIUOi0ctNUU4lRoms7Hq+t587taNjX7qGzy8f1mN2MK7EwsdZJvN7O61osvGMFoUCnNsZJnN6EoCqGIxns/1WEzGdhnYhHlltSnfnf3pT8U1QBQ0OP/7mhQBARVVejXXguLFqFEo7FjH38Mr74KnRSG7Rh0rqp18/CSrtfa7r9dMU3+MJ5AmEhUQ4ctAzOx5zIbwRpVqfcEeXppJVccMrVX/WQorPlN16DBUKsZMdTOR4jhSv5ChRBCpE2qmaqhUhSnY+b+q8omKht9+EJR7GYDVqOBp7/YyMxxBUwty0lpYGFVrZvHPt3AOz/U4gtHcVqMOM1GwkadNQ1eGn0hJpe5qHEHiGiQYzMyoTg2BVzXdVbXeVEVJR7kGVSlx6nfW7+HNpOhyy/9ZkMss62jxP/dUTYEBF32yaYm+NOf0P78Z9RAIH7/1txClp5xAaN22IOJPTxvT2ttv1zfhKqAJxSNVS03qgnJ86gORoOC2aiwupczAgbLmt/uPhvSOWgw1GpGDLXzEWK4kqBbCCFEWgzHLW22DiRmTy3hpxo3xS4L5bk2DAaFn6rdvPhNK6+uqGa7Uhc7V+QndU1W1br514fr+GJdI7quU5FvI6KBJxDGaFAps5mocwf5ZmMLoYjG6AI7k0pdFDjMAPE9tvPsJnyhSEImuqup3529h+OLHeTZTGxuCWzzpd9pMWBQFdBj/+4oGwKCzs5nuxwjxy15jqK/3gnNzbQNFQTsTj4//mw+PPxkNgRVCj6rYv4+pi7fp2TW2ta2BihxWfm2qpVwVMNibL9Guq4TimhYTCp2sxFNp1czAgbDmt/uPhvGFznTOmgw1GpGDLXzEWK46lXQ/cgjj3D//fezdu1alixZwpgxY7j77rsZN24cRx99dLrbKIQQIssNhemtqdo6kLAYVOo9IQB2GZ1Pky/Esspm/KEoxS4znkCUJl+Ib6uae7wmbdnLqmZfbHsphxmDqmJQweww0+gNYTcb2HtCIZua/RgNKhOKHeTYzPHnCEU1IlENs1HBoKrbZKK3nvrd1Xu4YlMrBlXBoCqdfunfrjR2DqvqvFkVEHR1PjOvu5iiT9+I3y9sNPH1Ub/k85POJZBbgBWYpOs9BnvJrbXVmDu9jK8rm1lbHyZkiL0fUR1CEQ2TQcGsquTYTOTZTL2aEdCXNb+ZLrwGPX82HDq9LO2DBkOpZgQMvfMRYjhK+dP9vvvu4+qrr+aiiy7ipptuIrpl/VNeXh533323BN1CCDHMDJbprenUWSBR2xpgdZ0Hl9VIozfEmjov/lCUAocZRVFQFAVvMMqMcis17mC316Qte1lgN1PV7MdkSCxQ5rQaafKFmVjiJM9uoiTHSnVrEJfVFL/+ZoOKUVVo9YUpz7fjsib+L7/j1O9k3sMRuVYK7GbW1Hs73VIsmwKC7s5n5UlnMfPTN9BUlc/3PZwlp12IXjE64fHJBHvJrrXdvjyXSw/ejqueX06TL4w1qmI0KFhM6paA24jdbGRSqatXMwJ6u+a3P2amJNOv3vq+Fn84SnmaC4UNlZoRbYba+Qgx3KQcdP/1r3/lgQce4JhjjuGWW26JH585cyaXXXZZWhsnhBAi+w2G6a3p1FUgYTKq2MwqkajOd5tb8QYjOK3t07FNBhVPMEJ4y37W3V2TtuxlkcOCUVW3mZrc9lzuQASrycjsqaW88m01X29sJt9uJsdqQlV0NGLrhscX2btdC9rdewixqePrG3zM3b6UI3cqxx+ObvOlP5WAINMZ1rbz2XPDN1jrrWzaftf4bdXTdubN0y/hvUm7UVk+nunluRg6eY6egr1U1tpWFNjRgTte+5FadxCDClajSoHDjMNiYnSBvdczAnqz5re/ZqYk89lQ1eQHhYwUChsqNSPaDLXzEWI4SfkTbO3atezcce/KLSwWC16vNy2NEkIIMXgMty1tugokzAYVk8GAqkCTN4SGTo6tPYgIRzWMqopJVYhEdeo8QVbXeToNONuylwZVocBuptYdwOxQ468XjmoYFYUmX4g9xhVS6rJiMShsavLz3eZWVBQKHWaml+cQiuo0eMOYjYYup3539R42ekOsqvXQ4A3S6g/zj/fXsMvoAuZOL93my3+yAUFvMqypBumRpUs5a+Hv2P6bJWweO5l/3PUULrs5fv2+OukcNm5qwdCHYC/VtbbjihzsNaGID1fW0ewP4w9pBEwaO1c4OWmP0b0OclNtR3/OTEnms8GgQkmOtdOaAdlQF0AIIdIh5aB73LhxLFu2jDFjxiQcf+WVV5g2bVraGiaEEGJwGG5b2nQVSLisRgrsZmpa/Wi6jqIo8Qy1rut4ArHM94/Vbmo9QfzhKIs/3cCKqtZtAs6O2cvxxXbcwTCN3hBOqxGjqtDkDWMxqYzMszG5zMVf3l7JTzVuorqOzWRA08EfiRKMaBy7yyh+2Ozudup3Z+9ho7dtTXoEs1El12ai0GHpUza0NxnWlIL01avhj39k3OLF8UMj1v0I/3uBz/eYzcQSJwUOM/5QlDybmWKXhcomf6+DvWTX2nY8759NKiaq6bgDYRp9IfzhbbdaS1Uqa377c2ZKMp8NbTM1Xl1eLYXChBBDVsrfgC6//HJ++9vfEggE0HWdzz77jMWLF3PzzTfzz3/+MxNtFEIIkcWGypY2yWZTuwokFEVhQomDBm8QfzhCgcOI2x9Gt4I3GNmypjuC2x8mosHofDvledZOA86O2cuGLRnJTc0B6jxBvMEINpORfScWccLuFTz+aSVfVzZjNqrk2MyYDArhaCyo+2ZjC2U5VhYcOpXNW2YbdHZuW7+HAKtqPfhDEfLtJpp8YUpyrJTlWimDXmVDe5NhTTpIr6mBG26Av/8dIu0zKqrzS3nqyLP5esef0dDsp84TZPqIHAIRjR1G5XLQ1FIeXrKuT8FeT2ttuzrvfIeZigJ72jLLya757c+ZKcl+NuwzoYgRudasqgsghBDplHLQPX/+fCKRCL/73e/w+XycfPLJjBw5kj//+c+ceOKJmWijEEKILJatW9qkMiU5lWxqd4FEvt1MSY6VEheYjbFq33XuIGU5FnyhKC3+CCajSo7VxKRSFzk2c6y411aBl6bpWIwG9p9czBdrG6lzBylwmMm1mxiRa2X21FL2mVBEZZOPT9Y2oiqx6eRtbbEYFcwOMzWtQZasaaSqxc+YQkeX12rr99BpMdDgDWI2qjT5wtjMBiYUO+LP35tsaFcZVl3XcQciWIwqX29sZmOTj9GFjqSC9Hc+W8WET59Fuesu6LDEze3K4/3jzuGf0+fSEFEIe8IEIlECYY2aFj/jihwcP3MU25Wlpyp0d1Pr+zOznMwU//6cmZLKZ4MUChNCDGW9+kQ955xzOOecc6ivr0fTNEpKStLdLiGEEINIqlvaZLqQVipBdKpTnnsKJEYX2Dl9r7HYzAa+39zKGyuq+aqyiarmAKqiYDMb4ntpw7aBVzAS3WYrsmKXlZlj85k6IifhWq2t99LsD1HstHQa0OXaTTR4gqyt93YbdEPie7h0QxOt/jC5tlhl9AnFDgoclvh9e5MN7SzD2ugNsrrWS6MvRDgaC4r/9eE6TtlrNBajocdgdZdbLkf56JX4cc3h4M25J7N03llYCvKpqPewaU0j3lAEg6pgMaqoioLFaODtH2oZU2jPeLCXbTUP+ntmSiqfDVIoTAgxVPVpGLOoqChd7RBCCDHIJRu8ZHqrolSC6N4WlUo2kAhGopiMBvLsZrxhjUK7GaOq4AlEWFbZzE4VeRQ4zPHA6/vqVt77sW6btlc2+fCGIowvdmxzPRUddPQurkZXxzvX9h5+tq6Bv7y5EqfVRHmuNaEgHPQuG7p1hrXRG4zvY+60GjEbVSDC2gYPiz5ax/7bFceD1bZseCiqYTaouKxGbGYDrx5xOrt8/CqK0QjnnsvqX/0fz3/Twvg8J7quU++OrYMvy7XG1tkDvlCUSaVOGr2hhPc2U8FettU8GIiZKZLFFkIMdyl/wjc0NHD11VfzzjvvUFtbi6YlFgBpbGxMW+OEEEIMLj0FL5neqijVILovU3+TXcvb5AsxvTwXTzAa25/ZaMBsVGn0hlhd5yHfno8/FMVsUPlibWNKAwDjixzk2k20+sJYcwzbZC1bfGHybCbGF3Wf5e5oTb2HL9Y10ewPs7rey4YGE/kOS7wIWU/Z0K5mMXTMsDrMBlbXtu9jDrHCbaU5VnYYmcuqOi9frm/CYlDZ1Oxjc3OASV+8R1g18uXU3cm3mxmRa4Fxk2m6/c8UHH0YTJiAtdGH9TsPvlAEXYdGXwiX1Rjfbi0YiWI0qFiMBkbkGrp8b9M5EyMbax6kOjMlHbIxi53pGTfDnVxfIdqlHHSfcsoprF69mrPOOovS0tJO9/MUQgghttYfWxWlGkT3depvT2t5V9W6cVmMhDQNu9lAiz8c3/rLaTXS6A3R6g9T4w4yusBObWsgpQGAUfl29hxfyBvf1dDgCeKymTAZYvt6u/1hNB32GF/IqPzkgp2OgyJTylz8WOPGG4iwqdlPayDM5FIn/rDWZTa0p1kMbRnWb6paqHEHcFgMhKIankAEm9nIhGInqqoyItdKbWsAo0HB/fb7XPHqA+y4bjkbSyq4YNq/qXUH2Njk4+BppeRddD5sacfIPBvjixx8vr4Rh9mAPxzB+f/snXd8XXd5/99n3yldbdmyvO3YjrOHySAbwiwplAChLYVSoFAgZfNjlfFrgbY/VoGyw0ooUDYlkISQNHvaiWM7HvKQZe2ru+/Z5/fHka4l60qWbE37+3698op8dO6533POvUffz/d5ns9jhGnxIw7yzTURkhEVLwiq3tuZzsRYqJ4Hp3v0ebYzbk53xPUVCMYybdF93333cd9993HOOefMxngEAoFAcIoyF4ZS0xXRs5n6u7M7xzNHckgSeEGA5weULA/HC0WrIkuYjsfe/gIrGuJcsKKOX2ztIjbBe1VbAJBliZu2LKcvb7G7J0/edAlTyiUUWeacpUlu2rJ8SkKq2qJI3FDZ11dksGgxWLDYFcCLz2rl+s2tVWvjv33fAboyJepjOo1xA0WWxmUxvP6ylfzgoYPs6SsAoCnycN14ohL1juoK0jO7ecl/fZnztv5v5T2W9XWy6aG7uPecq0CSxiXPdwwUSJdsDg2WyFsuphPWidfFNFwvqAh7SZIoW+64eztbmRjzEVmeCgsx+jwXzHbGzemOuL4CwXimPYvYsGED5XJ5NsYiEAgEglOYuTCUmq6Inq3U3719eX77dDcFyyUV06gxNBzPx/MCLMcnW3YIggDPhzOX1vLKC5dhqAq3b++Z9gLA2uYkN1+3jtu39/B0V5aS7RHTFc5uS00rqlRtUaQ+blC3UidvugyVbMqOx0vPWcryY0zZfD/g1ocP8diBNJIUHkuVZepjOqubYgyOqp8OBegqujMmUV2hLqaTjBy99sm+I1z4nS9w9h9/iRwcldX7G5fxpWv+hjvWXUrMDzirLUmm5FQWaUZP9M9bnqIrU2Z3b4FMycZyPFY2xjmrLTVhivxsZ2Kc7pHlasxH+vFcZNyczojrKxBUZ9qi+ytf+Qof+MAH+OhHP8rmzZvRtLETg5qamhkbnEAgEAhOHebCUGqqInpJTYTOdGhOdnZ7LV2Zqaf+Hk8ojEw6LcdjRUOM/rxFwgBDVWitjTBYtKmNqER1lTPbanjv889AVWV8PzjhBYC1zUneehKCzvcD9vUX6C+YJAyVIAgq7y9JEjVRjZihcGCgSMnxxr3+gX0D3L2rjyAISMX1Sop7X94kbzmsa06MyWJor4tx9rIU249kK4I7kk1z8Y++zjm/+iGqY1eO3Z1s4D+e+1p+c/7zSSWjrI5qFGyPvOmhKy5F26060V9WF2NpKspThzNkyy6yBMmIQt50qt7bucjEOF0jy9WYr/TjuWzhdjoirq9AUJ1pz2xSqRTZbJZrrrlmzPaRP9CeN/6PsUAgEAgEc2EoNZX62TNak3zt3o4xk/1UNOx/nSk5k6b+TkUojEw6l6aiNCUjFCyPdDF00dYUGUOV6clZXLQqzo0XtqOq8pTHPlnt74kKupFzeupwhn39RY5kTFqSEdY0j20TNtGiiO8H3Lmjj5Lj0V4XRZHD8zFUBT0eGsYdyZrUx/RKFkO1c73u65/lrDt+XjluNhLna5e8ktu2vAxTNXC9ACtnYWgKyYjKQMEiFdWI62rVib4kSSyvj5MwVHYcydGXt9jZnaMuZlS9twuttddCYLYi0fOZfizu8+wirq9AUJ1pi+7Xvva16LrOrbfeKozUBAKBQDBl5spQarL62TNak/xxV9+4yX531qQupvHy89toTBpVBcZUhcLoSaciS5zbnmJvX4Ghkk3BcpEliWRE5cVnLxknLE629ne6Imn0OS1NRciWwyhwb65M3nKGW5oZky6KdGXKdGfLJAwV1wdFPvq7EcO4/rxF7bBAnuhc//v6v2bTH3+FKyn8cMsNfOfyVzKkx3F9UGUJRZawHJ+erMm65gRFy2VpKkpbKsruvvyEE/36uMGW1Q3s7M5x40XtbF5aW/W6LLTWXvPNbEWi5zv9WNzn2UVcX4GgOtP+xG/fvp0nn3ySM844YzbGIxAIBIJTmLkylKpWP7ukJsLX7u2YdLL/1OEsb7lyzbjJ/nSEwrGTzvq4zkUr6yp9pm3Xw/UCNrZWL8c60drf6Yqkaue0riVJ0fYo2S65ssOevgIbWyV6ctaEiyJF20WWoSlhMFCw0OP6mAV5VZYoWi5LaiOhYPd9+PGPwTBY++d/PupcV7PN/QKfzDaSb2ihVHIwAN8Jr5ciS6iKRNnxOJwpE9MUrt3YjCxLx53om45HXUxn89LaCbMBFmJrr/liNiPR851+LO7z7CKur0BQnWmL7gsvvJDOzk4hugUCgUBwQsyWoVS1KO/oSXtnunTCk/3pCIVqk86Rumjf93mqq8TqxgRBEOD7QdXznm6q+ImIpOrGaXolMt+XN+lMl6iNapyzLDXhokhcV4lqKtGUQtEem0rveD5DRYeopnLthmbkO/4AH/wgPPkktLfDC1+IHIlUzvV3L3453b96hqVRFdPxKNoecU2m5Pi4vk8QgOcFKJLE1RuauXRNIzAzE/2F2tprrpntSPR8px+L+zy7iOsrEFRn2qL77W9/O+985zt573vfy1lnnTXOSO3ss8+escEJBAKB4NRkpg2lphLlPZnJ/nReO9GksztTZvuRHI4bisfP37mnaiR6uinik4mkuK7wVFeW7z90kBdubqUmopGMaLSlohOe00hkfqhkc2CwyGsuXs4V65omHMNowXvOslr29RcrqfSqJGFoMq/yu7n8LZ+Au+8++sLOTvj5z+E1r6lsaojrqLJEruwS1RUKlkfe9sIFiiAgCECSYEVDbEwrtJma6C/U1l5zyWxHomci/fhka80Xw32eTWf32XaNXwzXVyCYa6Ytul/1qlcB8IY3vKGyTZIkYaQmEAgEgnlhqlHeYyf7QRBUUr51RQaCCSf7UxUKUU2hM13C9QNeuLmVrYcydAwU2dtXoDNdQlNkzlueYmkqVnWMJ1JHO5FIShct9vUV6Rwq8sTBIf6wvYdkRGN5Q4zz2us4u712wnOSJAlNkWlKhP2zJ5uQjxa8g0WbDa0JXD+8tkbHHv7q199g80N3jn3ReefBpz8Nz3vemM0JXSUI4GC6hKFIWK6PDyiShCxLuF6ArsrUxfRx45hson/dpmYMVWFXT+64ImO6mRjz0fZqNpntSPTJZiXMVK35Qm7hNpvO7nPlGr+Qr69AMB9MW3Tv379/NsYhEAgEC4JTbQJ9qjOdVNjRk33b9SsRWdfzUWUJH3ju2saqk/2pCIWltRF+ve0IHf3FymR2dVOcl523lLt29mG7PquaYkRUdbh91dFI9A8fOsTVG5q4fXsvQ6Xp1dFWE0nposXWzgzZkkPRcnH9sCbadFw60yUs16crUyYV1ejOmlMWPxN9P44VvJG+bl71i2+y5U+/RPZHLcavWQOf+hTceCPIoxzXgLt29vLFu/ZQdsLIdsEOkBm7WyKi8ty1DXgBVVOcq030y7bHHc9MT2RMNRPjROroF/rzZbaNsE4mK2Gma80XYgu32aynn2vX+IV4fQWC+WLaT8wVK1bMxjgEAoFg3pmvvrGCE2e6qbDXb25hZ0+Oe3b3I0sSqZiGrkrkSg5eAL15i46Bwrj7fTyhoMgSvXmLI1lzzGT2mSM5njg0xMGBIkgSA0ULVZapj+k0JnX68zZ9eZM9PXnu29uPhMTFq+oqYmcqdbQxTcHzA7qGSqRiOnFd4ZkjOTIlm7LtkzddAiBbctBVmYLtEdVk0rrK0lSEupg2JfFzvO/HaMGb+McvUffHnx0dZEsLfOxj8MY3gjZeyO3uyfPFu/bQkzNpr4syUJTpzlj4hL5rihSQiKhcsa6R1U1J8qYzYYrz6In+3r48331wYQiYxfJ8mQsjrBNJP55v1/O5YDbP8XS4fgLBQmZKovtXv/oVL3zhC9E0jV/96leT7vtnf/ZnMzIwgUAgmEvms2+s4MSZbirs6sYEzUmDqKYgSVCyXRRZZmldjNWNMQaLzoQTz4mEwualNQwWbbqHW1mNlFwFAchSwFOHs5RslzVNcSKaiuP5HB4qsasnRyKikopqmLZDruyiKhJbO7Oct1yq9MierI52b1+e25/uoTNdJl20iKih6VjedPCDAMsNwmMAlufhEkaPDwyWaKmNkik5vPz8NrZ1ZicVP1P9flQE7z9/An58K+g6vO998M53QiJR9R75fsBPH++kP2+RiqoMFm2Klhe6lUsQEC4stCQNGhORqvd1ouMuFAGzmJ4vc9nabzrpx/Ptej4XzOY5ng7XTyBYyExJdN9www309PTQ3NzMDTfcMOF+oqZbIBAsRkQEYPEy3VTYrkyZTMnhsrWh6/VIPXcyEkb0dFWZdOJZTSgEQcDn79xTmcymi3bYl7to0Ze3KDsevh9QtDxiuoauyMOC2Ed1PPpcn7wZplRHNJmy46F1STx3XVPls1hNZI4WchtaEzx20OFI1sTxAoJjxh0Arg+u56PI4PoBRzJl2utiNCYN/v6qNROKn8m+H0kVmv77Rxx8pIbV//c9R78fbW3w05/Cli3Q2DjpPRwRAxCQLjq4foAqyyiyhyRJ+EGA6foUrLD+vtp9ney48y1g2lLRRfd8mSsjrOmkH8+36/lcMJvneDpcP4FgITMl0e37PocOHRpub+LP9pgEAoFgThERgMXL8VJhj2RMljdEyVsOnekSedPBdD2WGlGUKgJn9MRzovrbY4XCrp5cZTKbLtps7cxQtt1hczaI6Qo506U3ZxHXVRRZouz4aKpMtuwiSxCPqPhe2D7McX32DxRZ2RhneX0cGCsyfT+gc6jEDx46yOGhEme31TJUsilaLn4QIEkQHKu6CbcpErgByF7AQN5kaSpKXFcnFT/Vvh+B79P2p9u5+vtfpLlrP/maOo685a9ZtqLl6Atf/OIp3cOiHdac226A4/vEdQWQ0FwFx/NRJQnLCyjZPposTTnFeaEImMX6fDlRI6zZqluf7VrzhcBsnuPpcP0EgoXMlL9Zq1atoru7m+bm5tkcj0AgEMw5IgKweJksFXZPX4Fc2cH1ff7jj3uJqAqNCQPb9SnZLglDHeNenoyolYnnQN7irh19U6q/HZnMFq2wzrhsu9TH9dAQDFBlmZgm4wWhgG1M6ni+j+35uJ5PTUSlNWkwULAp2R6GIlFyfDr6i7TXhSJsRGSWHZev/mkfTx3O8PSRLFFNwXZ9MmWHsu2FhnB+gF1NdANIIPkQSJA1XVprjOPW5h77/ah5+H6u+Pa/s27/M5V9krkh9v/Xf7PsfW+d9j2M6yrGcPR/ZJCSBFFdxrN8XC8IO6QABculN29NKcV5oQiYxfx8OZF+8Sdat348sT4XtebzzWye4+lw/QSChcyU/9IE1ZbNBQKB4BRARAAWN9VSYS3XJ1d2qIloLK+PEdNVSrbLoXSR/rzFUMlGl2WGhkW5KsvURTVUVWZdc4L/ebqboZIzpfrbkcnsIwcGGSpaJCIakiSFba4ksByPZDQ0OBsshuZmtufjuD6aIpGK62RKLmXHx3R9yk5Ydz1YsOjOmhSsUMSf0Zrkuw8cJF20iephe7K4oXAkU2awYOH6AbIEiiIh+eNTzAE8H+ThOukggHPa644bhRz5fiR3befq736O9U/eP+b321efxZee97dE2i/h7X35ScVVNWHVloqyNBVDOpRBU6DseOiqjCrLRDWFnOeiyBKKDEMlhwtW1PH8M1tY3ZigM12aF5E2nWN3ZcqnxfOlWt160XJ55MAgz3Rnec3Fy7lsTeOEruTHE+tzVWs+n8zmOZ4O108gWMgs7ie8QCAQzAAiArD4GZ0KmzcdfvHkEVRZYn1LckwN7foWlf68xYGBEqos0ZDQqY1qlG2PjsEiyYhKU0Kn7PhTrr8dmcw+051lqOzQosn4wXAa9nDwti6mERl2Gd+0pIZdvXkODBSpiagUzDC9OqLJaArkyy4+AYNFm850iSvWN3Hdxhbu2HG0LjhvumiyhOsGaIocRs19MFQZWZKQ8KqKbkkCZThFuyGhs6H1+LW5belu3vKNj7L+rl+P2X5o6WpuveEt3LnqQppqIkiuP2lt8mTC6rpNzdyzuw/L8wn8AMvzMf0Azw+oj+msbUkQUWXefOVqLlxRT8dAga/+ad+YY61uinNOe4qmpFER4QtBwJwOz5dqdf8jfeIHixbZssOBgRIv2tzKC85qHefqPlWTubmqNZ9PZvMcT4frJxAsVKYlur/5zW+SmMB9dIR3vOMdJzUggUAgmGtEBODUYCQVtjNdYqBgsTQVHVdDW9lXgqWpCGXHJ1t2UGWZ1Y1xHM/n2Z48F62sH5d6Pln97drmJDddvJwDA0WKlkfZ9lAkidbaCAXLJVd28IZrtg1NpjaioasyZcdHliRihoIfhJHomqhGMhKmvq9uivOm566mO2eOqQt2PJ+i7ZEp2UiEr/OD0ChNV6TqghuIajKeH9aQb2hNVo28jrtWX/nyGMHdW9fKj//sjdx9wXXk7ICorrCmOYHl+Dx+MM1jB+u4cEX9mO/L8YTV6y5dwdUbmrlvzwASAZYXppPXxXU2tiZJlxzOaqutCO5jj3UkU+JXW4/w348fpr0+RmPCqAj6+RYwp8Pz5di69ZE+8WXbIxFRMTSFouXy6ME03TmzIqRPxMTyRGvNFxOzeY6nw/UTCBYi0xLd//mf/4miKBP+XpIkIboFAsGiREQAFjej05Z7siZlx2VplRravOmSt1ziukJ7fSyc5AdhJLomqnFwsMh9ewZ4sGMQ1wtNyVRFpi6ms7Y5QTKiMlQqsv1IFmDMZPXSNY286KwlPHogTcJQ6c6alKywTrdguaSLDg0JHdcLuOqMJuoTOg/sHUSSwBwW33FDpS6qUXY8ljfEQmE2XO872qxt2+EsEqCrYfRcVXw8N8DxQ2fyagRA0fbRZDBUneX18arR1ZFrmTcdCpZL7Rv+gXXf+CauqvKtK2/it5e9DEvRUDyJ5hqDxoROR1+RgaJFruzwtXs6eHT5UCU1eCrC6s4dfbz6ouWYjk9XpkRdTKcmoqHI0JM7WsMNVI2o7ukr4Pk+fgC261MbVcdESidzZz8ZpipgTvXny+jPZxAE7OsrUrY96uN6xYG+ZIffl3TRrgjpEzWZm26t+WJkNs/xdLh+AsFCY1qi+7HHHhNGagKB4JRFRAAWJ8emLXt+QGe6TFRTaB92/x7B9nyKZigQnunKIcmh0Vl9TKcxqbO7J0/GdCg4HlFVIa4rJKMS/XmTgYKFpkjkTZf/evQQd8TCaOrzNrUQ1RWKtss57Sl2dud56nAGWYLamIauKUhI2KpHU1LnolX1XL62kTXNCXYcySFJENEUJEJhnDNdkhGV9S1JcmWn8lk81qyttTaC6fikixae71V6cgPDbcHGXytdAVUOXcH39hW4b28/KxrilB2PeOBhfPPr7Bww+f75L+LQYImy4xHVFZ73ts8iXXABu4qwKa6jqTK6IuN4Pls7M+RNB1WWiOkKdTFtjOA1VGVKwuql5yzlDZcfFaYDBQsvCFhSG+HajS1VRdpogdeQMLC90FQOJNY1JyqR0rdcmZh3AXMqP19G+2IEAaRLNonI0VR6xwt9EwxVYUnt0bZ8i9lkTiAQCKbDlEX3RCl6AoFAcCohIgCLi4nMm/b3F3n0wBAxXaUhYVT2L1pOaKKmhinjmhoKx8NDJXZ0Z3H9MOKsyxKGKlFyPBzfpzaq0Zsr4wVwRkuCTa019Bcs7trVy2+eOsLSVARDUzAUmZ5sGVmWiKoyJdsLTdriGkGg0TVk8t0HDvDo/jRNyQjL6qJkyw59eQvT8fCDAF1RiBkKphMabEU1hSAIqIloPHMkS3/exBh2LY9oMktqI6GBmuxRtF08L0CSJFQ5IAjAC8LUck2RiGgyjhfgeAHbu7K8+yfbaImqvPSZP/GKX36DxsFu4tEE//Gh8/CMJMmIiuX43NmykaaMR95ysTyf89pTANy7p58jmTIMp4RHNYXD6RKtqQgHB4v85LHD/NnZS6csrDa01rD6qgQP7Bvgzh19dGfL9OZMfv5EF091ZlnXkqDseCQ8lYGCheV6pItWReBpilzp532y7bhmo/XVqfp8GV23XhfTcH0fTQmnmEEQUDBdmmsiJCMqXhBU7rcwsRQIBKcLwr1cIBAIBIuSidKWa6IaF6+q457dAzxyIM1laxqIGSoly+WZrhyaIpMcrqmWJAl9uF1VKHqhNqIhSWB7AboiY7lh7a3j+WiKTERVeLIzQ0/OZLBgYbkB2bLNleubcX2f7qxJMqKwcUnN8Pt67OnLYzoeqZiG54fmZ4fSRdJFm0zJRpMAVcb1A/zA59Bgka5MmYtX1vPrbUfo6C9yKF3k2Z582FZMldBVBVWW0VWZhKGiDIv7vpyJ64dp8Y7nE1FCJ3U3CI3JZCms/VakgC07HuY9f/oea3r3V65rvFzg7Kcf5OmrXookSSSMgHTRxgsCkhGVXNlhd2+BgID9/QX8IBSTMV0hYajs7iuwqzdPXFc5OFgiV7YrbdqSEY0gCMbUy0MwRlh1DBT43fYe0kWbtrpoxXl++5Esjx9Kc3CwxO7ePJIEnheQNR2W1kYx1KMR1ZEe6ScaKT2Z1lenI6Pr1g8PlQgCsFwPWZIomC5RXWVNU/gdLVtu5X6fDiZzgplntnrBCwSzyZRF98c+9rHjmqgJBAKBQDBXTFYP2pCIcNHKOnb15DmSMVEVCdcP0FSFi1bV0ZuzSRfDFFjfDyhYoUBw/YCGuIahqaSLNmXHw/F8SraPKoMd+GztzGJoEooUOoUnDYW86fLEoSHWtSSJ6QquF9Cbt7igLkpHfxHTCetbAwhF9nBrsp3deYq2j0SALIUmaxISputhOh6PHkhjOT5NybDvd0xXKTs+lhtgu27YB1yRkYCc6UBFWEsYqkwwfFzT9bC98NpIwPmHd/KBe77DRYd3jLlu/7v6fP71ytfR0b6eVcPvJ0kSiYjKUMnhrLYaIppDe32Uu3b2Ybo+cV0lpqvEdIVM2am0IwsIUCSJQ+kSBcvDcn1W1MfY119kqGTjen7YVxx47tpG2lLRSeu/bdfnT8/2UXZ8EoZKU1KnZHv05i06h0q0Jg3cAFqGI6pwYpHS6bhpC44yUrd++/Ye+vPd9OUsUlGN5poIa5oS4ef/GCEtyxLP29TC7t48TxwaYkltlKakgemcOiZzgplFLIgJFivTEt0CgUAgmDpiNX52OV496JJUFNPxufGidlprI/RkTf7r0UOsaUqypDasjR4q2ZRsF9f3SURUCpaLJEtEdYWlWoRc2aVzKGy/FRBGVn3fw/MlfDxqIiq6KuP6PiXb40imPNxTWiZdtOnOmgyV7Ervbtv1UIYjsQXLQ5VBkQCkcGFg2LwtoatoskTB8ihYNq7vYzo+qahGpmRh+6DJYS34SCTeB2RAVSSkIKBke9hemC7vD9d3r+s/yPvu/R7P2/vwmGu1dcl6PnPl3/DoirPxANn2OJIxaUtFiepKJW1bkUMxf8maBp7tzmN7PsmISkJXKtkAUU3GC6Ds+ER1lXXNSfb1F+nLmRwYKCJLEqmYhq5K5EoOXgC9eYuOgcKE9d9BELCvv4giyyQjMoYq05e3sF0f3/fJ2wFl26MupnPmUr1S7z3dSOmJuGkvZmb6GbW2Oclbr0pwbnuKWx85RNFyWd0YJ2ao5E1nnJDe25fnjh29FG2XvrzFwcESUV1heX2M85fXnRImc4KZQyyICRYzokhGIBAIZgGxGj/7TKUeNKKF1729PkZcV4lqYapyfVznopV15E2XdNHm6a4suhK23SrbPjWRsKRqqBSmRodISFKAIoMPuF4obIMAJCQSwynsMT1MwZakgJLj4Xo+WkQdV9s6WLRxfB8vCFhaGyWmK3hBGB0OgoDDmTKaKtGft5EkB8fzGSo52F64AGD7YFvemHP2GV4YIIw0A/hB2H4L4KU77x0juPfVL+Nfr/grbl9/KUhSxczNC6Bku6RLNku1SCVt2/UCXC+ga6iMJAe0pSIMFmxsWaLs+BjDKfsyAbYbRqRrohprm+N0ZcK0Y0kKyJYdIqrM0roYqxtjDBYd/vBML1dtaKq6kJI3XYZKNqmYRmnYRG5XT56i5aIqMn7gh9H1wGdffwF1eDzTjZSeqJv2QmC6Anq2nlGyLHH5uiZaayOV4/flrXFu7aMF1PL6GGe0JOnLm3RnTeKGynWbmsWzUlDhdFsQE5x6CNEtEAgEM4xYjZ8bplsPWm3/kZ7YfXmTjoEibakonh/WMGuKTLZs4wfBcDQ6TJt2/VDIBoTRXMvxMbRwX1WRWduSpGS75M1QHcuyRNFysV0/7GndFK/Ukgd+eMyIJmMMG6bZrk/J8bBdH0WGku1RGq5Jtt2gag/u0YSCeywj//76llfwl1t/h62ofP6ym/jJ2c/Dk5Vx+4Xv5ZMvO1gxjaLtkTBUth3OoCsyd+3spaO/VOlfni45uL6Prii4foBpe2iKzOrhcx0s2vTnLWqjGoEkIQMxQ2V1U5yGuIGuho7WF66sq7qQYnt+2INcDevT86ZLQldoTRr4gOX49OdNYrrKYMHm2SDPi85aOm0BuVjdtKcroOfiGTWZW/tEAmppKsaS2miljdzapqQQUAJgcS+ICQQgRLdAIBDMKGI1fu4Ybd60py+cjEV1JextXaUedLL9VTk0V6uJajQldLoyZQ4OlrDcAE2RiOkqRSusVz72rgWAocoULQ9JCuuUm5MRmmtAV8LocabksKIhxtrmBPXx0E09YSioioIsOUhAyXLpL1iUbRfH9SlVWoB5TIcAiNomb3jslwSSxFcuubHyu4IR43Wv/Dh7Gtsxtcikx/GCMMLcnTOJ6yo9ORNNkTmrrZbWmggDBYsjWZOkoRI3FLJlJ3RrVyQURWJFfYz2uhjposVTnRkcLzRiS0Q0HM8nV3bY1pnh3PYUNVGN3pxJwlCrLqToiowqh+noDQmDouWSjGoYarhgoMgeLVKEzW21uH6Yav6Sc5awoiE+2SmOY7bdtGej5GS6AnqmnlFTOZeJ3NqFgBJMl8W6ICYQjHDCoruvr49nn30WSZJYv3696N8tEAgEiMnkTDKVSf2IedNIlK83Z45LY53K/pesaeCM1iS7uvPs6y/QENdx3FAYttYaWE7oKm46PrY3No4sQcWJOwCeOZLlopX1/M1lK4lqKjt7cvx2WzeWG7qfu75fWRjY1JZkb6/EgXQJ2/VxXB/3eKHsSVA9l1c/9Qfecf9tNBeHKKsGP918LX3Jhso+Ty9Zd9zjjKSZ+0DRcjEUhZpI6AovSTJPdmYp2mHqfE/Ooj6usaQ2Qt50UWWoiepsbqsFYG9vgYLtkYioGKoybPKmoMfDuvd9/UXOaElgqArJiFZ1YQTClHkvgNbaCM/25tGGHcpHp+0vTUXxgoADA0XKzvQWK2D62RPTYTbSuU9EQM/EM+pkz0UIKMF0Ee3lBIudaX8yc7kcb3vb2/jRj36E54V/0BRF4VWvehVf/vKXqa2tnfFBCgQCwWJBTCZnhr19eW5/uoenu7IUHZe4pnJWWy0vOKu1qpCeKI21GpPtf/UZzXRlyuSt0Gjt83fspmi5oUGYrqIpYV01hGnhsgSqEqZ9K1JAbVSFAM5qqyWqhcdtr4+xujF+9HxsBymQaKmNcP6KOtY2xfnK3ftw/KrDnRJS4PPiXffx7v/9PquGuivbdc/h0kNP8Yszr572MWXCz+uK+iiOH3Dpmga8ALZ2ZijbLrVRnbiu0JezyJQc3OEWaxFNZX1LgpqoRnfW5GC6RH1cJ6YrFEy30qptxBV9sGDRoUhsWdVQuQ/VFkaeu7aR3rxF3nSm3JJq2uc8zeyJqTJb6dwnIqBP9hk1E+ciBJRguoj2coLFzrSfZm984xvZunUrv/nNb7jkkkuQJIkHHniAd77znfzd3/0dP/7xj2djnAKBQLAoEJPJqTFZFHtvX57P37mH3b15PP9o2Hf/YJFdvXluvm7duEn9RGmsEzHR/rIsYbked+/sZ29fHj+AbNnF832SESl0JpckvNA9DUUCQ1EIFIkVDVE8DwaKFj97souH96dpThqcv6KOku3RVzAZLFp0ZcoUTBcOwz17+inb3kkJ7sv3P8n777mFs3r3jdn+u/WX8m9X/BX7GtqnfcyRq56KabTVxXimO4fnB+ztL1IeNqKThtuSLW9Q6c+b1McN1rYkWF4XZf9AiQMDYau0ZETlghX1KLLE1s5MpVWbpsjD19dhbXNijJidaGGkY6AwrZZUJ8J0syeOx2yWnJyIgD6ZZ9RUz2VlfZzu4fettggmBJRguszWgphAMFdMe9b329/+lt///vdcfvnllW3XX3893/jGN3jBC14wo4MTCASCxYaYTB6fyVJTVzcmuPWhQ2zrzKCrYZ21pkg4XkDeDGuAb3v4EB968aYZm1yNXgDoz1v87ukehkphFO/SNQ3cu7uf7qxFwXLRlDDxWlMkdEVBV8OxOa7H7t4CQRBGvrszZbqGypiux60PHwpFOgFBIOH4AQoBqixRNH1Kzonlk2/u2csH/vQdLj+4bcz2B5efxWeu/Bu2Lj3jpK5LALi+T0uNwY5u6MmNbX82guuHWQBrmxN4XsDLzm1DkiSKtkuu7HDbw4eIaOG9PLc9VWnVVrBcggDq4wavvnj5hAspI/dnd1+euK7ylivWTLkl1Yky3eyJyZjNkpMTEdAn84yayrk8cWiIz/5+FwMFe8LUcyGgBCfCyS6IiTaegvlk2qK7oaGhagp5bW0tdXV1MzIogUAgWKyIyeTkjE5Nba2JkPBDsfTIgUG6MmWu39zCQ/vTyJJEw3A0FcBQJfS4Tm/O4sGONJ1DpWmbZE00npEJXNlxOThYxvV8Ll5VRzKikYxoXHVGM396to/+vIUqS2iGShCAIkv4Afi+j+sddRX3A4ls2cH2/LB9VwCSFNYjj8SQPcD2T6J4G7js4NYxgvuZ5tV89srXcc+q88M3PIaROu3pUDQ9TMenNqqRLtmV9mcjjK6nbkoaHBwsUnI8NrTWAOEk99H9QxWBN7pVm+V6dGXKXLyynsvWNFZ9/8kWaN71vPWTtqQ6WaabPTERs1lyciIC+mSeUcc7l7Ljsbs3j+l4rG9JTpp6PtMZBYLTgxNdEBNtPAXzzbRF94c//GHe9a538b3vfY8lS5YA0NPTw3vf+14+8pGPzPgABQKBYLEhJpPVGZ2a2hDXeLYnHwo530eRJLozJgMFi6GSRXOyeiStNqYxWLDYP1A8adF9bG1qwlPZ3VvA83y2Hc5ybrtEfdygIWFw1YZmHtg7QN50WdkQY09fnqLlocjgeiOCOsRyAyzXGytyT05fV+WW81/K3zz2a2xV49+f+1f8euNzCSR5wv2nOoTRV71ke+zqyfOc1Q0MFCy6Mya66hI3VBzPH66nDtugmc74qOpEAk+SYKjksKwuxvWbW6tOmKdSO/z3V61Z8JGr2Sw5OVEBfaLPqMnOJQgCdvfkcb2AtU2Jyu8nS6OfyYwCwenDdBfERBtPwUJg2k/4r371q+zdu5cVK1awfPlyAA4dOoRhGPT39/O1r32tsu8TTzwxcyMVCASCRcRsTyYXY5rcSGpqRJV59MAQJTus962L6ji+z1DRZltnBtf3mbgb9cyo12q1qQMFCwloTBpkSg77+ovUxcJoe0PcYOOSGh7uSLOnr0De9PACkLyjIxqRu8Ex/z9ZaswCb3n4p8hBwKeven1lu6UZ/NWrPsnBuiU4yngxdzyU4ei7Ih1dNJABWQaC4X7fQSi8X33RcpACPvnrnezrL2C7HqqiDNdTx6mL6ezpK1RNSz4RgTfV2uG3XJlY8F0AZrvk5EQF9Ik8oyY7l1w5TO9fkopQEx37eZwsjX6mMgoEgmqINp6ChcK0RfcNN9wwC8MQCASCU4/ZmEz6fsD9+wa4a2cv3VkTWZKIaosjTa5ou/QXTA70FxkqO2iKRMn2iGou9XGNpqTBgYESvh+QLTlEapRxAiVbckhFNVY3nlyUu1ptqq7IqIqM60MiopIuWBzJljGGI3t7+gpIUoChKZQdj5gsUXZ93GETtJPwQquK4Vi87onf8NaHfkLKLGDLKj8894V0plor++xtXD6tY8qApjCc8i4R+AFeAJoMiizjBwGeP7zkEYRp/a01BlFdob0+xkdesokv372XwaLFktooTUkD0/HY01eYNC15ugLvVGq9NxclJye6yHciBoQTncve/gKqLHFGS3LcPQPRuUEwP5xKzxLB4mbaovtjH/vYbIxDIBAIBMdhb1+eWx86xN3P9lF2POKGSlPCIJqKLIo0uYG8xf6BEumSTUxX0RUZLwgo2i6251Ef06mNqjh+gOMFDBYsklEtNByzPfJlB88PuHhDPcvqqk+OppoBUK02NRlRqYvp9OdNDFWmv2Dx+IEhFFliqGhTsj0MTcZzXHw/oOQFeLOQNq74Hq94+i7+8b4fsqQwWNkeSHDekV1jRPd0kWWI6hpLaw0MTaErY9I/HOGXpfA/kAgATZZY05QgFdMqQml9a5K3X7u2ElU9OFhEV2Ta66NcuLIeQ1Xw/aDqNZ+OwDvVWu/NRcnJXEWMJzqXM5fWEtEUIppS9XWic4NgPjjVniWCxYt48gkEAsEiYG9fnm/ft5/HDg7hB7CsLorrBwwULIq2yznLahks2hOmyc13OrrvB2w9lEGRQEJCkyUkCVRJQtHCSHJfwWJdcxJdCXs492RNBguhy7Xj+RBAbSx0zu4YKIwTKtMxyqlWmypJEmubEwwULA6mS/hBQFPCoGS7ZE0Xzw8oD4e1T8SU7LgEAdfvfpD33vs91qYPH712SPxs8zV87vLX0lXbfMKHVyRY15xkw5IkS2qjHBwscuX6Jr59337Kjo/jDbdBkyUMRaa5JsK6lgQgjRFKo6OqO7tzPHZgiP6cyc+fOMx/+7CkNsp1m5q5dE3jCX/GTsXWe6dS/XK1c1lSE+Fr93aIzg2LlPn+GzFbnIrPEsHiZNqfMM/z+NznPsePf/xjDh06hG3bY36fTqdnbHACgUCw0JmLicpITVpXpowM1MV1FFlGkUGPy6SLNh0DJc5oSVRNk6smRlc3xTmnPUVT0hgz7snO52TOtStTpmOgyIbWJA/vH6Lk+EQ0uVJPHAC+D6moRtxQ+fPz2/jjzl7u2NlXcTJfUhtlaSpCd9bkO/cfGBPVn65RzkS1qXUxjZgWplkrkkRXpkzJ8fD9sSJ7pgX3BYd38OE/fovzup8ds/2OtRfzr1f8NbubVp7U8SVgVWOc6zY2I8syedPBUBVefv4ysiWHu3f34XoBXhAQURVaa8Pe14NFu6pQGulnfs/uftJFm6gmM1R06C9YbD2c4Z7dfVy9oZmbtoxvBTYVTtXWe6dS/XK1cxGdGxYnp7Kz96n6LBEsPqYtuj/+8Y/zzW9+k3e961185CMf4UMf+hAHDhzgF7/4BR/96EdnY4wCgUCwINnbl+f27T083ZWlZLvEdJWz2mp5webWGZ2ojNSk1cV0uobKw72iQyRJCuuPizaeD5brjUmTqyZGj2RK/GrrEf778cO018doTBisaUqwYUmSXd35qhMv4KQmZSMpfmubk/TkLDrTJVzPxxmuLU4YKooU7ndOe4pLVjWwrTPDmqY4bakohqqQjIQTpiAIxpjfjIxtOkY5E9Wm7u3N0zFQhCAI23q5PvLwosAsZJJX2Nh/YIzgfrRtE5+56nU8tuzMGTl+VJfZsKQGWZbHTDSX1cV47SUrsDyfrkyZuphOMqKiyhI9OWtCoTTWiV5n2+Es5eFIUl1MYyBvcd+eAUzH5w2XT7/kQbTeW5yIzg2Lj1Pd2Vs8SwQLhWmL7h/+8Id84xvf4MUvfjEf//jHec1rXsOaNWs4++yzeeihh3jHO94xG+MUCASCKTFXKXJ7+/J8/s497O7J4wUjkkxif3+RXT15br5u3YxNVEYEa2PcQFVkHC/AUI+ek6bIFC2X3HD0ciRNrppra7posaevgOf7+EEoKmujKg/tH+TnW7tYMpxSPHritbMnB4DnByc8KRtJ8Ss7HmcvS+H5AXnTIaIpGKqM4/lkyy4NCYPnn9lCd86ko7/ImlGth0Y41vwGOCGjnGMFwt6+Avv6C/hBQEzXsD0fBx+fmTdJIwjG9NL+0dnP542P/BxT1fnsla/jj2suqtpre7rIgCRDbTQUw3nTGTfRXN2Y4EVnLeHOHX10Z8vYrkdEUycVSiMLQa01Brt6CpRtl/pRfdVTcZ2y7dGVKZ2wM7AQcIuTkdTzw0OlcAGLMMuifQIfBsH8cbo4e4tniWAhMG3R3dPTw1lnnQVAIpEgm80C8JKXvET06RYIBPPKXKXI+X7ArQ8fYltnBl2RSEY1NCUUjvmyw7bODLc+fIgPv3jTjExURgSrIlMx+tJHCRzH85EliaGSzZZVDZU0uWNdW4MgYF9fkbLt0ZAwsD2fTNkhCMB1ffKmQ1NCr6TgJSMacV3h98/0ggTXb2pBlsPGWCOTst29eX7y2GFedu5SkhFtwkWO0Sl+65oTnLe8jr19BYZKoUFZyfZY25zgbVetZW1zkl09uUnNbyKawlCpyPYjWaKaQtlxWTpNoxzfDzBUhas3NHHByhS/e7ob2/UxFImhsovMcCutGQxxNxQzvP2BH6F7Lv/nBf9Q2e4qKn/56k9xJNmIL1c3opoOhhLeo1RUpztXJqYpDBascWJ69Hem7HggQXNNhGs3tnDZJDXZIwtBCV9lqGSTiGhjFjw0RaYYuNTF9JNyBj6V6qBPJzoGCqdsuvKpxOnk7C2eJYL5Ztqie9myZXR3d7N8+XLWrl3LH/7wB84//3weffRRDMOYjTEKBALBcZnLFLnDQyUe6hhEkaAhYVQmK4aqoCdkenMmD3cMcnioxPKGk2ttBWMF65qmOAXLJV20SQynAQ8VbQxVYVkqNiZN7ljX1rzpki6Fr5MkCU2RKVguQyWHobJDQ1xnqOSQN91Kn92C5YWR/CB8vSRJ2J6PPrzI0J+3eOZIjm2HM8T1cGL9Fxe0s7517LWuluJ33vJa+vMW3VmThoTB265ew/qW8HWTmd+kixY7juToy1v816OHMFSFznSZqKbQXj/+elczyhkRm3v78gyVHWzXpz9vsnlJLWXHozdvEwTB0YD0SQrvhFXi7x75OW989OfEHRNPkvnOBS9lT9OKyj6Ha1tO7k1GEQQQ0RWKtkddTOfvr17L5rbaMRPNY78zS4e/M91Zk9u397CkNjLhd2bk/uRMB9fz0SJjpxOO56PIMjURjcGidVLOwKdSHfTpwKmernwqcbo5e4tniWA+mbbo/vM//3PuuusutmzZwjvf+U5e85rX8K1vfYtDhw7xj//4j7MxRoFAIJiUuU6R6xgoki05NCT1qtGB2pjGYMGmY6A4I6J7tGAdLNqsa47TlSkzULApWi5RTeHydY3jTKuOFa625+P6PpoSPvodz0eVZZDA9X1qoxrZsoPtHU2mDn8OsN2AJzszWG54DM8PKFkekgSm49GTASTY2Z3n4f1p3nHtOq4+o3lMVGF1Y2JMip/lhmL4ktUNnNOewg+gM12iLRWd0PwmXbR48tAQ/QWbZXVRzlxSS8n22N9f5NEDQ8R0lYbE0QXgakY5I6LgULpEyXIpWC45y2WoYJMtOzQmDPwgwHT8sJb7JAS37jq8duv/8A8P/BcN5Vxlu6VqbOw/MEZ0zwQj6wOuDz0ZE0WRaK2J0J0pc257qjLhPNnvzMj9eeTAIKosjSl5CIKAgunSXBNBkRHOwKcRp0u68qmCcPYWCOaOaX+LPv3pT1d+/ou/+Ava29u5//77Wbt2LX/2Z382o4MTCASCqTAfKXLBcOur6sz8ZPLYmrSGuE4qqrM0FeXajdXbMx0rXHVFRpXDCLWuyBVhVBfVUGWZsu2hyjK6IleOoSsytuuTLTvIUuicrsoKhzNlcqaD5/moqkzMUIkbKrbr0ZMz+eztz3Lfnn6yZXdceunfX7WGrkyZvOWwqzvP1s4M33/oILIkEdWO7ndsZDyiKew4kqO/YNOUMNi0pBZVkamJyly8qo57dg/wyIE0l61pIGaoVY1yRkTBoXSJoaJF2fExVJmErpAOAvrzNn15+9jLP21k3+NlO+7hXff9kPZsb2W7Iyvceu4L+I9LXk1/ou6k3wfC3tqKFH7WZWnYCT4AzwuQg/DnXz/VzbO9hYrXwMl+Z0YWgroyJbqzJkNFm6akjuuHgjuqK6xujNGTs4Qz8GnE6ZSufCognL0FgrnjpJeutmzZwpYtW+jt7eUTn/iEcDAXCARzzlynyK1qjJOK6mRKDi018riJSrbkUBvVWdV48lHu0Uy3Ju3YlO7WGoNUVKM7W0ZVZGK6ypqmBDVRjbqoRsdgkdWNcZKjUoXjukLJ9vECaEroKIqC5Xg4ro8sgR1ARJYrE7aIppKK+nSmi/zJ9bjqjGaWGuPTSwF++uhh7n62j7LjETdUmhIGkdoIjxwY5JnuLK+5eDmvu2Qld+wIFxqGSkX68hbL6qJsWlJLfVyvjLMhEeGilXXs6slzJGOiKlLFKOe6Tc0YqsKunhy5ssOevjwlyyVXdvGDgMGCRdFycWbILe2Sg9v46F3fYGP/gTHbf7nxSv79uX/JobolM/NGQFSFtroofiCTLpoUbR8/CJAliYguo8kSSUPF8ny2dWa47eFDfOjFm2bkO7O2OckbLl9FRFW4+9k+Dg+Vw/uYNFhaG2Gw6Ahn4NOM0y1debEjnL0FgrljxvJFenp6+PjHPy5Et0AgmBNGu5Tnyg6GIs9Zilx7XYznrKrnjp29DBZtkhH1qJGaGQq5S1bXz4pb73Rr0o6NkOuqjCxJKLLEuuY4NVGVguWiqmH9rSqHdd4jE699/QUimkwyopIpuyQi4PgBtutjuz6aIofi2/UxNKWSWhymZYd52YosjUkvve3hQ5Rsj8cPDeEHsKwuiusHHMmW2T9QJKrLmI7PgYESLzyzhXOWpzizrYbDQyX8wGfz0hTqqGj8CEtSUUzH58aL2mmtjRDXw2j3Hc8cNXSyHJ+O/gK262G6Po4XnstMCW6A1vzgGMF9z6rz+eyVr+OZljUzcvykLoMsoSsKkhQQIKOrMisb4uwfKOEHAVFNQVEkLMdHUSQaIjq9OYsHO9J0DpVmLK10bXOSD79kE1dvbOaunb10Z00USQIk4Qx8GiLSlRcfwtlbIJgbxFNPIBAsOo51KTcUmYGCzUDB5rzlqVlPkZNliZues5y+gsXu3jx582jURpElzmlP8ZotyxdMdODYCPlA3mLroQwdA0UODBQrddVntB7t0z0y8VrVGCcIYFldjP0DRYZKNmXHxQ9AHu4R7vvBcNu0UHwXhyfWSIypD5ckidYagwc70iQjCjJhuroiy9iuS3nYxVyWVZqTEYZKNv/9ZBc/e7KL9voYUV2hP+/QnS1PaJgWGU5Pb6+Psbs3x5f/tI/BgsWS2girGuL05spkyja5kouihPXa7kkKbinwCaSjiwC/3HQlb3rkZ1iqzmeu/BseXHH2yb3BKGTCRY9UVOc1Fy1jx5E8UV2hLqYzWLTY218krquoioTrB0iShCJJo7wGLPYPFLliXdOMpZXKssRz1zVx2ZpG4Qx8miPSlRcnwtlbIJh9hOgWCASLiomccQeKNt1ZEw5lWNeSmPUUubXNSW6+bh23P93D011ZSo5LTFM5e1kt129unfPowPH6k4+JkLfCpRMIpGPNz/wg4At37iGiyVy0so686WK5Hts6sxxMFwmCo8IOQkM2x/NJRNTQzf2YiLTrB2TLNq01SQYLNpoStjJLFx1cPyBhqNhugOm4ZMsOtVENZVi8r6lJTNkwbXdPnk/+Zif7+gtENZmuoTJI4Lge+bKLB3jeyV3zpbk+/vF/byXiWrz9Ze8/ei9khb961ScZiKVmpNf2CLIUpvuvaIiTiun05mzaUlG6cybJiEq6GNaiBwQEgYTt+sQNFV0duQdHHeFmI61UOAMLRLry4kV8fwWC2UWIboFAsGiYzBn3vPYUkIEAhoo2vTl/1lPk1jYneevV8x8dmKg/+fPObCaqqVXHNtEE69jtvh+M6a8dthLTOG+5xEDBIlO2qYvpqIqE5XrkTQ9NkSrt1JLHtJLKmy4EkIrqHFFMHC+AIKDseOiqjCKFx0kXHYIgoD6mIckSmZIDEhMaph3JmBiazNqWBPfvG+Anj3VWBHfecsmUHWx3Zhpup8o53vbgj/nrJ36L4TkAfOPiP+epJesr+wzEZ8YkDUJbvoa4RiKiIUsSF66ooyaqVURNXSz8Oa4rGOqIIZ6Ppsrh9Rvu0Z4tOaSiGquHvQZEWqlgNhCfK4FAIBjPlEX3u971rkl/39/ff9KDEQgEgsk4njPuuuYEQ0Wb12xZTk1UmxMRPFqkHi/aPBtMFPl/qGOQP+zooSlpoKvyGPfw6Ux6J4pc6arMsrooznBq+UDBRldlGhIaSOG1WN0YG5deOlSyScU0aqIqdTGd/rxJRJPxgwBFksN2ZF4Y6U5G1LBOHChaLrbn01jFMM1yfSzHx/VlfvZ4J3v7ShRMB8v1KFhQsl28GajZjtomb3jsl7z54f+mxi5VtmeNOO2Z3jGieyaQAUMFVVForY0Q1VUyJRtnOG18SW2ETMnh5ee3sa0zy96+PMmIRl/OQpWhPq5jaEq4GFJ28APYsrqBZaO8BkRa6cwxH9//hYr4XAkEAsFYpiy6n3zyyePuc8UVV0zrze+9917+9V//lccff5zu7m5+/vOfc8MNN1R+HwQBH//4x/n617/O0NAQW7Zs4ctf/jJnnnlmZR/LsnjPe97DbbfdRrlc5tprr+UrX/kKy5Ytm9ZYBILFwuk4sRs55+1HsqRLobisRuiM61MT1djQWjOnY5wo2jxdkTsdJor8O14obvsLFqoi8ZxVDZQdb4x7+HTGNFHk6tqNLaxrSfDo/iH29RfwA59UVOe8dp3evMVg0UFXlTHppSM1n91ZkzVN8bBHdtkhCMB0XIqWN6o+PIxgJyIKyqhWZqMN02zX57dPd6PKHjFdoWOgyJFMCcsNHddnAtVzefVTf+Ad999Gc3Gost1UdW654KV85TmvJBdJzMybDRNVQZYVJEBXj7Z6G30dRpygG5NGpQ3bzp4cP3rkEJ3pMo4XkC5agIQiy5yzNMlNVbwGRFrpyTMf3/+FjvhcCQQCwVGmLLrvvvvuGX/zYrHIOeecw+tf/3pe8YpXjPv9Zz/7Wf7f//t/3HLLLaxfv55PfepTPO95z+PZZ58lmQz/iN188838+te/5kc/+hENDQ28+93v5iUveQmPP/44iqLM+JgFgvnkdJzYjT7ndMliX1+RfNlh09Ia6uPGmH3LtoeuyOTKDrt6cvMebT5RkTtVqkX+gyBgb18B0/ForTEoWqE5WU30qHv4H57pZXVjYlrXZbLI1bUbWsZt7xgoTJheCvCd+w8wWLRZ1xynK1MmU7LJmC6yFDqd+0GApsihO73psKbpaCuzEcO01Y1xfr2tG9v1aUwYbDucpT9v4voBiizhzYDqvrLjcf7pzv9k1VB3ZZsnyfz4rOv4wmU30VPTeNLvMRoJ0JTwGtheWB+vqTKaIjFUcmiuiYy5DiNO0CMCp70+xurGOLdvH/YasMPFiLPbUqf0c2I+ma/vv0AgEAgWD/Na0/3CF76QF77whVV/FwQBn//85/nQhz7Ey1/+cgC++93v0tLSwq233sqb3/xmstks3/rWt/j+97/PddddB8APfvAD2tvbufPOO7n++uvn7FwEgtnmdJzYHXvOS2oj5MsuhzNlLNfjvOV1FeEdBAF7egsgwW0PH8Ly/HmNNo9ukXUiIncqVOuJmzddhko2iYiGpkiUbLviID6Skry3r0BXpjztKFS1eu9Dg0U6BopA2L98RIgfL710dOS8PqZRG9XwgoCkodKcNBgo2hQsFykIAKliATbaMC0A9vWH/cd39RQoWWF9dRDueCKXdBwR1xojuH+3/lL+7Yq/Yl9D+4wcfzShUZqKIkPectFVmZiuICORLtrEDJU1TWE9drZks7e/wJlLa1lSMzbzY21zkreK1N45YT6//wKBQCBYPCxYI7X9+/fT09PD85///Mo2wzC48soreeCBB3jzm9/M448/juM4Y/ZZunQpmzdv5oEHHphQdFuWhWVZlX/ncrnZOxGBYAY4HSd2E53zpqW1WK5Pf8FiR3eOLasaMB2PPb0FunNmaCwV14np6rxFm0c4WZF7PKr1xLU9H9fz0SLquHRkOJqSXLTdiQ47Jfb25bn14UM81DFItuQQSKE52nNW1XPTc5aztjk5aXrpaFG+r7/AbY8cIqYr9GYt0iUbVZYggECSqImoZMsORzJlirZXcUAuOx6m65HwVdJFi4ARo7bghPtua56DoxztL/z7dZfwxNIzKu2/ti4948QOfAyGDD4Snh8QEKaQp2IauhIaoUmaRH1Mpy6uMViwUWSZdc0JXD/g/r0DdGdNVFkioil87d6OcQtLIrV39hhd4pMrO+zty8/L918gEAgEi4cFK7p7enoAaGlpGbO9paWFgwcPVvbRdZ26urpx+4y8vhr/8i//wsc//vEZHrFAMHvMp7CbLyY65/q4znnL69hxJEtfzmJnd45UNDTvWlIb4bz21LxHm0czUyK3GtV64uqKjKrIOK5PwXLHpCPD2JTkEabrE7C3L8/n79zDts5M6FKe1JEIHcbv2NlLX8Hi5uvWHXeRY0QYFm0XRZZoS8Vor4uRN136CxYdfQX6ChaZkoPrBTzBEFef0cxrtoSivjNdIqIqdGVKdA2VKTveCddxr0p38e57v0/cKfP6V476+yBJ/M0rP07OiM9I+6+wRlvCUGQMTSaqqSQMlbq4Tk1ExSf8HF+zoZkVDXHKjkd/3mJbZ4atnRl2HxzC9QKWpCKc0ZIkoimVhaXXXbKSqK6I6PYscmyJj+X4dKZLXLiyrrLwNZrZ/P4LBAKBYPGwYEX3CMcKjJGesJNxvH0++MEPjnFjz+VytLfPfKqgQDBTzKewmy8mO+f6uM6W1fXs7M5x40XtNMR1bnv4EHVxfUFEm0dTTeTOFNWdxWXiusLhTJmmhM6apviYeu/Rvazh+D4BxwryJTURbt/ew+6ePLoi0ZAwKsdvqZEZLNrs7s3z++09rL5q7CLHROL+2Gvo+gEHB0vYns+yVDR0ITddmpMRyqNC2G2pKKmoxt3P9lG0PU5EbzcV0tx8/628atsfUIPw2JccfIoHV5xd2WcmTNIUCRqTBq+4oI0r1jWF0WxJClPya8Ne2xOJ5Q2tcMmqBj77+12YjsfaprB128h1TxgqT3Zm+ORvdtCY0OestOJ0o1qJT2+uzM5ulycODXHRyvqqPhOz9f0XnJ7GogKBYHGyYP8KtLa2AmE0e8mSJZXtfX19leh3a2srtm0zNDQ0Jtrd19fHpZdeOuGxDcPAMIwJfy8QLDTmU9jNF8c7Z9PxqYsZbF5aS9F2sTyf2ATnP9fR5hGqidyZ5lhnccv1qIvruH5ATVRDU8I2XCPu4SOp2bIsHdcn4JoNzezqzo8R5I0JnWe6c2H99SjhB+ECRzKikjddnjqcHbPIMZm4X92YqFzDuK6wt69A2Xapj+sAFCyX9vo461ri7Osv8uPHOnnPdWfQnTfZ158nU3KmLbhrzAJvfvi/ecNjvyLqHi036o+lqDXzJ31fdBmW1OpsWd1EU43BhtYart/Yiq5XN/g83mJQd85koGCzviU57vswVLLpy5nkTZfW2gba6hKnvN/DXDNRucuS2igrGmJ0DBTZ21fgopX6pItcgpnjdDQWFQgEi5cpzdCfeuqpKR/w7LPPPv5OU2DVqlW0trZyxx13cN555wFg2zb33HMPn/nMZwC44IIL0DSNO+64gxtvvBGA7u5utm/fzmc/+9kZGYdAsBCYb2E3H0znnLsy5QUWbVaqitzZispUMy0r2x537KjuHj4Swf799l4GCxatNREs1ycIwt7Y65oTPNmZ4Yt37WFJbYSlqWhFkO/ozrGvv4AmS2iKPm4s2nD9eMlxK4scUzEBHLmGT3Vl6cubJAwV2/MpmC6SJFGyXR7eP0TZcdnbV+DJgxkGixYdA6VxY5gMw7H46yd+y9se+jEps1DZXtCjfP3il/PNi26gNEFGyWTENQlFkdFVhZgmc+7yOv7h6nWsb52Zyf9EmR9BELCvr4jr+cR0BV1VUGTplPZ7mA8mKneRpNA0MF20OThYYlldjOYao+r3XzBznI7GogKBYHEzpRnoueeeiyRJU0rt9jxvym9eKBTYu3dv5d/79+9n69at1NfXs3z5cm6++Wb++Z//mXXr1rFu3Tr++Z//mVgsxk033QRAbW0tf/u3f8u73/1uGhoaqK+v5z3veQ9nnXVWxc1cIDgVmI6wO1WYzjnP96LERH2sR4vc2Y7KVDPOWts8sYN1V6bMk51DDBVtDgyWcD0fVZGpi4Up6SXLpT9vcV57qrKQkYxorG1KsLu3QNHxsF2PiDb2z4gz7JQe01TiujouQgih2Znt+bQkDXpyFn94ppe3XLmG11+2kh88eIi9vQUkAlRFIRFRKVoeBcslEVGRJZXBQoldPTmK9tT/3gBcu/dhPvmHr7I0P1DZZikqPzz3RfzHpa8iHaud3kUfJqnLyIqM6XgkIxrP29RaqTufKSbK/MibLumSjaEp+AFjTPNmu7TidErtPV65y/kr6nji4BDpokXJdsd9/wUzx+loLHqqcjo9QwSCKYnu/fv3V35+8sknec973sN73/teLrnkEgAefPBB/v3f/33a0eXHHnuMq6++uvLvkTrr173uddxyyy28733vo1wu89a3vpWhoSG2bNnCH/7wh0qPboDPfe5zqKrKjTfeSLlc5tprr+WWW24RPboFpxxTEXanGlM954WwKDFZi6z5ispM5mC9syfH7t48miyTjGrDbucBfXmT3lwZ0/GQJanSbgzCBQyAhrjGoXSJdMFiSUoZk06bN0NTtLOXHc1CGIkQDpVs9vUVSZdsXN9HlcP68ycO+XRlyqxtTvKGy1fSnSsT0xRqYxrP9uQpmEdTzXuyJgTgBj7+NHPKLUWvCG4fiZ9vvprPXf5aDte2HOeVY1EkUBWJIICYrtAQ13H8gMa4ztuuWccN57bN+GdtooWlsJe3B4FES+1Y0zyYvdKK0y2193jlLlFNYdOSGl6zZTk1UU0IiFnkdDQWPRU53Z4hAsGURPeKFSsqP7/yla/ki1/8Ii960Ysq284++2za29v5yEc+wg033DDlN7/qqqsqk7hqSJLEP/3TP/FP//RPE+4TiUT40pe+xJe+9KUpv69AsFg5Xu/jU5GpnvNCWJSoJnIXYlTG9wMe25/G9QLqYgqGKg9v9zBtj6GSg+15RFSZnd15FDn8/d6+AkMlm6IVuoSnyy5eUKIxaQAS2ZKDHwSc057i+s2tyLJUiRCajszTXVnKtkcioqIpYUuzTMmmvxC60LfXx1hWF+PsthTbj2SpDWCo5JCIhCLTtF2KlouhymTLx49yR22Tsn60h/V9q87jvhXnYKo6/3rl63i2aeW0rpsmg+uHxmWpmEYyorGuOUFUV+jKlLl4Zf2sCG6YeGHJdn3Ktk8yqrGmKTFOhMxGacXpmNpbbdFjZJHJcr3K/b9wRf0p/TxeCJyOxqKnGqfjM0QgmPZf4aeffppVq1aN275q1Sp27NgxI4MSCAQTczr2353qOc/WosTJpMAtxKhMV6ZMf95iSW2EbNnBUBVMx6MnZ+J4AYYqYXlgaAq5ss1DHYNAGMlORDR0VQIC/AAKpovplNEUmYa4ziVrGsakVsd1FUORebYnT3m4x/bIdTBUhSAC/XmLxw8Ocd3GMBvheZta2N2bZ9vhLHnTIa5HsFyPdMlBkiRihkrWdJjIPW1jXwfvu+e7JKwyr3ztZ8a0+vrbV3wUS6tupKmEp4WqShCE/bMVSUJXFVQZSo6PH/ioikRj0mB9S5KoptCdNVlWF6ssNMwW1RaWdEVmTVOYtl8XGxuBnY3SioW4iDQXHLvoEdVkujJlBgo2BcslpoVRuo6BghALs8zpaCx6KnG6PkMEgmk/kTZu3MinPvUpvvWtbxGJhBEEy7L41Kc+xcaNG2d8gAKBQDAdZnpR4mRT4OYyKjPVxYERt/czWpM83ZVlsGhTslwc10dXFSzXQ5UkNEWmLqaFZmUSrGkM24+lix4NCYOIItMxWEJTYHldnM1ttbzyomVjrktbKkpT0uDh/Wmakvq4evui5bIkFaEvZ9KVKWO5oQFc0XbJlG2GijZFy6UurtOUNFDkYUHsjzstlmV6ePf//oCX7bgHeViRX7vvEe5au6Wyz7GCWwJiukwQBGiqgq7IrGuO01wTpWOgOGzkFqBKErYfsKYxzqqmBAN5i1zZwXL8Oc2mqGqa57h894GDc1JasRAXkeaKkUWPWx86xN3P9lF2POKGyqrGOEtrI3RnTb5z/wERpZtl5tvDQ3BynM7PEMHpzbRF93/+53/y0pe+lPb2ds455xwAtm3bhiRJ/OY3v5nxAQoEAsF8MRMpcHMVlZnO4sDImCKawrntKZ45kqM/byFJ4PoBEV0hYajEDZX+go3rB8gSFG0P2/WRJCk0NwtcGhNhe7K6uMbOnhxfvnsfb7t6DetbaoBwEeTCVfXc/kwPBdMDwrRcy/UxHZ9kRGV9S5Jc2WFnd457dveTLtosr4+xvjnBvXv6OZIxIQiIGwrdWY982WW05m4oZviHB/+L1z75O3T/6OLF4ZqmSa+ZLIGmSKiyRIDM8roYiYhK07Cb+wXLU7h+mEI8VLJpS0V5w+WrWN04vyUe1RaWZru0YmRBZ/uRLOlS+H2oxqme2ru6MUF9Qmd5Q4y2VBRDVUhGjqabiyjd7LMQPDwEJ44oDxCcrkx7lnfxxRezf/9+fvCDH7Br1y6CIOBVr3oVN910E/F4fDbGKBAIBHPOTKXAzVZUZnRUeyBv8T9PdzNUcqa0ODB6TOuaE2xYkmSwaJEwNFQJCrZHS02E1Y0xnu7KMVi0cb2Asu2xpDY8dsEKzc1KtsdA3sR2fVRZoqO/yCeLNh958aZKu6yNrTWsb0lyJFOmK1OmbLsEhE7bMV3BtF10ReaxA0NjrncQBLTURjiSMTk8VKYrY6LKEq7vEwAJq8TfPfJz3vjoz4k7ZuX80tEavnzJjfzgvBdhqePbmgHoikRNRMX1A6K6wpLaKM9Z1cDBdJEXn7WEPb2FSt9zQ1XYsqphjIBdaBGY2fR7GL2gky5Z7Osrki87bFpaQ318bObAqZ7a25Up09FfZE1TYtwimojSzR0LwcNDcGKI8gDB6coJfaJjsRhvetObZnosAoFAsGCYqRS42YjKjBZBZcfj4GAR1w+4eGX9mPZexy4OjJxX0XY5u72Wrkw4poShhvXVQUDR8YnpKmuaEtTHdc5rlxkq2QR+wAUr60gYKg91pElEVEzHpztrYns+0eHouK667Osr8OW79/L2a9eytjlJWyrK8voYu7pzaDKgqbi+j+cHHBgscnioxKWrG+kLyiQMhcGiTdF0eLYnT+dQCcv1cX0ICJAI8Hy4fvcD/PPt/0FDOVe5LiXN4JsX3sA3trycvDF2EXi4XBsIa7cNVUaWJRzHp9FQOXNpDeawwN64pIbrNrYsKG+AqTAbfg/HZnssqY2QL7scHi4FOG95XUV4nw6pvScbpRMtkmaO09FY9FRAlAcITldOSHR///vf52tf+xodHR08+OCDrFixgs997nOsXr2al73sZTM9RoFAIJhzZjIFbiajMseKoISnsrs3j+sFbO3MsK45ScwIa5OTEbWyOHD/vgGe6syOST9PRbWwlVfRBiBTcljREGNtc7LSoisZUYloCgSwpCZCuuTg+j6arHJkuLVYXUwjOTx5ihsqtusxWLTGiH2CMHW9aPv4foA3LLr9AGzggf2DJA2FZEQjZzqkiza2G8rk0YLZ9kJftIFEfUVwO7LCree+gK9e9mr6YnXDUXQJWQpFjqHJaIqC43oUHb9irOZ4ATE9vA91MZ09fYXKZG+heQPMBxNle2xaWovl+vQXLHZ059iyqgHTOT1Se08mSrcYPwMLndPRWHSxI8oDBKcr0xbdX/3qV/noRz/KzTffzKc+9Sk8L2zbUldXx+c//3khugUCwSnBdCfXx4tgzURUppoIGiiEtdiJiMKRTJmenEkqqqEqMnUxnZWNMQYKFrc9coggYEz6eXfWpC6m8YoLlvFC2+O3T3djOR6aEqZwj0yC1reEgmBvf5GEoSJLEpmyTc50iGgK9XGjIsgcz0dVwnTtkUwAgKGSTdxQGCqNEtMSqLKEKkPRcinbLrIE2bKL4wYVoR0EAbVmgWw0SQAEATy5dAO/W38pjqLyuSv+kgOppSgyFYO1hoTBhSvq2NqZIVOy8YOAQJJoSRoYmhIKft+nvT5OKqqxp68wa5O9YxdKolqE/rzFgx0D7O7N87ar11ZS8RcSE2V71Md1zltex44jWfpyYbu3uph+WqT2nmiUTrRIEgiOIsoDBKcj0xbdX/rSl/jGN77BDTfcwKc//enK9gsvvJD3vOc9Mzo4gUAgmC+mM7meagTrZKMy1USQrsh4fkBP1sILAnwPYrqCLMv0503SRQvXC1hWH+WcZamqtelPHc7ylivXsLopPuEkCOD323vZ25cHwqi4psiVKMXIdSmYLs01EZqSBgcHi5VMgK5MmYG8DUFoXqYMC1s/CLC9AALwA+jJWgTB0cj2+V07ef893yVhlXjJ33yeQBruKQ78w8vej6QqSEioBBjDEXnT9ZAlaEzoXLa2gUf2p8mWHerjOltWN2A5HtuP5HBcCV2VyZbdWZvsHbtQMlSy2dWdJ12ycTwvrIH/zQ4+8tKNFfO54x1vrtJpJ8v2CK9lPTu7c9x4UTubl9aeFqm9JxKlEy2SBILxiPIAwenGtEX3/v37Oe+888ZtNwyDYrE4I4MSCASC+Waqk+uOgcKcRbCqiaCEoeB5AabjkYwoWK6P5froaii+j2TKyLLEqobGcQsHedNFVyQe6hhkw5Ik65qTvPmK1XQPp80fOwkamSDt7M7xk8c62d6VxQ8C/CDA8XwKpktUV1jdGKM/b2I6PrmyQ1PSYKBgY7k+fhDKaW84yzvwA9xRVuT+sNpeO3CI9937PZ6/56HK716683/51aYrK//2ZAUlAKSAVFSnpcYIeyYPLwIcyZioisTqpgSW62OoMrnhvuQvO2cp57SnaEwaszrZG71QMlSy2dqZoWx7JCIqyYhKUXXZ11/gy3fv4+3XrJ30szLX6cnHy/YwHZ+6mMHmpbWnVYrvdKN0okWSQFAdUR4gOJ2YtuhetWoVW7duZcWKFWO2/+53v2PTpk0zNjCBQCCYb443uV7dmOCrf9o3ZxGsERFUtBxAwvZ8LMdDliGiyRQsD9cL6M2ZBIDnByiyhBIcFbMA6aLN3r4CPbky2ZITmrGli6xrTnJeex3Xb25hQ+v4qOvIBKm9PsbKxhif+NUOdvflyZsOmqLQUmPQlDTY11/k4GCJZETl1ocPEdFCsWu5PkeHEYw7PsCSXD//eN8PecX2P6KMasa9r76NbCQxbn8vAE2WSAwvONREdTa31ZAtOdx4UTuttRHiusqSmsiEiwmzychCSVSLsKs7T9n2qI8f7Vce1sD7DBasST8r85GeLAyPJmY6UTrRIkkgEAgE0xbd733ve3nb296GaZoEQcAjjzzCbbfdxr/8y7/wzW9+czbGKBAIBPPGZJPrznRpTiNYbakoqajGffsGkAmNyTw/IFd2SRoKBdOt1DyrihRGfAPIlh26MiXq4jrpYhhtzZZtipaL6/noikwQQGe6hOX4UxJxsiSxriXJgcESJdslbkgULZeerEnJ9ogboQgfOf9MyZlAZoekyjne+uBPeN0Tv8HwnMr2nkQ9n7/sJn5y9vPwZKXqaxVJQpZkmmsirGlKoCkSluazpikx5rrPR0RlZKGkP2+RLtkkImPFa1gDL0/6WZmv9GRheDQ5U43SiRZJAoFAIJj2E/71r389ruvyvve9j1KpxE033URbWxtf+MIXePWrXz0bYxQIBILjMpu1rhNNrmcqgjXVsXcMFOgrWJRtD0WCmpiG7fpYeZ+C5aIpMsvqouiqjCKF9cqWG/6uY6DIxtYke/sKlGwXzwvw/QBFkYkbKi1Jg6FhZ/KpRl0HCzab22roypTJlmz2DRRxPZ+ErlKy4clDGbwgwBkT4R7PC3fdx2d+90Vq7FJlW9aI89XnvJJbLngJphYZs78MyCOmaRIsq4ty+dpGaqKhoBntQj7fjESLH+wYwPE8kpGjf3bH18CXqn5W5jM9WRgenTwiY0AgEAgEJ7Ss+nd/93f83d/9HQMDA/i+T3Nz80yPSyAQCKbMfLXimYkI1lTHPhLt9PyAK9c30tFfIl2ycb0AXZEwnYCaiExtVKtM6oMgoGi5tNfHKFkujx4cYqBgoykyacfGD8J+1fUxHVmWSURUhkoOy+qix426HkqXcF2fobKD6/k4XiiuXS8g6zvD7x++xptMcQP769tI2KHLuanq3HLBS/nqlr8gG61+7zRFCtPpbQ8JieX1UeIRlYLlLrgI7Ei0eHdvno7+IkXVJW6oo2rgw57opuNP+FmZ7/RkYXh0csx0xoDo9S0QCASLj2mL7muuuYaf/exnpFIpGhsbK9tzuRw33HADf/zjH2d0gAKBQDAZ89mKZyoRrM1LawiCgF09uXET5OmMfXS0MxnRqI8b5E0X2/PpzpZ5ZH8a0/HJWy6JY0Td5rYauobK1EV1DqfL2LKH4/nURjUa4kbFfVxTZAqWiyJLlGx3wqjrk51D9OdNXC8gEVFxZYn+ghW6kBNGoCfS2VLg01xI05s8+vdjV/Mq/nvztbiyzBcuu4memsYJXh327FYVCS+ApKGRNBQ0ReHAQHHBRmDXNid529Vr+eRvdrCvv4DthinlI+nwdTFt0uj8fKcnC5F38sxUxoDo9S0QCASLk2n/hf7Tn/6Ebdvjtpumyf/+7//OyKAEAoFgKsx3K57jRbAUWWKwaPP5O/eMmyCvbkxMa+zHRjslSaqkU+uKTEd/gUzJoWyHglqVx9Y4NyYMXnXRMkzPIwhgX1+BZEQN22wNM/I6zw8mFHF50+HQYAnP92lIGAAM5MvYoyzIJxLclx3YyvvvuYW4bfL8v/3ymBrt977onaGd+XGIahJNCYO6uE5cV7lkTSMvOWcJZcdb0IJwfWuSj7x0I1++ex+DBYsltWFKuen4x+0RPp/pyULkzRwnmzEgen0LBALB4mXKovupp56q/Lxjxw56enoq//Y8j9tvv522traZHZ1AIBBMwkJoxTNRBGtpbYTevEV31qw6QX7B5tZpjX2yaGcyotIQN7BdnwuW1xHRFXRFrtQPj0RRL1hez2MHMjzdlaU5adBfsNBVGUmSKvXFTckwgn72slRVEVewXMpOWJssSRLZss1g0cZy/HH7jnBW9x7ed893ee7BrZVtr3zqDn507gtGn/Sk13kkwn3RynqaayLkTZeGhMH1m1tY0RCf9LULhfUtNbz9mrWVz8rBwdKUop3zZWgmRN7Mc6ItkuZ7gVEgEAgEJ8eURfe5556LJElIksQ111wz7vfRaJQvfelLMzo4gUBwejHdNNb5rnUd4dgIVlRT+PW2IxzJmhNOkO/a2UvZcVk6xbFPFu0EiBkqTckIRdulNqYR1ZVxNc6qKlfEW9EO08gHCxaGpmA5Pqoqo8oyDQmjIuKOvScxXSGqh/srkkNvzsLxqgvuleku3nPv93nJs/eN2b6jeRUH65ZM+fpKhHXcLTUR4oaK58PZy1ILLo18KpxotHOuDc2EyFtYLIQFRoFAIBCcOFMW3fv37ycIAlavXs0jjzxCU1NT5Xe6rtPc3IyiVG/nIhAIBMfjRNJY57vWdTSjI1id6RId/cVJJ8hdmTIETHnsx4t2Lq+Pcc2GZnZ15ycVZaPF25OdQxxKl8ibLjFdob0uyvnL6yr7V7snjQmDhuHWY11ZE8vx8I6p4W4qpLn5/lt51bY/oI7qtX2otoV/u+Kv+PXGKwgkeUrXNaKF7cAuWJHiTVesoSlpLOg08qlwotHOuTQ0EyJvYbFQFhgFAoFAcGJMeSa6YsUKAHx/4hRCgUAgOBFONI11obbiqTZBDoKgYnymSBIyEI+o7O7Ns7YpQc0xruPVxj6VaOfVZzQfV5SNFm9506FguSQiKklDq+xf7Z4ULZddPVkGChauH2A6HqYzth3Yi3f+L//2P58n6lqVbf2xFF+69FXcdu4LcJTxCwzVkKUwwp0wNJoTBm+6Yg3PXdd03NfNN7NtOnaign26CJG3sFhIC4wCgUAgmD7Tfjr/y7/8Cy0tLbzhDW8Ys/3b3/42/f39vP/975+xwQkEglOfk0ljna9a1+Nx7AQ5XbTY11cMW3z5PtawWF1WF2WwaFei4me0JoloyqRjX9ucZOUVcZ7oHGKwaNMQ1zm/vQ5VlSvXZCqibLL9qt2TwaLFjiM5erJlBksOjuvjD6ttGRhZjn2mZTWqHwqxgh7l6xe/nG9d+DKKxtSFYm0kdCQv2i4RTeZFZ7Vy2ZqJHc0XCqeS6ZgQeQuLhbrAKBAIBIKpMe2/ll/72te49dZbx20/88wzefWrXy1Et0Awi5yKrXtONo11rmtdp8LoCbLtemw7nKVseyQiKo4LvVkTHyhaLme1pejJlunOmvQXLNa3JMekeB9LNWH36P6hExZ21T5TI/ektSY0Vds/UGB7V46i7eB64PoBAaD4HsuyvRysW1o53oH6Nr5/3osB+I9LX0U6Vjut8cgS6KqM7fnoqowqSZy7vG5Bf859P+D+fQPc9sghipbL6sYES43FbTomRN7CYqEuMAoEAoFgakxbdPf09LBkyXgDnKamJrq7u2dkUAKBYDynUhRtNDORxjqXta5TYWSC3JUJ+2dbrkdT0sDxArpzJpIksao+iun4DJVsLl3TQN502dtfYE1Tgjc9d3Ulcj2aE03Dn2ixZm9fntuf7uGpwxnSZQddljhzaQ0XrmxgoGBxeKhIZ7pMf8HC9UGRhmu3g4Dn73mI9977PWK2yTVv+hqWqiMR/v4T171pStdp5HhBEP5/xBWkYIVR1BUNMWqjGo1J48RuxBwwcg3/Z3sP6aJFbVTDcQPWNMepjxuL1nRMiLyFx0JcYBQIBALB1Ji26G5vb+f+++9n1apVY7bff//9LF26dIJXCQSCk+FUbt0zU2msI+nSIwJzd1+emKYQwLz0cF7bnOSFZ7WytTODFwRkyg6BD7IksTRlEDc0VMUjXbQpWB61MZ31LUn68xbdOXNcVP9E0/CrLdasbozTVGPw26e62ddfoGS5OH5AEARsO5zll9uOULZ9bM8P08iHj+UFcHHndt5/zy1c0LWr8h5/+cRv+dbFf04AFeE9FWQpFNw+oMgQGe4Z3l4XY0NrklRMI1t2F2wK88j38vBQCcv1aKmJIEnQlzfJWw7ntqeojxuL1nRMiLyFx0JbYBQIBALB1Jj2TOaNb3wjN998M47jVFqH3XXXXbzvfe/j3e9+94wPUCA43TnVW/fMZBrraIE5ULAYyIftrJIxlaZ4hLPaannBWa1zJhaakgYrGqI0JSJ4QUDBctnelaksLmiKTMEKzdVg8qj+iaThV1usOZIp8cttR+jJlrFcHz8IUCSJiCbjBmDaHkXbG/f+G/r28757vss1HY+N2f740g1sXXpG5d/HCu7RIx35nQwkIwqBD4EEfhDQVhul7Po0JQ0uW9OAJEmV/uKzmcJ8oiUbo7+XbakoXUNldFVGliT0uEy6aLOvv0hdTF/UpmNC5C085spMTyAQCAQzx7RF9/ve9z7S6TRvfetbsW0bgEgkwvvf/34++MEPzvgABYLTnVO9dc9U01ghbMVVbeJ/bE1tfVznSKbMQMHC8QKUvER/1Gb/YJFdvXluvm7dnAjvuK4S1VRURaIuoqMrMpqi4Hg+hhr+X5VldCVMJZ8sqp83HdIlG12VCQJIRsYuUBwr7I5drIHw+j19JEfJcjGHW32NZLEXbR+JgGP7UyzL9PCu+37IDc/8CXmUpN7dsJx/u/Kv+cPaLSBNLMBGot+aIqEqMpHhem3XD3/TVhvB8QKylksqqrGhNUlxjlKYT6ZkY/T3MghAVWQcL8BQJSRJIhFRSRdt8qaLJDHvpmMn4wchRJ5AIBAIBCfHtGcAkiTxmc98ho985CPs3LmTaDTKunXrMIyFW3MnECxmTofWPcdLYwX46p/2VRVHwNia2ojK7p48OdNFV2XihoztBTi+j+ZJbOvMcNvDh/jQizfNerTu2Ch+MqJSH9Ppy5toMYmC6dJcEyEZUSeN6u/ty/OLJ4+wr6/AgYECES08zkjdMIwX7KNF4VDJZm9vgT39BcqOhxQEuMPqWlFkXM9nONg+JlL90h338O+//Ry6f/Sz1ZVs4vOX38R/b74GX1aohkQo5l3/qOhORlXOb6+jMaEzWLTpTJfIlByWpiKoioLl+hiqTLbsYDr+rKcwn2zJxujvpSxBXUynP2+ix3UkSUJTZIqWi+V6DJWceTUdO1X9IAQCgUAgWCyc8LJ7IpHgoosumsmxCASCKpwurXsmSmPtGChMKI529uSAMAo8UlPreD6DRZsAiOsKmiIjSQGOG5BMqGTKLg92pOkcKrGiIX7S454sglgtir+yMcZg0eLQUJlUTGdFQ4yC5U4Y2R0Rh4MFi+akQabkYKjSmLrhupg+TrCPiELTkXm6K0uu7OD5AQldxXL9Skzb84NK669jU8MfW7aJYDiKPRRJ8h+X3MgPzn8xlqqP2U+RwnpvAEORaK2NkDBUenMWluvh+T4ly2Vff4H9gxKKJOEHcPn6Jl5/2UqShsaSmgjdw4tHs53CPJIFMFiwaa0xwusRuCQjKuuaE1Mq2Tj2e7m2OUHBckkXbRIRFT8Ir2tXpsyyuti8mY6dyn4QAoFAIBAsFqY0S3/5y1/OLbfcQk1NDS9/+csn3fdnP/vZjAxMIBCEnE6te45NY52snj2uK/x+Ry8EcMGKVKWm1nQ8giBAkiXKjo+qyCgSOEEoM2tjGoMFi/0DxZMW3VOJIK5uTPDCza3cuaOPrqEyigzt9TGaHR9Dk8mVHawJIrujz399S5KmZIStnRmKlkvcUCmYDju6czQlIjQkxgr2uK5iKDLP9uQp2x7JiEbOdFFkMFS5IpRdP7QO11yH1enD7Go+apLZXdPEV5/zFyi+z9e3vJy8MfZ6ScP/jRiixY1wkaMupmNoCoosc3ioRNnx8IOwdjuha2RLDn4QULY9dEWu3PO5SmHuypR5snOIoaLNgcEirh+m+Y9kD0ylZOPY72V9XOfc9hR7+woMFS0yZYeGuM7FKxvmLaJ8qvtBCAQCgUCwWJiS6K6tra38sa6tnV7PVYFAcHLMduuehdz7e7J69oLl4Q2HaB0vqNTUQlgGo0gSru+H+0hHt/lT9taenKlEEIGKKC87HkjQXBPh2o0tXLKq4biR3WPPf4ywK9l4AfTlLC5YUceNF7aPEXZtqShNSYOH96dpSupISMjDEWY/OHoNAt/nZTvu4d3/+wOijsmVb/oGReOo0PzC5a+tesU0CXRNRpFlgiDA8XwkWSKmq+jDheIRTUZTZBRJIiDAdn1s16etLsrqxjiDRXteRN/O7hy7e/JoikQyqqEpKo7nV7IHzmqrxXK9SUs2qn0va6IqG1oTdAxIrG5OcNPFy7l0TeO8fZ9OdT8IgUAgEAgWC1MS3d/5zneq/iwQCOaG2Wrds9BrPSerZx9x/JYI0FW5UlMb0xUUWcLzg2GR6eN6YeRXUyT68japqMbqxhOPck8lgnjbw4coD/fhXlIbYemwKO/Omty+vYcltZHjXuNq518f17loZR1506XsuPTmTG44r23csWRZ4sJV9dz+TA8F0yMRUYgMR9ZNx0MGrup4lPf86bts7D9Qed3fPvZLvnjZayr/PlZwR1SZ+riOpkhENAVVlhgoWGTKoaCOJY6KO9v1cTwPVZExJNi0tIZlqRg1UQ1JktBVec5Fn+8HPHZgCNcPqI/rGGpYl26oSsV1/NnePMvrYsct2Zjoe7llVcOCaKl1OvhBCAQCgUCwGFjcRaACwWnETLfuWQy1npPVs484fgdIGKpSqakt2mHqdaZk4/sBpiMR0RUSEYV00cYPYMvqBpbVnbjIO14EsbXG4MGOMMJ8zrLUCaf1TnT+kiQNC1eoixkkjfG1/gAbW2tY35JkqGhTtD0UScLxAs7t2sUH7vkuFxx8esz+9648j7vWXERMk1FkiZLtVWq1AWoMhSs3NJOK6uztK9CTK9OdsSg5YYsx3w84kC5TU3JorY1SsBzyVpjuHzdUDqfLlCy/YgA3H6KvK1OmP2+ypDZCtuygq3Ll/kiSRNxQ6M6YXLCibkolGwu5pdbp4gchEAgEAsFCZ0p/ac8777xxE8uJeOKJJ05qQAKBYGJmqnXPYqn1nKyePWGEEW2C8GdZliup174fkDedSiuniBqmniuyzDlLk9y0ZflJndfxIoiuH5At25zRkjiptN6TredvS0U5r72Op7synFUTQd/9LJf//P9xxY4Hxuy3Z8VGvvuSN/Hz+g2UHQ8tCNBlmYaEjudDyXaJagovOLOFpprwvdY0xenOlrE8n5iu0Fpj0JuzKNk+mbJLwcoTAJ4XENUVlqWiaKo8xgBOU+RZE30TlU0UbRfL8zmjtYanu7IV4zNNkXE8n4LpoSoSF66sX/QttU4nPwiBQCAQCBYyU5rp3HDDDZWfTdPkK1/5Cps2beKSSy4B4KGHHuKZZ57hrW9966wMUiAQzCyLpdbzePXs61vCSPze/uKYmlpdDUVQc9IgZzqUnVAYnt2WmpHU+eNFEPOmCwFVfweTp/UeKxafd2bzCdfzj75+7X/4Fa//6keQg6OduDub2rnrtW8n/YKX0iDLvDRX5r49AwDDixTQmDDY2JrA8gKGyi4R3SGiyezozjJQsNAVmRUNcWK6SkRTGSxYpIs2phsgAboa1nNnyw71cYP6uE66aLO3r0BtVOfsZTMv+iYrmxi5dxFNHlMfX7BcVFkmFdeoi+lsbK2Z0THNB7PtByEQCAQCgWBqTEl0f+xjH6v8/MY3vpF3vOMdfPKTnxy3T2dn58yOTiAQzAqLqdZzKj28J6qpXd04O2m/x4sgDpVsUjEtjMRXYSStN6YpdKZLlfGVHZc7nukbJxav2dDMru78CdXzj1y/e4Jrsb79z0TNIgM1Dfziz95I5w2vJlUTY2SUMV3lopX1vOridkwnFOerGuO018XoGChUrvNQyaI7a6IpMi01BrHhSHVUV6lPhIsOlucR0WSWpaIMFh2GSuHix5LaCLoqc3CwxEWrIjMu+o5XNvG6S1ZW7t265kSlPt72fDRZoidncvay1CkT/Z0tPwiBQCAQCARTRwqCYFpWvrW1tTz22GOsW7duzPY9e/Zw4YUXks1mZ3SAc0Eul6O2tpZsNktNzeKPbggEx6MzXeJzd+wmFdMmiNQ6ZEoO//i89QsmbXYyl/X5cGA/VtyNjiDWxTQimkJ31hyTvg+hKB+JOtbHdDoGipiuh+369OctaiIa61oSxHS1YrxWH9d53SUrierK1M6xVIJt22A4G2nkGmX/+bM8vruH/7rkBjasbkGW5XHjOqutlrdcuabqsUeu8/YjWb59337SBYv6hIE8fH5BEHAkY5It25Qdj5iusqIhhoTEYMEiZzpoqkxDXEeWJN59/Rk8f1PrDN2RcHxf/dO+iqCudt3Paqvluk3NfPeBg1XvXX1cXxB+BjPNQu5SIBAIBALBYmWqOnLahXTRaJT77rtvnOi+7777iEQi0x+pQCCYcxZjredkdbPzUVM7lQj8d+4/UDWtV5El+vJhtHhJbYSoFuGhjkF6ciaeHwyndktjauzv3Nk7oRiu4DjwrW/BJz4RCu+ODqivB8JrVPfh97OyL0/z/QcqKfnTTVcfuc4jaeKO51ccwG3Xp+x4qLKMJIWRckWSMDSFtrootaZG2fFY15zAUJUZT+GeatnES89ZetpFfxdq3blAIBAIBKcD0xbdN998M3//93/P448/znOe8xwgrOn+9re/zUc/+tEZH6BAIJh5RK3nzHA85+pqwm7z0loGCxbduaNR8FzZoWh7tNYYFC2Pff0F6mJ1SJI0tRr7IICf/AQ+/GHYs+fo9n/5F/jXfx035pMVnG2pKGe11bK/v0i+7KAnQgdwLwjwfB+QUGUJRabSs1uSJOIRFdvzyZkul66Z+RTu6ZRNbGitWbCu4wKBQCAQCE4tpi26P/CBD7B69Wq+8IUvcOuttwKwceNGbrnlFm688cYZH6BAIJgdRK3nzDBZBLGaKPeDgC/cuWdMNNb2fFzfJ6nqSJJEumiTN11qomHq/6Q19nfeCR/4ADz++Njtf/7n8IY3THlc0xGcsizxgs2t7OrJs60zQ2/OpDam4bg+jhcgSwHNybB2e7Q7eNFyKdkeDQljVhZ1ptsiS0R/BQKBQCAQzAUn1KflxhtvFAJbIDgFWMg9hk8VRgs73w+4d08/fQWThKESBAGSJKErMqoctqzSFJmCFRp7jVC1n/Ljj4di+847x77hlVfCpz8Nw5lIUxnXibC2OcnN163j1ocP8VDHIIMFu9KPO6opPHddA5Iksa+vSLpkUzAdSrbP2uYEb7t6zaws6izGsgmBQCAQCASnPickujOZDD/96U/p6OjgPe95D/X19TzxxBO0tLTQ1tY202MUCASziIj2Tc50DKgm23ekjdVTXRn29xXpzpg0JyOsbU5QF9Ooj+n05U3ihooqy+hKmJZdVSz+13/Bq1899s3POSdMJ3/BC0Cam0WTtc1JPvziTRweKtExUATCt/799l4Gh03Kzl2eoj9v0Z0t05AweNtVayut3mYaUTYhEAgEAoFgITJt0f3UU09x3XXXUVtby4EDB3jjG99IfX09P//5zzl48CDf+973ZmOcAoFgAoQr8ewxWb/nYyO1e/vy3L69h6e7spRsl5iuhqn6m1rpzZvc9sghipbL6oYE2XqHnmyZvrxJwXI5tz3FmuY4OdOmJ2eyrC5KVJfJm051sfjCF0JDAwwOwqpV8KlPhSJ8lBv5XCHLEssb4ixviFe2taWiletmuWHZwqVrGuekbEGUTQgEAoFAIFhoTLtl2HXXXcf555/PZz/7WZLJJNu2bWP16tU88MAD3HTTTRw4cGCWhjp7iJZhgsXKdEShYHqM7/esUrRcOgYKxA2V11y8nMvWNCLLEnv78nz+zj0825OjaHl4vo8iy2iKhKHKeAEULZfaqEZD3KAxqbN/oEjJcnF9aK2NsGlJkr39RXJlh6akgaGG0e52xeGKzH5aXvHSsQsq3/pW6FD+5jeDrs/vxarCfC8Gzff7CwQCgUAgOPWZtZZhjz76KF/72tfGbW9ra6Onp2e6hxMIBCfIeFEYpWS7bD+S5Ui2fEr2Gp4LfD+gc6jEDx46yOGhEisbYliuz1CpRE/WJF20yZYdDgyUeNHmVq7b2MK37t/PfXsGKNku4TqmRECA54MiQURTWFYfJaIq9OVN8pbDqsY4A3mb3rzJ4aESqajGJasbuG5jC1Fd4dmDffAfX+GSH38dzTb5UPkXxFe0c92mZi5d04j8t3876TnMt+A8tmzB9wM606U5G5MomxAIBAKBQLBQmLbojkQi5HK5cdufffZZmpqaZmRQAoFgcnw/4Pfbe0kX7UrbKWBMX+c/PNPL6saEiO5NgRGRurM7x2MHhjgwUGDr4QyOF/DMkRyaIlG2PWRJornGoLkmQtFyuWdPP799upv9AwVMN0waUiRQ5QDHgwBwAyjYHt2ZMsmITl1co2x7DBRsLlhRR7bssH+wyGu2LOeKdU3IgU/vf3ydCz/1CVIDRxcyL//RV/nnl7yde3b3cfWGZm7asrzqosrunjw/fbyTff0FvADqohprm5Pzmv0gMjIEAoFAIBCczkxbdL/sZS/jE5/4BD/+8Y+BsPfqoUOH+MAHPsArXvGKGR+gQCAYT1emzL7+wpi2UyNMqa+zoMKISH3qcJZD6RIQENEUipaLIkl4vkTJDpAl0GRIF22akwaO5zNUtBgoOBXBDeAF4Hnj3ycg7CNtez71cY100aZguaiKRFPCYE1jHPnXvyL4P/+Hlh07Kq/zJYm7zr+O317/l7TXRRnIW9y3ZwDT8XnD5WOzGe7a2csX79pDf95CVyUMVSFfdhgo2vOW/SAyMgQCgUAgEJzuTFt0/9u//RsvetGLaG5uplwuc+WVV9LT08Mll1zC//2//3c2xigQCI6haLuYrkdMr976aNK+zoIKo0VqyXJxfJ9kRKM/b2G5PrURDUWRSBcdNEUirivYXsBAwcb1AyRdQRuVSSARiutqOF5AXJcxXZ+86RLVFCzXY6jk8LyBZ2l64Vvg0YcZvYTyxFmX8tXnvYHsuo1IkoQCpOI6ZdujK1Mak82wuzfHF+/aQ0/OpLXGQFcVHM8nW3aw3HAVYK6zH0RGhkAgEAgEAsEJiO6amhruu+8+/vjHP/LEE0/g+z7nn38+11133WyMTyAQVCGuq0RUhZLtkoxo435fta+zYAyjRWp9TMNyPVRVpWx7lG0PSYKc5SIP12Z7foAfuKgSmI5HVFNIRTUyJbtyTGn4P7/K+ymyhOn6KLJE0XJRJYmuTJkrtt7Ny7/0wTH7PrNiE3f+9T/yu/r1RDQFY1Q2g6bIFAOXVFRjW2eGe/f0s7oxzk8ePUx/3mJJTQRDUwAwVAU9LpMu2pRsl909OR47mKYmqs1JXbXIyBAIBAKBQCCYpuh2XZdIJMLWrVu55ppruOaaa2ZrXAKBYBLaUlHWNCXYfiRLwlDHCJqqfZ0FY/D9gJ8+1lURqV4Q4AcQVWU8P8ALgACCUXHr8AoH2MO12nEDAqRw32EmawXRnDSwXZ+S7VF2PBriBqub4ty15iJemmygOT/I3sblfP6a1/GHNVtIGToRqaPG1QAAZBtJREFU2yUZGfuYdjwf1w84mC7Rn7f41n0dxHSVPb0FADR1bNswSZJIRFQGCjbpok3+nn3oqoIfBCypjXDtxpaKC/tMIzIyBAKBQCAQCKYpulVVZcWKFXjVChYFAsGcIcsS129u4Ui2zJ6+MJIY1RXKtle9r7NgDCMRWF2VQ5Hq+siSRNF2KVpeVfEcEIp1VZHxgwDPDzAdlyAIa70d/+h+x6JIIANtTp4Vzz7J3Zsu59UXLeeZriG2DTp8+nlvojaw+cP5z8MKZALTYaBgE9cV6mN6JXIdBAHpgo3l+fh+WHu+qiFB3nTImQ6OF6au10bHZj+4XsBgwSKqK2iKzFDRpr9gsa0zwz3P9nP1Gc3c9Jzqxmwnw6mUkbEQHOEFAoFAIBAsTqY90/nwhz/MBz/4QX7wgx9QX18/G2MSCARTYG1zktdftrLiCt2bMzFUhbPaann+mcIVejKKtosX+BiqjO36EAQEgU+u7I4TzaPrtB0fHN9HlcO+267noykyqViE/ryF41WPdUfNEi/55a288ZGfo7sON73r2zx8oJYH9qXxfJ/7zrsKJAkJCV2RSEVUBosORdsLo/GpCK4XkC5aFGyPiCqjyBItNRFSMQ1FlmiIafTmbfpyJklDQZbDiHcQBAwULFwvoDGuc3iojOl4JCMqdTGN/rzNffsGMF2PN1y+akY/N6dKRoZwXxcIBAKBQHAyTFt0f/GLX2Tv3r0sXbqUFStWEI/Hx/z+iSeemLHBCQSCyVndmOCl58h0DBQBWNUYp70uJiJwxyGuq9RFdfpyFp3pEhJQGBXhHi20q8lodziq7fk+NVEZAliWMjg0ZFZ+B6B5Dn+17Xb+4f4fUV/KVra/4U+38s2VH6LseMgSZE0XCQlJAlWWieoKyahKwXSxXJ8DAyW8IIAgwHT9UDT70JjQkSSJZESlIREhb7kUbY++vEVdXEdTZAqmy1DJIWmoGKpCwXKpj+sVAVwX1zBtj8NDZX7y2GFedu5SkhFtRiK5p0JGhnBfFwgEAoFAcLKcUMuwYw1xBALB3LNQom+LMe22LRUlFT3qUg4Bvn9UXk9Wmz0aL4BMySUnuUjD/1Zl0KSAF22/h5vv/T7tmd7K/q4k85PzXsBXLruJdG+eIAA/AI8ATQaQsF0Pz/cxNBlNkblsbSM7e3JkSjaqrOD4DglDQVdk9g8UqY1q1McN1jTHyZo2tmsR11VKtoftOhQtl4gqc1Z7Ld0Zk0RkbMRZU2TSjs1A3uJ/Brp5tjdPfUyfsc/SYs7IEO7rAoFAIBAIZoJpi+5/+qd/moVhCASC6bBQom8LRfhPl739eZ7qylK0PPzAx/PBnarSPoYAjpqpBQFXdzzOu//0PTb0dozZ7zcbnsu/PfcvOVDfFm6w/crrXR9cP0CWwn7grhvgeD5RXSWqy6xujNNa08BQ2WH74SzJiIquhq7k+/qL1MV06uMGZ7QkCQJYlori+D6yJNNSY9CXN0kaGp1+CU0Z+9jPl11yZRcCUGRorYkQ05UZ/SytbU6y+qrEolucEe7rAoFAIBAIZoIpi+5SqcR73/tefvGLX+A4Dtdddx1f/OIXaWxsnM3xCQSCY1go0beFIvyPZXTkPaopSEDJ8YjrKktqIjy4f5Bv3ddB51CJ1lqDoaJNpjwz7tkvfPZ+vvrLT4/Zdu/K8/jsla9je+va474+CI6KeC+AtriOaXssTUVJRjRqohp9OYv+vEm9qpOIqKEjuRm6nJcdnxeftZSXnLOE8qhz/tq9HTxyYBBFknA8H0NVhq+VT1/BRJYgFVOxPYhqyqx8lmRZWnTCVLivCwQCgUAgmAmmLLo/9rGPccstt/Da176WSCTCbbfdxt///d/zk5/8ZDbHJxAIjmEhRN9mW/ifaMr6SOR9b1+ew5kSgwUHRZJoTRkYqoJpe3TnTDIlm6LlMpC3q/bUPlHuXLeFg6lWVmR62Na6js9c+ToeWHnulF8/IrglQJagJaljeQGxYXdvSZJY25ygYLmkizYxQ8XxPIZKdthvPK5z/eYWVjSM9dq4fnMLXZky3RmToaJNU9LA9QOGig6+D601BiXbp7kmUmlRJiK5p5b7ukAgEAgEgvljyjOFn/3sZ3zrW9/i1a9+NQB/+Zd/yWWXXYbneSiKMmsDFAgEY1kI0bfZFP6jhfNQ2UaRZNY0JfiLC9tY31Iz6eu+c/8BDg2WGCiYHB4qY3k++AFHMkWiuorjB7hegAyYJ5pPPsySXD+XHdzGT8+6rrLNUTT+6bo3E3Us/ueMy2Ca/hcje0d1mZqIhqGp+EEwRvTVx3XObU+xt69AX97EdHzKjsc5y1IT1kivbU7yhstXEtFk7t7Vx+GhMnFDpTaq4ng+jucTM1TWNMXH3M/TPZJ7qrivC0IWo/+EQCAQCE4Npiy6Ozs7ee5zn1v598UXX4yqqhw5coT29vZZGZxAIBjPQoi+zZbwHy2cS7ZLwQrdu3d253h4/yDvuHYd125sGfc63w+4fXsPz/bk6M2a9A637xqR1bYfUHSc6Z5mVWrLed760E/4m8d/jep7bF2ynr2Nyyu/v3vNRSd03KShoMoSrhdQE1VZVh9DAiKqzL7+Ame31VbagNXHdS5ckeKpriyrGxO8/rKVLDuOa/3a5iQffvEmrtnQzJ07+vj/7d13nFx1vf/x1ylTd7Zm+6b3kAQIBCEESKQqHaQLBCvolWKh+NMrioqGe0FUFMGLgAUFGxcRBOTSQqgJARIC6X2T3WTr9Dlzzu+PyU6yqZtkN7ubvJ+PR5Q558w535mdk+xnPp/v51vfmiDl5DqblxT4OaSmiLKCQKfnHOyZ3AOh+7rk9Nf+EyIicmDo8m9S2WwWv9/f+cm2jeMcnBkQkd7SF7JvPRH4O47LY2+tYeG6NqIph6zrUhjyUxQyyDgu9W1Jfvb8YgaVhhld3fmX5NlLN/Lku2tZ3Zwkkcni7lsSe4eCmSSfffsJrnnjrxSlYvnt185+lOvPvnGfz++zTEzTIONmsS2Tpmia9pRDVVGQ1kSG+tYkE2qLqCkJ5YO+gaVhPn3MYAZvU06+M6ZpcNyoCo4dUc7algTtqQyPz13LqqYEpeHOf78rk5vTn7uvS05f7T8hIiIHjy7/Rux5HldddRWBwJZMSDKZ5Jprrum0Vvff/va37h2hiHTSF7Jv3R34L2lo57G3VvP0/PW0JzM4rkdx0MZnOWRtE8swqCr009CW5MHZy7jimKH5taSXbYxy30tLWb4pTtrxurzcV1fZWYeL3n+O61/9I1XRpvz2lOXjoSPP4pfHXLjP1zABJ5vFyxoEfSbtSYd4OkvQZ5JMO4T9FrFUlndWtbAxmqY8EtinoG/rpmb+o0wefHWFMrm70F+7r0vfaTwpIiIHty4H3TNmzNhu2+WXX96tgxGRrunt7Ft3Bv4dWaiVm2K4Xm7JLNs0aYpn2BjLELBz61VbZi6D/sKHjdS3pigL+xlSFuaVxQ28v7aNVLabw23P4/SPXuUbL/+W4c3r8puzhslfJpzE3cddRn1RRbdcKuAziQR82LZJW8IhkXEo8FvUloSxLYNo0iESsAgHbIZXFPCZqcMYtJty8q7q7c9Sf9Efu69L32g8KSIi0uWg+8EHH+zJcYjIHurt7Ft3BGtbZ6FGVkRY25ygNevhui6um2vj7XkenpulOZErGw/YFlWFAZpiaX79yjKi6WyPvL5TF7/OL7dZ/uuZUcdwxwkzWFrefX0s/JZBbXGQgG3RmsyQcrKUhv1UFgYIbS7P9xfk1uQO+j1a4xlMw+jWn3Nvf5ZEekpfaDwpIiJycHbHETlA9Gb2zXU9ArbFx8dWcNSwUiJBm8KAb4+CtTXNcd5b20LYZ4EBJWEfa1sSGAb4bBPP80hnXZIZD2fz2l5tyQxvLt9EQ3uKWLo7F/zq7N8jP8aH5UMYu3ElbwyawMxpM5hbN65bzm1u/n/bMvjS9BF86oiBrGtN8JNnF2EA1cVBLNPMH28YBpGgTXvSoSWR6ZEAQZlcORD1hcaTIiIi+ldGRPbYrjoBdzXgXtLQzu9fW8X8Na0E/SY+y8ovmZV1PWzTw/W8TvO0TXLB/opNiW6duz20aS3Tl83hocln57e5psV3T7maYCbFi8Mn7/HyXzsTsHJZats0OXlcJdefNBrTNIhnsoQCFgUBG8cFy+z8PJ9lknbSmAYKEES6qC80nhQREdFvbiKyR7raCXjbNXFrioLUby7j3Nie4qn361nbkiDot3K/DAMb2pL5YDqedrcLrF3o1s7kFdEmrn/1j1z83rP43Cxz6sbxfs2o/P7XBx/afRfbLJP1CJgGtSVBzjysNv8lRYHfpjTkpz3h0JrI4C/wdwoQ0k6WtOMxojKiAEGki/pC40kREREF3SIHoG0D3n2Zn7v1uUI+i3/NX7/bTsCu5/HcgoZ8JjztuKQyLgFfrinayk0xHNfjqCGlpB2PtS1x2hNpWhNZeq5gfIvCVIyr3/grn337fwlnUvnt17zxF/7j3G/26LU9wABMw+CJeevyS6DVlYQYWVnIxmialOPSFEsTCdqbM9wu69tS1BQFueCIQQoQuqg77wPpv9QsUEREepuCbpEDzK5Kv/f0l8ttz5XNeqxujjO2unCnnYDnrmrmow3tpB2X6qIATszjg4bc2tsDCvyMrS4k5bg4WY+3VzZTGLRpaE+RzPR8uB1w0lwx90n+47U/U5psz2+P+kP8+qjz+J+jzu32a3a8Sz4LPC9XpZ5yXFY1xdgUS9MUS/OfZ41jdFVRPiMHEE87tKcc0k5m83sZ5NqTRm23RrnsWHfeB9L/qVmgiIj0JgXdIn3MvmTnulr6vbfnWtMcZ1MszUcb2ikI2JQVBDo9J+izWNUUpyLipyISZM7KZlY3J0g7Ln7LYF1LIr8Ot2VAY5tDJuuS6e7Ftbdhulk+Nf//uGHWI9S1N+a3p02bP0z6JPdMuZhNBSXdek2DXGfydNbDNg1MAzKuh2UY2GYu0w0eSxuj/OKFpVx74shOGbklDe20JNKYhsnIygifOrKO0VVF3TrGA1V33gdy4FCzQBER6S0KukX6kH3Jzm29/NauSr+Hl0d2G8Tv7FylYT+lIR+xpMPSxhil4c7zjhvbU7QlMriux4J17aScLE42t/Z2MuOR9aA91TNLfO3KCcvn8l9P/3TL68Pg8fHTueu4T7OmpLpHrhn2m6QcD8PINUXLbF5H3DRyJea2ZeJkXUI+i03RVP5ns3VGrj2ZIZpyiARtQj4b1/WUmduN7rwP9uba/TGT2l/HLSIi0l8o6BbpI/Y1O7e2JcHSxlyjoJ2Vfi9piLK2JbHbbM/OzlUYtCktCLCuJcGmaIr2pENRKLcMj+flsraJtEMykyXregRsk0zWoRfi7E5eHD6Zd2rGMKn+I/5v+GTumDaDDyuH9dj1LCPXgd00cl84uF4u0DaBdDYXiCcyWTzPI+S3t/vZmKZBysnywoeNKo/eQ915H+yJ/lrO3l/HLSIi0p8o6BbpA7ojOxdLOySdLGH/jjtbh/wWGzZ3D9+dXZ2ruihIQ3ty83zkFOFArhPwupYkiXQWDJNkxsHzPFwXnB4uHd/WmMYVnLboNX429dItGw2DW0+5mqCT5s1BE3rs2iZQWejnkNpiPqhvozmWBnJBt+vluq9bBvhMA891cVxIZVxs0yCedvI/G5VH773uvA+6qr/+vPrruEVERPobBd0ifUB3ZOcK/DZB2yKedigM+rbbn0hnCdhWl9Z43tG5mmJpljREaY6nSaZzHck/qG+jOZ6hPBJg8IAQrYkU9a25tbUtkx6fq721ga0b+Oorv+e8BS9i4vHmoPGdlvx6r2Z0t1/TMnLrZxubFzfz2xZf+vhIrjhmKLOWNHL3c4tZvjFKe3JLgOeRKzX3gIBtEvJbLGqIMrg0TIHf7tIXMM/MX4//MJN4Jqty4G10533QFb1Zzr4v+uu4RURE+iMF3SJ9QHdk5+pKQoyoiDB/XWtu3eutgnfP86hvTTKxrrhLazxve67meIZ5q1tIpB0iAZuMz6S6OEIkaFMQsDnviDpKwz5e/LAR2zDAAGd/rP0FlMVb+crsR/n0vKcIZLe8P595+4keWWe707XDPvw+E59pUhj0UVUc4MSxuTV/TxhdSXVRiFufmM+clc2Yrofn5TqYe+Tmdvstk7DfpL4lyZFDSqkrCe32C5iQz+Sf76/nvbWtWKahcuBtdOd90BW9Vc6+r/rruEVERPojBd0ifUB3ZOdM08gvObW4IffLdMifK/2ub01SVuDn1PFVXcpabX2uRRvaaWxPEU85RIIW0ZRDOGBzSG0RpWE/ixuivL+mlSOGlBBPO2S9XNa3p5Pc4XSCz7/1OF94828UphP57S3BCL845iJ+e8QZPXp9EzAtE79lURL2URDwccTgsk7B3MjKCFVFQfy2SRBIZlxcPHy2SYHPJONCY3uagoDF5KFlmKaxyy9gmmJpPtoQpSmWYkxVhLrSsMqBt9Gd90FX9EY5e3for+MWERHpjxR0i/QB3ZWd23rJqaWNUTa0JQnYFhPrijl1/K4zodt2MB5eHuEzU4fy2FtrWLCuDcuElGNSWRRkREVBfrmwjozYuNpCPKA95eD1YMTty2a4dN6/uHb2o1TEW/LbE3aA30w+m/uO/hRtwUjPDWArZWEfhmGwrjVJYTDLmOrCTsHc2pYEiUyWqsIAAZ9FJuvRnsyQybpkvS1reA8uK2BcdW45sJ19AeN5HksaokSTDsUhHyVhP5ZpqBx4B/blPthT+7ucvbv013GLiIj0R/rXVKQP6M7s3NZLTnV1CaBddTA+d1ItixraqS4KEvJZFAY7fynQkRHzvFxZaken7p4yec0H3Pbv+/KPHcPk0cNO5afHXkpD4YAevPL22pK5gGV4eQG2ZfLR+nY+PqYy/17H0g6mYVBRGGRjNEVZgZ/SsI+04+YrAhraU4yuKsx/obKzL2Dakw7NsRQGHgMiAQqDW/76Vjnw9vbmPtgb+7ucvbv013GLiIj0Rwq6RfqI7szOmabR5cBrdx2MPzGhmrKwn7Df2k1GzCJom9imQTrbc2H3a4MP5dUhhzJ15Xs8OfZ47jz+cpaX1fXY9XbGtgwOHVhMdVGIwqBNNOVsF/QW+G1CPotQSZBY2qEpliYStPHZJmRdmmNpwj6Lk8ZtCdR39gVMczxNcyJDecTPiIqC7ebhqhx4e3tyH+zLNfZnOXt36a/jFhER6Y8UdIv0IfsrO9ehKx2M31vdyvDyAhbUt22XEXNdl6WNUYaVFxBLZ6kuyq3h3V1B9+HrPuLMhS/zgxM/Dx3XNQy+d9IXCTgZ3q8Z1S3X6Qp76/W2TfBZBgUBO79O+Y6C3q2ziYcNLGZZY5ymeJpYKpcBD9gWx40q59gR5Z2utaMvYJysR3mBnzFVhfnS/q2pHLj37M9y9u7UX8ctIiLS3+i3M5E+Zn9k5zp0pYPx0sYo5x9RR31bslNGbF1zgnmrW4hnsmyKplnS0M6KTTGSmX1vWz5i02q+8fLv+OSi2QC8OvRwXhhxVH7/ooqh+3wNAAvAgK58R+BsnoNtGbmlvoI+C79l5vfvKOjdOpu4KZZmTHWErAttyQzN8TQDS8JcdvTgHX6psu0XMCGfxT/eXceCdW14nqdy4D5mf39h1l3667hFRET6EwXdIgexrnYwLi8MMGPKUP4yZzVLG6M0tKdYsTFGynGxTGhLpHFdSO1jhru6bSPXv/oIF73/byxvS/B+ybvPdAq6u42Ry1xbRm4pr44rdmS184/N3H7TANsyCdgmRSEfAdsCdh30bptNTDm54PzoYQN2m03c9guYT0yopr41qXLgPmp/fmHWnfrruEVERPoLBd0iB5htu5B3ZK12tL2rHYwbWlPMWtLIkoZ2GqMpljXESDouAdsg6LOJpbOksnuf4S5OtPOl1//MVXOfJOik89sbCkr56dRLefTQU/f63Dtikgu28+Xi5AJqzwPLNAj7TDKuh7P5NQV9NuCRdT1CmzPZZQV+Qn6L9mRmt0Fvd2UTVQ4sIiIi0v8o6BY5gGzdhTyRcXBdqCkOMa62kMa2FMs2xjp1Jz9lfOVOOxh3zNe2TZPbn/qA1kQGv23QlnBIbC4hd7Ie0WyG9F7G28FMks/M+QfXvP4XilOx/PY2f5hfHXMBDx55Ngl/cJ/ek62ZBtQVB8AwaYmnSWayZNzN3dYNsA2D2pIgRSEfGcdjYzRJIuNSUegn4DNpT2SoKAriulAa9rNyU6zLQW93ZRNVDiwiIiLSvyjoFjlAbN2FPOQzaY5laIymeHtlM3+Zm2VAQYAjh5QwvDzSqTv5iWMrt+tgXN+SYP7aNmJph9Z4hnTWJey3MA2bpOPmy673NtjucEjDcm5+6eH845Tl46Ejz+LeYy6gJVS0byffhgHUFQcZUBggmnQYW11Ie9JhbUuCrOtRWRRgY3uKVNYl5LMI+w0wPDZG0xgYJNIuhmFy1NAyLjhyICGf3WtBr8qBZWs7q24RERGRvkFBt8gBYOsu5AMK/Ly7ppVE2qEwYJNMO8TTHu2pDIs2RCkI+Cgr8Oe7k3+0vp0ZU4by3Ae5DPmShiirm+LYVm75r0Qmi+dBa8KhJdG9y1HNrRvHcyOP5sSlb/GXCSdx93GXUV9UsU/nNMg1Oktv9eWAAQwtC3L44AEsXN9GJOjDNHPzslsTGdpTDsUhH8mMSzTpkMpkCfgsnKzHqMoIoysjLN0YY3xtMTeeOgbbNncxApH9Z+vqlq2rWE6boOkGIiIifYWCbpEDQEcX8uqiAB+uj5JIO5QV+Ek7LknHoyBg47oe7UmHpY1RSsOl+e7kSxqinHVYLV+aPoI1zXF+M2sFhgElIZvnPmjoUmfvrjh2xTzOW/AiN51+HZ6xJWj9wYmfY+a0GSwpH9wt1/HbBiGfiWVCJutRVRRkXHUE0zQJ+U2crIsvuOWvPp9lUuC3iSazhPNztBOE/DaRoI+a4iAN0TRDBhRw4eSBCrilz9i6uqWmOEjYH+pUxfKZqUMVeIuIiPQBCrpFDgAdXcgjrk1zPE0k6MMwDLKeh+t5BG2TpOsR9Jk0xdK0Jx2KQr5Oa0ubpoFhGLQlMwwvjzB3ZTMpZ9+X/xq/fgk3v/QwJ6x4B4CXh03iH4dMy+9fWVq7z9foYAABy6Io5COezjKsvIDbzp6AbRs8+OoK1jTH8YC042IYEE06FId9lEcCLG2I0hRPk8l6xNMuGC4VhSZgqFGZ9DlbV7eMqozk+zEUBn35KpZnF2xgeHlEpeYiIiK9TEG3yAGgowt5WzLTKZNrGQamYZDJepiGQcA2iWeypDd35d52belY2iGRyQIea1vi+5TlHtK8jm+8/DvO+vCVTtvP/PCVTkF3d7JNCPtNygsDDCwN8x8fH8Hoqtzc8M9MHcq/3l9PY/t6NrQlKQ75qCwKUh7xs3xjDNsyKAn5KCsIMKqygMZoikjQx3lH1DF1RLkCF+lTOqpbaoqDnRogAp2qWNa2JDT/X0REpJcp6BY5ANSVhBhREeHNFZuwzVyQHbAN/LaZa6oWz1AazmW/bdPEb5k7XFu6oS3JovVttMTTbIrv3fztimgz187+E5e++y98bja/fXVxFXcefzn/20MBtwFkXWhPZZlYW8LlUwZ3ykyPrCzkyx+PcNjgEv745ipiKYdhAwr4cH07bYkMtmVSWhDgsEEllBX4qSsNs7ghyvtrWpk6orxHxiyytzqqW8L+0A73b13FIiIiIr1LQbdIH7K3XYhN0+C0CVWsbYlT35qkOZamotCP43qYZi7DbQAt8QzVxUHAY3FDtNPa0s8v3MDMpxeyqilOZi+qyiOpOF984698/u3HCWdS+e0bw8XcM+ViHjn8k6Tt7dcC7y5+y8AyDQyDnTaRMk2D40dVUFMc5Jn5G3hvbQurm+MEfRZVRUFGVEQoK/ADyhZK39ZR3RJPOxQGt7+vtq1iERERkd6jf41F+oiOLsRLGtppTqSxDJMRFREumFyXL5HelZGVhXz2uGEEbYsXPmpgTXOCgoBNbUmIwoDNyk3xzRlwk9aEw8S6Yk4+pJKAbfH0e/V87x8LaGhPsbezuAe1rucrrz2GmVv1mqg/xP8cdS6/Puo8YoGeC1iNzX88yAXdsLlEfuc61rp+eXEj/zNrGcMHRCjZXAmwNWULpa/qqG6Zv66VSMDu9NndURWLiIiI9B4F3SJ9QEcX4lWb4sTTDtGUQ8pxWVjfxhvLN3HdSaM4aVzVbs8zsrKQb595CB8fV8nzCzdQ35rE2jyXe/qYCoaWF1BbEmJYeQGxpMNvZq1g/toWFjdESTn71qZ8YeVw/veQaZzx4Sz+MOmT3DPlYjYVlOz1+ToC6Y5e4Tv7MsAALHPzsYZBwGdiGl2rDhhREaEyEsS2jO0CblC2UPqujuqWda0JFjfk5naH/BaJdJb61mSnKhYRERHpXfpNUqSXdXQhXrUpTnM8TTKTJRL0URQyyDgu9W1Jfvb8YgaVhhldvfvu2R0l1FNHlLO2JcHC+jbeXtFMY3uSNS0JgrZFazLNu6tbaU2k2U1SeHuex8lL3uSC+f/mP865haxp5XfNnHYVdx1/OatLqvfwpNu8BsAwcplr2zTwWyatSYcdfi1g5ErBLdMgYBtURAIMLy/o0nWULZT+bGRlIZ+ZOjS/TveGtiQB21K3fRERkT5GQbdIL1vbkmBJQzvxtEMyk6WswJ8P/gI+i+qiAI3tKf4ydzW3fGJclzNXpmmQcrK8tKhxq3V8bT6sb+XlxRtxsh57mgM7avV8bn7pYSavXQjABe//m0cPOy2/f31R1xuOmUau23gmy/bBtJELumtLQvgsg2zWxTChPeWQ3ep4v2VQ4Ldwsh6WBQGfzdHDBzCwtGvl7MoWSn/XMVVib3pBiIiIyP5h7v6Q3uM4Dt/+9rcZNmwYoVCI4cOHc9ttt+G6WwpNPc/ju9/9LrW1tYRCIaZPn86CBQt6cdQieyaWdmhOpImmnPz62pD7bKcyWRw3F6B2NPTqqm3X8S0M+jCAD9a1kd28FlhX52+PaVzBA3/5Hn9+5JZ8wA0wfdmcLo+nQ9hnMKYqwsS6YoaVRyiP+DANsAwoC9sMKg0xvDxMUdBHwDYYV1NEdXGYkrCfsG0R9Bn4LAPLyAXdKcfFMAxKQrnO45cdPXiPAo6ObOGE2mJa4hlWbIzREs8wsa6Yz0wdqmzhPnJdj9VNcT5c38bqpjiuu2/TGGR7pmkwqCzM2OoiBpWFFXCLiIj0MX060z1z5kx+9atf8fDDDzN+/HjefvttPvOZz1BcXMz1118PwB133MFdd93FQw89xOjRo/nBD37AKaecwkcffURhoX5Zlr5lR93JC/w2lmGSclyKQrlflhNph6ZYhkQmi+O6uK7H8o0xFta3damLtut6vL2yibmrmikr2NLZeF1rnOZ4BsOArsQ+A1s38NVXfs95C17MN0gDWDxgEP91wpU8O+qYLr/2oG0yqCxETXGIERUFhPwWDW0p3lrRhGUYHD18AJGgD79lEglYvL2ymWUbYzS2p5g8pIxoqpDGaIq1zXHWNCdwvVzQ7feZDCwNc+zw8p12Ld8dZQt7RkdzwKWNUZJOlqBtMaIistc/JxEREZH+qE8H3a+99hrnnHMOZ5xxBgBDhw7lj3/8I2+//TaQywTefffdfOtb3+L8888H4OGHH6aqqopHHnmEq6++utfGLrKtnQUgpxxSxYiKCAvr28g4Lq7nsb4tSSbr4bcMXNcg4DdJZbL88/16hlcUMLw8FyC2pzJEkw6RgE1h0EdNUZDXlm/iuQ82MH9tK8saoxQEbCoLA9SVhHh/bQsJZ/f57dJ4K9fOfpRPz3uKQHZL5+51heX85LjL+NuEkzrN5d4VAyiP2Pzw3MMYXlmQfw8a2lM4rkdBwMeRQ0oZVNZ5HvbIykKaYmlWboozsDRMZVGASiOAk3UZPKCAT06opqzAn3/t+xokd2QLpXt0NAfcMrUhRDztMH9dK+taE6oiEBERkYNGnw66jzvuOH71q1+xaNEiRo8ezbvvvsusWbO4++67AVi+fDnr16/n1FNPzT8nEAgwbdo0Zs+evdOgO5VKkUptWUe4ra2tR1+HyO4CkI+PqeCN5Zuob01i4JFxXPy2RTrrYlsGQZ9FXUmIZDrL/S8vI2RbLGmM0hhNkki7hHwWAyJ+0o7LmuYEbUmHTDZXmt6edFjfmmTe6tYdNyLbgZJklCvnPont5QL0lmCEXxxzEb894gxSvsAun2uQK4c3DaiMBPAMGF9bxLjaXOnr1hnl9a1JHn1rFbUl2we7ZQV+jhhSytyVzTTFUsTTDgHb4tCBJWoS1cdtO7WhY8pEYdBHJGCzuCHKsws2MLw8omoCEREROeD16aD75ptvprW1lbFjx2JZFtlslh/+8IdceumlAKxfvx6AqqrOSylVVVWxcuXKnZ73Rz/6Ed/73vd6buByUNu2hLymKLjbAGTRhihfOXEkdz27iBWbYtimgZF1CfhM/JZJcchPRWGAJQ1RZi2J47NNXNfDNg1KC3wkMg4L1iZIZT2crJsLfE0Dy/BwvR00KtuN5WV1PHrYqZw//wV+M/ls7jv6U7QFI11/DzzwWQamZW5uhmbm17reOqNc4LcJ+WziaYfCoG+784R8FofUFHHp0YMpCvlU9r0f7GgKxJ6+32tbEixtzDWm23YpNsMwqCkO5nsUqLpAREREDnR9Ouh+9NFH+f3vf88jjzzC+PHjmTdvHjfccAO1tbXMmDEjf9y2v9R5nrfDNXc7fPOb3+RrX/ta/nFbWxuDBg3q/hcgB50dlZCXR/ws2xhjcFl4lwHIWYfVcv0po5j59Ie4Xi5jHLRNyiKB3DkaY9S3JHBdF59pkfbA9TzaEg6mYZB2XZxsLsi2TPBbJq7pEc/svJzc8FzOWvgyl7z7LJ+58LukbH9+353HX8FPj72UhsIB+W22kWu+tqv54FuvrZ3OutRuDrx2tNZ1V5fsmjykTIH2ftBdc7BjaYekkyXs3/FSayG/xYa2ZP6LGBEREZEDWZ8Oum+88UZuueUWLrnkEgAmTpzIypUr+dGPfsSMGTOors6tBbx+/Xpqamryz2toaNgu+721QCBAILDrElmRPbWkoZ3fzFrO2pYEpWE/5QUBLBM+qG9jVVOcysIghcHtn7d1ADK+ppjDB5ZgWwZ+28o3FZuzsoX2ZAYPsK1c0zWfZWCbJolMlrTjYRoGWS+3DJi3Obu90++ePI9py+dy00sPM75hGQCXv/MUDxx1bv6QpnBx/r9Ncst72ZZJ2nHzXc9NcgF+1iP/RQGbt0VCPsI+i6Z4mqOHDdjhWtdasqvv6M452AV+m6Bt7bSCIZHOErCtHX4RIyIiInKg6dO/8cTjcUyz86pmlmXllwwbNmwY1dXVPPfcc0yaNAmAdDrNSy+9xMyZM/f7eOXg5boej7y+irdXNmMCa5sT2JZJadhPVWGAZY0xPtrQRnmkfLtsdzzl4GQ91rcmGV5ewIiKCAvq2xhVnAtS17UkWNcSJ+t6xNMOlmmScbKYHVlnN/f/HXeKRy7odj0PZwcp6cPXfcTNLz3ElFXvd9o+ad1H2x2by7YbeIaB63qkNjdhsw3w2yYFAZua4iApx6WhPYmT9XLrartQGrJpT2YpCNi7DJw7luzqyLBuaEsSsC0m1hVr7vZ+0t1zsLtawbCjL2JEREREDjR9Oug+66yz+OEPf8jgwYMZP34877zzDnfddRef/exngVxp7g033MDtt9/OqFGjGDVqFLfffjvhcJjLLrusl0cvB5NXl27khY8acD0oLfDjswwyWY/G9iTtyQwlYR/1LUnaEhmKw1tKuDdFU7y5ogmfafDoW6sJ+SyKQzYpJ8srizcSSzk0xVK0xDO4Xi64NrK5wNfZJp52t/nvxDZl5SM2reYbL/+OTy6a3Wn7+1UjmDntKmYNy31xZQIB2wQDLNPAbxkkHZeQ36aqKEBJgY9ljTEqC4M4WRfTNCgJ+wnYJk2xDNGUg+u5pByPAQV+LvvY4N0Gzlqyq3d19xxsVTCIiIiIbNGng+6f//zn/Od//idf/vKXaWhooLa2lquvvprvfOc7+WNuuukmEokEX/7yl2lububoo4/m2Wef1RrdB5nuaP60L9d+fuEGEpksA0tDWJurMwK2gb/AT1MsTUHAxjJhSWOU0VWFhPwW65oTvL68Cc/zGFUVwTZgfVuCuauStMTTRFMOWXdLEzRj8589bYpWHmvm6y//jove/zeWtyUQX15aw53HX8E/xx6HZ2ypKPHZBrUlIYaWh9jQlqI96VBiGnjAhLpioimHmmKXopCN43g0RlP4C0xCfpsa26Sh3aAk7KM4ZHP0sHKOHVHepXFqya7e0xNzsFXBICIiIpJjeJ63p7/DH3Da2tooLi6mtbWVoqKi3h6O7KHuav60t1Y3xfnBPz9gSUOUwqBNwO68fnXKydKedKguCjK+tpiN0RSN7Uk+XN9OPJ0FPNJZD9fzcnOxt+k2bpCbm72r5mW7UtPWyIv3f5FANgNAQ0EpP5t6KX869FQca/vv3SJ+k8qiAH7bJugzwYN4JktbIsP42mKOHFLKmOpC/u/DBlY1xWloS+JkXQI+i1TGxbZNKiMBBg8Iay3mfmJ1U5yfPLeIkrBvh3Ow25MZWuIZvnrK6D3+YqQ3vxATERER6UldjSP7dKZbZHe6s/nT3oqlc93DKyIBGqMpvEBuPrVlGPhtE9s0iKUcRlcVctNpY3h9+Sb+Z9Yysq4HeCQzLtnddAPfo6/GPK9TB7X6ogoeOvIsLp33L351zAU8eOTZJPw76Oi2mW1ZDCgIknFdokmHoM9iWHkBTtbl6mnD853EhwwI88z8DbyzuplVTXHakw5hv8Wg0hBHDC5VNrMf6ck52KpgEBERkYOdgm7pt7q7+dPeyq01beEEbZZvjLGhLYllGlimQcAyMYzcetMnjavENA3eXd1KxnHJuh6JtJtfYmvnC3t1jeVmufC95/j0vKe5+LIfE9+qVPieYy/m3mMuoCW060qOXI7eI7M5c+0vMFnfmqA9meHU8dUcMag0/15uPQ+7PZmbyx0J2hQGfMpm9jOagy0iIiLScxR0S7/V3c2f9lZdSYjikI/Xl24CPEI+i6znkXU92jIZLMvkmOG5uc0dYy4K+oilnXygvU9zPDyPTyyazY0v/44RTWsA+Nxbj/PzqZfmD2kPFHTpVD7bJJP1SGSyOK7Lxmia9qSDB3ywro37Xl7WqWxfWcwDh+Zgi4iIiPQMBd3Sb/VE86e9saSxnffWtNCSzGAAPssgYJsUBW0yTm7ZrkTG4YVFG1jbnGBNc4xYysHZ19Q2MGXlu9z80kMcXr+40/ahzev26nx+28Q0DeLpLK2JDK7nEQna+C2TisJAvmx/xrFDCPlszdM9wKiLvIiIiEj3U9At/VaB3yZoW8TTzg6bPyXSWQK2RYG/5z7mSxra+cULS6lvTVJTFCDpuMTTWdqSDi0Jh4BlkMm6PLtgA//3YQOeB5mst2+ZbWD8hqXc/OJDnLDinU7b3xg4npnTrmLuwHF7fE6/BVnXI2ibRAK596ws7AMDUo5HadhPYdDmnVUtfP/JhZQX+Ell3f3euE56lqoXRERERLqXgm7pt3qy+VNXdMwp3xRNEfZblBb4MYC2hMOGtgSxdJZoKjdn2wOy2y6svRcq2zfxrRd+wzkLX+q0fWHFUO6YNoMXhk/u1EStq3Id0g1CPhPbMmmMpqgrCRKwLZpiaSqLghQGbZrjGRrak7QnHWpGllNXGt7vjetERERERPoTBd3Sb/V286eO+dnVRUHqW5K0JdKYhklDe5JYOkt6Vy3J91LWtDhp6Zv5x2uKKrnz+Mv530Om4ZrWLp65a7aZa/YW9tvYlkFbMkPK8Yil0oT8NiMqIgAsaYjiZD3CfhOfbWKZxn5vXCciIiIi0p8o6JZ+rTeaP3WsOzx/XSurm+MYeGyKpYmmMrjuvnch35rhuXiGmX+8qaCEXx91HlfOfZJ7jr2YPxx+Oml7+9L6PeVt/p9M1sX1DJysRzTlMLgszIiKCGUFftoSGZrjaQI+E9cDv7VlXPuzcZ2IiIiISH+ioFv6vf3Z/GlJQ3s+wF/dHGPB2jZcDxzP65bGaB0CTprL33mKy9/5J+decRetoS1fHtz/sfN54KhziQa6J7D1mbll1rKeRyydpTBoUxEJUFsS5MjBJZhmLrhOZ12crIvneVQVhygMdv7rY381rhMRERER6U8UdEu/0JFd3llQvT+aPy1paOfBV1fQFEtTVeinPeGQdly6Yap2nulmOW/Bi3x11u8Z2NYIwJde/zM//vhn88ck/MFuu55BLuAO+S08zyOedmlJZBhTFWF4eQFLGmP5sv20kyWezlIUshlRUbDdMm37o3GdiIiIiEh/o9+Opc/bOrucdLLd2i17d8H81sc9M38DTbE0Awr8vLG8mSWN0e4LuD2Pk5a+yY0v/ZaxG1duuS4GxckoeN5eNUjbmgGYxpY1wU1ypzRNA8+DrJdrQGcaBiGfzRmH1vLu6tZ82b7fMhlRmZvbXRr2bzP8nm9cJyIiIiLSHynolj5t6+xyTXGQsD/Ubd2y9ySY72iaFvKZvLG8iVVNsW4rJz9yzQfc8uJDHLX2g07bXxh+JHdMm8HCyuH7fA27I7jGw3XJRd4mmEZuSbOsmwu2I0Eb0zAwTSgvDPCl6SM6fSmRSGd5+LUVvdK4TkRERESkP1LQLX3W1tnlUZWRfDlzd3TL3tNgPpZ2iKczrNiUYE1zgnQ3pLir2zby/ed+ySlL3uy0/Z2aMfx4+lW8MXjiPl8Dcutvh30WGAY+yySRdkhmXCzTJGCb2KZBWUGAAr+FB0RTDmGfTYHf3mHZ/v5uXCciIiIi0p8p6Jb9oqtl3FvryC7XFAe3mz+8L92y9yaYb2xPsXhDjFVNMTLdlOGOBUJMXrMw/3hJ2UD+a9qVPDNqyj6XkkMu2B5YGubTU4bwr/fqWduSJOTrKCV3sE2DSMAikXFJZLKUhGya4hks0+DQgTsvE9+fjetERERERPo7Bd3S4/Z2TnYs7ZB0soT9Ow7+9rRbdkfgv7QxyntrWqgt2RLMe55He9Ih5WQx8Hhr+SYGDwgxvCJCUzTNU+/V057M7FPA7ctmyFhblvdqDxTwiykX8rm3/pefHPdp/jrxJLL7sNY2bCkj91kmIysiXHfyKEZXFTJ/dSvDyiP4bJN4ymH+urbce5fKYlsG7ckMeB6GYXDYoBJOm1C9yyB6fzSuExERERE5ECjolh61L3OyC/w2QdsinnYoDG6/FnVXu2W7rsfspRv59wcN1LcmiKUzLNsYpzWRYVRV4eZxRlnflqA1niHp5JbGen9dG2UFfrJZF8cFby8TueF0gs+99ThXvPMUZ1z1UxojZfl9vz3iLH436QxSvsDenXwrAQvCAR9hn83UkWV8/oThjK4q4sP1baSyLnWlYSzTgEiASNDH+2tbWNOcIJnJ4mQ9ygsspo+p4NKjB6tMXKSb7E2Vj4iIiBxYFHRLj9nXOdl1JSFGVESYv66VSMDuVGLe1W7ZSxraeeSNVbzwYQPxTJZIwKYwaGMZBvWtSTbF0gCkMlli6SzprEvGyeK4EEs5ZF2PtOPi4ZF192wety+b4dJ5/+La2Y9SEW8B4LrZf+I/T/1y/pi0vf2XCXvCINcTzTKguiTE9NEVnHxINVNHlOff0x19eVFW4OeEURW0JTKsa00STWa47uRRfGzoAAUEIt2kJ1deEBERkf5DQbf0mH2dk22aBqdNqGJda2KvumUvaWjnN7NW8PaKJjzPY1BpCMeF9mSGtOPiM2FjMgN4+C2TWCq37nZHBXlurvOe15MbnstZC1/m66/8niEt6/PbHcMka5jdtvyXz4Ssm3swqCzMbeeM57iRFdu9Hzv78sIwDIpCPja0pzhuVIUCbpFu1JMrL4iIiEj/oqBbekx3zMkeWVm4V92yO7Lsa1viGAaUFPixTBPLBH+Bn0zWJZ7Kksw4GIZBLJUl63rsU480z2Pa8rnc9NLDjG9Y1mnXk2OO484TrmB5Wd2+XAHIBdwG4HhgmjCoNMy3zzyEE0ZX7vD4ff3yQkT2TE+uvCAiIiL9j4Ju6THdNSd7b7pld2TZy8J+1rYk8Flmfp9hGLm52m6KVMYkls7ikSvT3ls1bY3c9c+7mLLq/U7bZw05jDumzeC9mtH7cPYcvwUB2yKTdQnYFsVhHx8bVsYXN8/d3pW9/fJCRPZcT628ICIiIv2Tgm7pMd0xJ7vDnnbL7siylxcEsE0zH6h2cLIusZRDxnX3Lbu9WXOokGFNa/OP368awcxpVzFr2KRuODuYwPjaYiYPLWNYeQG1JSGGlxcwsDTc5UyZlvoS2T+6e+UFERER6d8UdEuP6c2y5o4su2UalIX9NLQn8ReYGIZBIu1Q35rEybpYpoGxOce9J5nuUDpJwh/MP076gvx06mV88c2/cufxV/DPscfhGeYuztB1Eb/FMcPL+M5Z4/coyN4RLfUl0vO6q8pHREREDgzdExWI7ERHWfOE2mJa4hlWbIzREs8wsa64RxsJdWTZ17clGV4RJuS3aIqlSWWybIymiKez+G2LkpB/c+DdNUXJKLe8+CBv/HIGA1s3dNr32KGncMrn7uXJcSd0S8Btm1BV6OfMQ6u55fRxDB5QoKy0SD/Q8fdPfWsSz+v8dV5Hlc/IykiXqnxERESk/9PX7NLjeqOseess+6bNzYzWtSRZ15JgUzSNbZmUFfioLg6ysT3J7oo8A5kUn5nzD770+p8pTsUA+Oorv+frZ349f0zWtHb29D0WsA3KC4J8YkKV1s0W6WfUvFBERES2pqBb9oveKGvetnmY385lnw3TgM3ZplVNcdK7mNRtuVkufO85bnj1EaqjTfntKcvHxoLSvV7+K2gb+C0TMMCArOvis0wKAjZVRQEm1hVvt962iPQfal4oIiIiHRR0ywHFdb1OGfXh5RG+ND3C7KUbeeTNVRSHbRrbk6RdcFxv5/O4PY9PLJrNjS//jhFNa/Kbs4bJXyecyN3HXca6oh0v0bUrPhNKwn5sy6Aw6GNwaZjhlQUcMaSUsrCfSMCmMOhTgzORA4CaF4qIiAgo6JYDyJKG9nxWKelkCdoWIyoinHJIFe+ubiWbdWmOZUg6uwi2yS3/de/jP+Lw+kWdtj876hj+6/grWFwxZI/GZQCWCQHb5MsfH8nHx1YSTToKsEUOAmpeKCIiIgq6Zb/aNhPdXQHnkoZ2Hnx1BU2xNDXFQcL+EPG0w/x1rSza0E5De5I1TTHWtKR2e66NBSWUJtryj98YOJ6Z065i7sBxXRqLZeQ6obterlNhZVGA6qIAhUEfJ42rYmz1rtfUFhERERGRA4eCbtlvdpaJPm1C1+Y37ixgd12PZ+ZvoGlzw7SO9cALgz4iAZtZSzaytCFKPLXjdmkliTZaQlsC4Yzl487jL+dLr/+FO6bN4IXhk7s8b9tngt+2yDhZPAOKQj6OHj6AsrCP1oSjJYJERERERA4yigBkv9hVJnpda2K3y4ftKGAfXl7A4YNLcFyP99a2UFucW36nLZEhnXXxWyaRgE3acUlksjjb1JSXx5q5dvafuPi95zhjxk9ZWj4ov+8f407gybHH4+5hR3LXzTVFs2wT0zMI+21Kgjbr21JMrCvWEkEiIiIiIgcZBd3S43aXiV7cEOXZBRsYXh7ZYan5jgL2dS1xnnhvHX+du4ayAj/rW5PUtyQwTYNkxsVxXWzTJOy3iCYz2JZBOpuLuiOpOF948298/q3HKcgkAbjxld9yzXnfyl/TM0y8Pah6t4zcnG3DMHCyLo7jYmAQTTnMXraJMdVFWiJIREREROQgpKBbetzalgRLG3Nr1RrblGkbhkFNcZAlDVHWtiS2azjUEbBviqaoLgqSclyaY7m1b7Ouh+t5xDNZsp7LksYotmlSWxIk7LNJO1nqWxO0JjLYpoHfyXD5O0/xH689yoCt5mzHfEE+Kh+K4bl4hrnb12Ns/uNt/mMAPtvA2hxQu15uJbGAzyASsDBQoC0iIiIicrBS0C09LpZ2SDpZwv4dl1aH/BYb2pLE0tvPuV7bkuCd1c00x9Ks2BTHybq0JDJkXY/ioE0s5bChNUHWg6wLBi4rNsYwDYNM1sVxwXCznPvBi3ztlT8wsK0hf+60afPI4Z/gnmMvzq25vRsmuandJrlgGwOCtkV5xMemWIa044IBRUGbquIgwysiVEQCRAIWSxpju8zmi4iIiIjIgUlBt/S4Ar9N0LaIpx0Kg77t9sdTDo7rsb41uV1H8wX1rSxY14ZlGBQGbWzTIJF2SGc9WhMZ3B2s/ZV1OnLQUN22kYf+fCtjN67sdMzjh0zjzuOvYHVJ9XbP95kQ9ts4rkdR0CKaylIR8Xe6ZtBn4rdMaktCVEQCOJ7HxmiKysIgtSVBioK+Tln9XWXzRURERETkwKWgW3pcXUmIERUR5q9rJRKwOwWjm6JJ3lzejG2ZPPrWKkI+O7e29vhK1rYkuPNfi9gYTWKbBhujudLtjrnZXdEQKcXYalXuF4cdyR3TZvBB1fAdHm8Z4LNMDDwCtkFNSZis61FdFKQo5COacljdFKcplsa2DEoL/Bw6qISRVREef2ctw8sj+TLzre0qmy8iIiIiIgcuBd3S40zT4LQJVaxrzc3FrikOEvJbrGuO8/qyJlzg8IHFDBtQQGM0xfMLN/DHN1fSHE8TT7t4QKaLgXZ120bWF5XnH7umxX+dMIOvvPYoP55+FW8MPpSdnck2wDQhk3WxTAu/ZTGoLMzZh9XyYX07SxujmAaMqoxQWRTkyCGljKspoq4kxNqWBP+y1+80m59IZwnYlpYMExERERE5yBie53U9bXiAamtro7i4mNbWVoqKinb/BNkrWy/7tbE9xcL1bSQzWUrDfizLwMnmGqM1xdIkMu4enbuutYGvzvoD5y54gfOuuJP3a0Zt2dnxEd/BWtsdDdEgN1fbNHLN3SJBi4l1JXz7jEMYXV240zXCO7iux70vLmX+utZOHdpzl/dY3BBlYl0x10wboTndIiIiIiIHgK7GkUq7yX4zsrKQ4dMjvLp0Iw/MWo5hGAwsDeXmc7elSKYd9jDWpjTeyn+89hhXvPNPAtlc6fZNLz3MFZf8YMtBOwi2YUtjNNfLBd+mkSsDD/osDh9Uwo2fGMPoqtza4aZp7HIu9s6y+Yl0lvrWJGUFfi0ZJiIiIiJyEFLQLfvde6tbcyXcBtS3JGhLZtnDWJtQOsnn3n6cL77xN4rS8fz21kABs4Yd3rXlvwywTAPTy5WVO1mPRMZlbHXh5oB7z6oeRlYW8pmpQ/PZ/A1tSQK2xcS6Yk4dX8XIysI9fJUiIiIiItLfKeiWfba70uutrWmOM3vpRpY1RqlvS+3xteyswyXvPsP1s/9IRawlvz1p+3nwyLO595gLaAtGunQuD/BZBmGfhYdBwsniuh7nTKrb44C7Q0c2v6vvh4iIiIiIHNgUdMs+2XqedtLJErQtRlREOG3ClsxuR1D+wbo27ntpCe+sbt1pM7NdqWzfxGOP3MLQlvr8NscweezQU/jp1EvZUFi+i2d3FvFbOK6HzzLJerky80jAxvM8Bpbu25JeuytFFxERERGRg4eCbtlrSxraefDVFTTF0tQUBwn7Q8TTDvPXtbKuNcFnpg4F4Jn5G5i1pJH317QSTWf3+noNkTJaQoWwOej+55ip3Hn8FSwbMHCPzuM3oTBok8xkqSwK4rdNTKA5niES9DGsvGCvxygiIiIiIrI1Bd2yV1zX45n5G2iKpTt16y4M+ogEbBY3RHnkjVUk0lkWN7TzwbpW4pk9y28P37Smc0BtGMycdhXXzv4TM6fN4N3aMXs3eMMgns5imgYB28Q0DdqTDh4wZXgZg/Yx0y0iIiIiItJBQbfslbUtCZY25rp0G9t0BzcMg+qiAC8taiSZdljflqKLy2wDuWD7Gy//ltMXzeaiy37Mm4Mm5Pe9NuRQXhty6F6P2zKgqtBPc8LBwiCacjAMA8s0OGxQCZcePVjzr0VEREREpNso6Ja9Eks7JJ0sYX9oh/s3RtOsaoqT2YNou6p9I9e/+kcueu85bC/Xz/yWFx/k/Mv/e6fLfu0JA6gtCTK0vICyhEMkYGOaEPbZHDqwmNMmVKvDuIiIiIiIdCsF3bJXCvw2QdsinnYoDPo67dsUTfHSRw1dDriLklG+9Ppf+MycJwg66fz2xoIS/jb+REzPxTWsfRqvaUBRyMeY6iKOGFzKyeOqCPktdRgXEREREZEepaBb9kpdSYjhFQW8taKJupIQAduiMGjTHE/zyuIG2lK7b5gWyKS4au4/+PJrf6Y4Fctvb/OHue/oT/Hg5LOJ7ySTvsvz2iYhn0HWzXUSH1gaYsqwAXxs+ADG1RQpwBYRERERkf1GQbfslWUbozRF06zaFOej9e0UBGzKI37aEw7rW3e//nZFtJl/PHw91dGm/LaUZfPbI87kl8dcSHO4eI/HZACVhX5CPpN0ForDPi45ahAnjq1SoC0iIiIiIr1CQbfssa2XCps0uIR1LUkaoymWNsaIJjOkulBW3lhQwrKygVRHm8gaJn8bfyI/Of4y1hVV7vW4hpWHOWF0BZmsh880WN+WIpbKKuAWEREREZFeo6Bb9sjWS4WNrCggmsoS9FkMLA2xoS3Ja8s27fB5E+sX8371yC0N0QyDH0+/imtnP8odJ1zJ4ooh+zSu0pAPv2ViYFAe8QO50vIlDVHWtiQYVKZlwEREREREZP9T0C17pGOpsJDPZM7KFpriaRzXJet6NMfSOG7n4w/ZsIybX3qIacvnctUFt/LiiKPy+96rGc0XPvWf+zQey4CioE1daYiUkyWd3TKAkN9iQ1uSWNrZp2uIiIiIiIjsLQXdBxjX9VjbkuixrtyxtMPGaIpNsRSpjEskaGObFis2xWlNbAluBzfX8/VXfs85C1/Kb7v5pYd5afiReIa5x9c1yHUgtwwDn23guB4B28JvmZQXBrAtA8c18Vtbzp1IZwnYFgV+fcxFRERERKR3KBo5gCxpaOeZ+RtY2hgl6WQJ2hYjKiKcNqGq29afDvssNkZTxFMOlUVBDMMgmXaIpXIBd3msmWtn/4nL5v0Ln7ulg/maokp+/bHz9uqapgHVhT5M0yLrevgsg4DPYnxNERvaUzS0p8g4WaqKQxQGcx9pz/Oob00ysa6YupI974AuIiIiIiLSHRR0HyC2bm5WUxwk7A8RTzvMX9fKutYEn5k6tFsC71yLNAOPLdnzpOMSiMf40ut/5XNvPU5BJpnftylUxC+mXMzvJ51O2vZtd76dsYHSiJ+ioI+h5WFs0ySRdljdnMBnmUyoK6JmcxZ/TXMCgOqiAFnPI5FyqG9NUlbg59TxVWqiJiIiIiIivUZB9wFg6+ZmoyojGJublRUGfUQCNosbojy7YAPDyyP7HIAmMlnKI34MA5piaSJBm8L2Zh6593MMSLTlj4v5gvzPUefx64+dRzTQtSZmJmBb4LdMRlRGOHr4AC44YhAjKyP5kvnG9hTvrm5hWWOMFRtjBGyLUw+pwgNa4pn8tol1xZw6vvsy/CIiIiIiIntDQfcBoKO5WU1xMB9wdzAMg5riYLd18S7w25RHApRH/NS3pmiOp0kEi5hXN5aTlrxJ2rR55PBPcM+xF7OxoLRL57QNGDogzKABYaqLg0wfXcUhtUWd5qN3jHtsNUwdUb7dvPWO96Gn5rKLiIiIiIjsDQXdB4BY2iHpZAn7dzx3uTu7eNcVBzlhzfs8WzGWyUNKiKaypJwsfz7vGmJPhbnr+MupL6shvZu1ugO2QWHApqIwyJXHDmHS4NIuB8umaezwywMtCyYiIiIiIn2Ngu4DQIHfJmhbxNMOhcHt5013Wxfv2bMxb76Zc2fNIvm1O3hp0onUFAcpLfCTPPJwbiusozXhYJsGYcsgmXFxPbBNKAzahGyLZNbFb5sMKSvgsEElfOrIOkZXFe3buERERERERPooBd0HgLqSECMqIsxf10okYHcqMe+WLt4LFsD/+3/wxBP5Tef//Vc0n3Ymi5tTbGhLErAtzj68juZoivfXtdOWTBP0eRgGFIf81JWEGFDgp6IowOShZYyrLlIJuIiIiIiIHPAUdB8ATNPgtAlVrGtNsLghN7c75LdIpLP71sV71Sq49Vb47W/BdbdsHzMG/+23c/VJY1jbmtxubvXq5jjLN8YAGFoWxjANEpms5lqLiIiIiMhBR0H3AWJkZSGfmTo0v073+tYkWc+jpjjISeOqGF4e6frJNm2C22+HX/wCUqkt2+vq4LvfhauuAtvGZMfzqIcMKGDIgIJ9fUkiIiIiIiL9nuF53q47Xh0E2traKC4uprW1laKi/j2/2HU9Zi/dyL8/aKC+NYFpQshnM6IiwmkTurCEVlMTjBgBLS1btpWUwDe/CddeC6G9LFEXERERERE5gHQ1jjT345hkP1i2McrT89ezoT1JXWmIERWFlIR9zF/XyoOvrmBJQ/uuT1BWBqefnvvvYBBuvhmWLYObblLALSIiIiIisodUXn4AcV2PZ+ZvoCmWZlRlJN9QrTDoIxKwWdwQ5dkFGxheHsnNq3bdXHO0M88Ee6uPwve/D5EIfOc7uZJyERERERER2SvKdB9A1rYkWNqYa6S2dQfzDpGAxZyVzby9YhPu0/+CyZPhvPPg4Yc7Hzh8ONx3nwJuERERERGRfaRMdz/luh5rWxLE0g4hn4UBLKhvoymeoqY4mD/O8zxWNyVYujFKezLDkKULKLzjy5gL395ysltvhU9/OldOLiIiIiIiIt1GQXc/tKShPd+lfGM0xcZoGvCIBGzqW5O0JxwOqS0G4P21LazYGKe2YRXffPFhTv1gVqdzpSYcSuC/74BAoBdeiYiIiIiIyIFNQXc/s6ShnQdfXUFTLE3QNqlvTdKayIDnEU9lsAyDxQ1R1rYksE2D8MYGvv3C7zh33jPYW6213VQ1kL9/6hpS51/INR8fhbmDcnQRERERERHZNwq6+4GOUvKWWJr7X1nGio3teJ7Bik0x4mmXjjXftl77rS3pUJSM8vS9n6Mwnchvb46U8rtTruCtUy5gZF0prRvjrG1J7HC9bREREREREdk3Crr7uI5S8lmLG/mgvo3WpNPl57YFI/xj3DQue/dfRANh/vekS3nm1EtpswMkUy5DXY+UkyWW7vo5RUREREREpOsUdPdhHaXk76xuZllDjKTj7vRYy81yzgcv8uTYE0jbvvz2n029lLg/yO+mXULViEEYhoHP84imHNqTDgHbosCvj4GIiIiIiEhPULTVR3Wsub1yU5SVG2OkdhZwex6nLXqNG1/+LSOb1lCSiPKbo87J724sGsDMkz+PYRiEkw5FIR+ZrIttGDTH0xw9bAB1JaH99KpEREREREQOLgq6+6i1LQmWNLTT0JYmmdlxwH3Mqve4+cWHmVT/UX7bf7z2KI8cfhpJXxATMA0wTQMn65HIZCkIWDTHMgR8JnUlIU4dX4VpqomaiIiIiIhIT1DQ3UfF0g7NiQzRZAbo3CTtkA3LuOmlh5m+fE6n57xVdwgzp88g6cutt22agGHgtwxc1yPtZFnTnCDkszl+ZDmXHj2YkZWF++kViYiIiIiIHHwUdPdRBX4by4Cs52EakPVgcHM9X3/l95yz8KVOx35UPpg7ps3g+REfg81Lf5lA0DYxDYNU1qM45GNCXTG1JSFOGlfF1BHlynCLiIiIiIj0MAXdfVRdSYgRFRE+WNeGzzLxJ6L886HrOi3/taaogp8cdzl/Hz8d17Q6Pd8ywTJNLNOgLOLjM1OHcuLYKupKQgq2RURERERE9hMF3X2UaRpccOQg3ljeRDydJRoK88fDPsEX3/o7TaEi7plyMb+fdHqnTuUdDMBnmYT8FqOrCplx7FBOGle1/1+EiIiIiIjIQU5Bdx82urqQ604axc+eX8zyjTF+deyFxPwhHjjqXKKBcKdjw75ckF1W4OeksVVMHFRMRSTAEYNKsW2zl16BiIiIiIjIwU1Bdx930rgqBpWF+Mvba5m3KsJjlVfhS2cpwsA2IOg3qS0KUVwQYGRlhE8dWcfoqqLeHraIiIiIiIigoLtfGF1VxC2fLGRtS4L2VIZo0iESsIkEbDzILQXmtzVfW0REREREpI9R0N1PmKbBoLLw7g8UERERERGRPkOTfUVERERERER6iIJuERERERERkR6ioFtERERERESkhyjoFhEREREREekhCrpFREREREREeoiCbhEREREREZEeoqBbREREREREpIco6BYRERERERHpIQq6RURERERERHqIgm4RERERERGRHqKgW0RERERERKSH9Pmge+3atVx++eUMGDCAcDjM4Ycfzpw5c/L7Pc/ju9/9LrW1tYRCIaZPn86CBQt6ccQiIiIiIiIiOX066G5ubmbq1Kn4fD6efvppPvjgA+68805KSkryx9xxxx3cdddd3HPPPbz11ltUV1dzyimn0N7e3nsDFxEREREREQEMz/O83h7Eztxyyy28+uqrvPLKKzvc73ketbW13HDDDdx8880ApFIpqqqqmDlzJldffXWXrtPW1kZxcTGtra0UFRV12/hFRERERETkwNTVOLJPZ7qfeOIJJk+ezIUXXkhlZSWTJk3i17/+dX7/8uXLWb9+Paeeemp+WyAQYNq0acyePbs3hiwiIiIiIiKS16eD7mXLlnHvvfcyatQonnnmGa655hquu+46fvvb3wKwfv16AKqqqjo9r6qqKr9vR1KpFG1tbZ3+iIiIiIiIiHQ3u7cHsCuu6zJ58mRuv/12ACZNmsSCBQu49957ufLKK/PHGYbR6Xme5223bWs/+tGP+N73vtczgxYRERERERHZrE8H3TU1NRxyyCGdto0bN46//vWvAFRXVwO5jHdNTU3+mIaGhu2y31v75je/yde+9rX849bWVgYPHqyMt4iIiIiIiHRJR/y4uzZpfTronjp1Kh999FGnbYsWLWLIkCEADBs2jOrqap577jkmTZoEQDqd5qWXXmLmzJk7PW8gECAQCOQfd7xZgwYN6u6XICIiIiIiIgew9vZ2iouLd7q/TwfdX/3qVzn22GO5/fbbueiii3jzzTe5//77uf/++4FcWfkNN9zA7bffzqhRoxg1ahS333474XCYyy67rMvXqa2tZfXq1RQWFmIYBm1tbQwaNIjVq1erm7kclHQPyMFO94Ac7HQPyMFO94B0hed5tLe3U1tbu8vj+nTQfdRRR/H3v/+db37zm9x2220MGzaMu+++m09/+tP5Y2666SYSiQRf/vKXaW5u5uijj+bZZ5+lsLCwy9cxTZOBAwdut72oqEg3mRzUdA/IwU73gBzsdA/IwU73gOzOrjLcHfr0Ot29Ret2y8FO94Ac7HQPyMFO94Ac7HQPSHfq00uGiYiIiIiIiPRnCrp3IBAIcOutt3ZqtiZyMNE9IAc73QNysNM9IAc73QPSnVReLiIiIiIiItJDlOkWERERERER6SEKukVERERERER6iIJuERERERERkR5yUAfda9eu5fLLL2fAgAGEw2EOP/xw5syZk9/veR7f/e53qa2tJRQKMX36dBYsWNCLIxbpPo7j8O1vf5thw4YRCoUYPnw4t912G67r5o/RPSAHkpdffpmzzjqL2tpaDMPg8ccf77S/K5/3VCrFtddeS3l5OQUFBZx99tmsWbNmP74Kkb23q3sgk8lw8803M3HiRAoKCqitreXKK69k3bp1nc6he0D6u939W7C1q6++GsMwuPvuuztt130ge+qgDbqbm5uZOnUqPp+Pp59+mg8++IA777yTkpKS/DF33HEHd911F/fccw9vvfUW1dXVnHLKKbS3t/fewEW6ycyZM/nVr37FPffcw8KFC7njjjv4r//6L37+85/nj9E9IAeSWCzGYYcdxj333LPD/V35vN9www38/e9/509/+hOzZs0iGo1y5plnks1m99fLENlru7oH4vE4c+fO5T//8z+ZO3cuf/vb31i0aBFnn312p+N0D0h/t7t/Czo8/vjjvPHGG9TW1m63T/eB7DHvIHXzzTd7xx133E73u67rVVdXez/+8Y/z25LJpFdcXOz96le/2h9DFOlRZ5xxhvfZz36207bzzz/fu/zyyz3P0z0gBzbA+/vf/55/3JXPe0tLi+fz+bw//elP+WPWrl3rmabp/etf/9pvYxfpDtveAzvy5ptveoC3cuVKz/N0D8iBZ2f3wZo1a7y6ujpv/vz53pAhQ7yf/OQn+X26D2RvHLSZ7ieeeILJkydz4YUXUllZyaRJk/j1r3+d3798+XLWr1/Pqaeemt8WCASYNm0as2fP7o0hi3Sr4447jueff55FixYB8O677zJr1ixOP/10QPeAHFy68nmfM2cOmUym0zG1tbVMmDBB94QckFpbWzEMI18FqHtADgau63LFFVdw4403Mn78+O326z6QvWH39gB6y7Jly7j33nv52te+xv/7f/+PN998k+uuu45AIMCVV17J+vXrAaiqqur0vKqqKlauXNkbQxbpVjfffDOtra2MHTsWy7LIZrP88Ic/5NJLLwXQPSAHla583tevX4/f76e0tHS7YzqeL3KgSCaT3HLLLVx22WUUFRUBugfk4DBz5kxs2+a6667b4X7dB7I3Dtqg23VdJk+ezO233w7ApEmTWLBgAffeey9XXnll/jjDMDo9z/O87baJ9EePPvoov//973nkkUcYP3488+bN44YbbqC2tpYZM2bkj9M9IAeTvfm8656QA00mk+GSSy7BdV1++ctf7vZ43QNyoJgzZw4//elPmTt37h5/pnUfyK4ctOXlNTU1HHLIIZ22jRs3jlWrVgFQXV0NsN03Vg0NDdtlQkT6oxtvvJFbbrmFSy65hIkTJ3LFFVfw1a9+lR/96EeA7gE5uHTl815dXU06naa5uXmnx4j0d5lMhosuuojly5fz3HPP5bPcoHtADnyvvPIKDQ0NDB48GNu2sW2blStX8vWvf52hQ4cCug9k7xy0QffUqVP56KOPOm1btGgRQ4YMAWDYsGFUV1fz3HPP5fen02leeukljj322P06VpGeEI/HMc3OfwVYlpVfMkz3gBxMuvJ5P/LII/H5fJ2Oqa+vZ/78+bon5IDQEXAvXryYf//73wwYMKDTft0DcqC74ooreO+995g3b17+T21tLTfeeCPPPPMMoPtA9s5BW17+1a9+lWOPPZbbb7+diy66iDfffJP777+f+++/H8iVGN5www3cfvvtjBo1ilGjRnH77bcTDoe57LLLenn0IvvurLPO4oc//CGDBw9m/PjxvPPOO9x111189rOfBXQPyIEnGo2yZMmS/OPly5czb948ysrKGDx48G4/78XFxXzuc5/j61//OgMGDKCsrIxvfOMbTJw4kZNPPrm3XpZIl+3qHqitreWCCy5g7ty5PPnkk2Sz2XzlR1lZGX6/X/eAHBB292/Btl82+Xw+qqurGTNmDKB/C2Qv9Wbr9N72j3/8w5swYYIXCAS8sWPHevfff3+n/a7rerfeeqtXXV3tBQIB74QTTvDef//9XhqtSPdqa2vzrr/+em/w4MFeMBj0hg8f7n3rW9/yUqlU/hjdA3IgeeGFFzxguz8zZszwPK9rn/dEIuF95Stf8crKyrxQKOSdeeaZ3qpVq3rh1YjsuV3dA8uXL9/hPsB74YUX8ufQPSD93e7+LdjWtkuGeZ7uA9lzhud53n6N8kVEREREREQOEgftnG4RERERERGRnqagW0RERERERKSHKOgWERERERER6SEKukVERERERER6iIJuERERERERkR6ioFtERERERESkhyjoFhEREREREekhCrpFREREREREeoiCbhERkR5gGAaPP/54bw9jjw0dOpS77767V66dTqcZOXIkr776aq9cv7tcddVVnHvuuV069hvf+AbXXXddzw5IRER6lYJuERHp12bPno1lWXziE5/Y4+f2ZoC5J4FZd3jooYcwDGOXf1588UXeeustvvjFL+63cW3t/vvvZ8iQIUydOrVXrt8bbrrpJh588EGWL1/e20MREZEeoqBbRET6td/85jdce+21zJo1i1WrVvX2cPqsiy++mPr6+vyfKVOm8IUvfKHTtmOPPZaKigrC4XCvjPHnP/85n//853vl2r2lsrKSU089lV/96le9PRQREekhCrpFRKTfisViPPbYY3zpS1/izDPP5KGHHtrumCeeeILJkycTDAYpLy/n/PPPB2D69OmsXLmSr371q/lML8B3v/tdDj/88E7nuPvuuxk6dGj+8VtvvcUpp5xCeXk5xcXFTJs2jblz53bra7vrrruYOHEiBQUFDBo0iC9/+ctEo9H8/oceeoiSkhIef/xxRo8eTTAY5JRTTmH16tU7PF8oFKK6ujr/x+/3Ew6Ht9u2bfbfMAzuu+8+zjzzTMLhMOPGjeO1115jyZIlTJ8+nYKCAqZMmcLSpUs7Xe8f//gHRx55JMFgkOHDh/O9730Px3F2+nrnzp3LkiVLOOOMM/Lb0uk0X/nKV6ipqSEYDDJ06FB+9KMf5fe3trbyxS9+kcrKSoqKijjxxBN59913O513Zz9/gObmZq688kpKS0sJh8N88pOfZPHixdu9x8888wzjxo0jEonwiU98gvr6+vwx2WyWr33ta5SUlDBgwABuuukmPM/rNIa//OUvTJw4kVAoxIABAzj55JOJxWL5/WeffTZ//OMfd/reiIhI/6agW0RE+q1HH32UMWPGMGbMGC6//HIefPDBTgHPP//5T84//3zOOOMM3nnnHZ5//nkmT54MwN/+9jcGDhzIbbfdls/0dlV7ezszZszglVde4fXXX2fUqFGcfvrptLe3d9trM02Tn/3sZ8yfP5+HH36Y//u//+Omm27qdEw8HueHP/whDz/8MK+++iptbW1ccskl3TaGDt///ve58sormTdvHmPHjuWyyy7j6quv5pvf/CZvv/02AF/5ylfyxz/zzDNcfvnlXHfddXzwwQfcd999PPTQQ/zwhz/c6TVefvllRo8eTVFRUX7bz372M5544gkee+wxPvroI37/+9/nv/zwPI8zzjiD9evX89RTTzFnzhyOOOIITjrpJJqamoBd//whV+L/9ttv88QTT/Daa6/heR6nn346mUwmf0w8Hue///u/+d3vfsfLL7/MqlWr+MY3vpHff+edd/Kb3/yGBx54gFmzZtHU1MTf//73/P76+nouvfRSPvvZz7Jw4UJefPFFzj///E6f04997GOsXr2alStX7umPRkRE+gNPRESknzr22GO9u+++2/M8z8tkMl55ebn33HPP5fdPmTLF+/SnP73T5w8ZMsT7yU9+0mnbrbfe6h122GGdtv3kJz/xhgwZstPzOI7jFRYWev/4xz/y2wDv73//+06fM2PGDO+cc87Z6f5tPfbYY96AAQPyjx988EEP8F5//fX8toULF3qA98Ybb+z2fNOmTfOuv/767bZv+54A3re//e3849dee80DvAceeCC/7Y9//KMXDAbzj48//njv9ttv73Te3/3ud15NTc1Ox3P99dd7J554Yqdt1157rXfiiSd6rutud/zzzz/vFRUVeclkstP2ESNGePfdd5/nebv++S9atMgDvFdffTW/bePGjV4oFPIee+wxz/O2vMdLlizJH/OLX/zCq6qqyj+uqanxfvzjH+cfZzIZb+DAgfmf7Zw5czzAW7FixU5fe2trqwd4L7744k6PERGR/kuZbhER6Zc++ugj3nzzzXxm17ZtLr74Yn7zm9/kj5k3bx4nnXRSt1+7oaGBa665htGjR1NcXExxcTHRaLRb55S/8MILnHLKKdTV1VFYWMiVV17Jpk2bOpUl27bdKXM7duxYSkpKWLhwYbeNA+DQQw/N/3dVVRUAEydO7LQtmUzS1tYGwJw5c7jtttuIRCL5Px3zx+Px+A6vkUgkCAaDnbZdddVVzJs3jzFjxnDdddfx7LPP5vfNmTOHaDTKgAEDOl1n+fLl+VL3Xf38Fy5ciG3bHH300fltAwYMYMyYMZ3ev3A4zIgRI/KPa2pqaGhoAHLl7R3z4zts+zM57LDDOOmkk5g4cSIXXnghv/71r2lubu40llAoBLDT90ZERPo3u7cHICIisjceeOABHMehrq4uv83zPHw+H83NzZSWluaDmT1hmuZ2c3K3LjeGXDDY2NjI3XffzZAhQwgEAkyZMoV0Or13L2YbK1eu5PTTT+eaa67h+9//PmVlZcyaNYvPfe5z242lYy767rbtC5/Pt925d7TNdd38/3/ve9/rNH+6w7aBdYfy8nLef//9TtuOOOIIli9fztNPP82///1vLrroIk4++WT+8pe/4LouNTU1vPjii9udq6SkBGCXP/9tf8Zbb9/6/dv6dULute7suTtiWRbPPfccs2fP5tlnn+XnP/853/rWt3jjjTcYNmwYQL4cvqKiosvnFRGR/kOZbhER6Xccx+G3v/0td955J/Pmzcv/effddxkyZAh/+MMfgFyG9vnnn9/pefx+P9lsttO2iooK1q9f3ymwmjdvXqdjXnnlFa677jpOP/10xo8fTyAQYOPGjd32+t5++20cx+HOO+/kmGOOYfTo0axbt2674xzHyc+phlz2v6WlhbFjx3bbWPbGEUccwUcffcTIkSO3+2OaO/7VY9KkSXz44YfbBbRFRUVcfPHF/PrXv+bRRx/lr3/9K01NTRxxxBGsX78e27a3u0Z5eTmw65//IYccguM4vPHGG/ltmzZtYtGiRYwbN65Lr7O4uJiamhpef/31/DbHcZgzZ06n4wzDYOrUqXzve9/jnXfewe/3d5r3PX/+fHw+H+PHj+/SdUVEpH9RpltERPqdJ598kubmZj73uc9RXFzcad8FF1zAAw88wFe+8hVuvfVWTjrpJEaMGMEll1yC4zg8/fTT+YZkQ4cO5eWXX+aSSy4hEAhQXl7O9OnTaWxs5I477uCCCy7gX//6F08//XSnBl8jR47kd7/7HZMnT6atrY0bb7xxr7Lqra2t2wX0ZWVljBgxAsdx+PnPf85ZZ53Fq6++usMlpXw+H9deey0/+9nP8Pl8fOUrX+GYY47hYx/72B6PpTt95zvf4cwzz2TQoEFceOGFmKbJe++9x/vvv88PfvCDHT7n4x//OLFYjAULFjBhwgQAfvKTn1BTU8Phhx+OaZr8+c9/prq6mpKSEk4++WSmTJnCueeey8yZMxkzZgzr1q3jqaee4txzz2Xy5Mm7/PmPGjWKc845hy984Qvcd999FBYWcsstt1BXV8c555zT5dd6/fXX8+Mf/5hRo0Yxbtw47rrrLlpaWvL733jjDZ5//nlOPfVUKisreeONN2hsbOwU2L/yyiscf/zxe/UZEhGRvk+ZbhER6XceeOABTj755O0CboBPfepTzJs3j7lz5zJ9+nT+/Oc/88QTT3D44Ydz4okndsps3nbbbaxYsYIRI0bkS3vHjRvHL3/5S37xi19w2GGH8eabb3bqVg25tcGbm5uZNGkSV1xxBddddx2VlZV7/DpefPFFJk2a1OnPd77zHQ4//HDuuusuZs6cyYQJE/jDH/7QaamsDuFwmJtvvpnLLruMKVOmEAqF+NOf/rTH4+hup512Gk8++STPPfccRx11FMcccwx33XUXQ4YM2elzBgwYwPnnn5+vUgCIRCLMnDmTyZMnc9RRR7FixQqeeuopTNPEMAyeeuopTjjhBD772c8yevRoLrnkElasWJGfd767n/+DDz7IkUceyZlnnsmUKVPwPI+nnnpqu5LyXfn617/OlVdeyVVXXcWUKVMoLCzkvPPOy+8vKiri5Zdf5vTTT2f06NF8+9vf5s477+STn/xk/pg//vGPfOELX+jyNUVEpH8xvD2ZmCQiIiJ9wkMPPcQNN9zQKava373//vucfPLJLFmyhMLCwt4ezn7xz3/+kxtvvJH33nsP21YBoojIgUiZbhEREekTJk6cyB133MGKFSt6eyj7TSwW48EHH1TALSJyANPf8CIiItJnzJgxo7eHsF9ddNFFvT0EERHpYSovFxEREREREekhKi8XERERERER6SEKukVERERERER6iIJuERERERERkR6ioFtERERERESkhyjoFhEREREREekhCrpFREREREREeoiCbhEREREREZEeoqBbREREREREpIco6BYRERERERHpIf8f5QBQ8kRBLAIAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Print results\n", + "print(\"\\nModel Performance:\")\n", + "for name, metrics in results.items():\n", + " print(f\"\\n{name}:\")\n", + " print(f\"RMSE: {metrics['RMSE']:.2f} seconds\")\n", + " print(f\"R2 Score: {metrics['R2']:.3f}\")\n", + "\n", + "# Visualize predictions vs actual values for the best model\n", + "plt.figure(figsize=(10, 6))\n", + "best_model_name = max(results.items(), key=lambda x: x[1]['R2'])[0]\n", + "best_model = models[best_model_name]\n", + "y_pred = best_model.predict(X_test_scaled)\n", + "\n", + "plt.scatter(y_test, y_pred, alpha=0.5)\n", + "plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'r--', lw=2)\n", + "plt.xlabel('Actual Lap Time (seconds)')\n", + "plt.ylabel('Predicted Lap Time (seconds)')\n", + "plt.title(f'Actual vs Predicted Lap Times\\n{best_model_name}')\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAJOCAYAAACqS2TfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABsI0lEQVR4nO3deXwO5/7/8fedhGy3JChiCUmKSFANSkOLUI2tjUZLhaJEOT20qNLY1Xbs1cVSrURLba06Wt1VLEWVWlpyqJRDK8qhEoKIZH5/+Lm/vZsEiUxuidfz8ZjHw8xcM/OZuZKe88513XNbDMMwBAAAAAAACpyTowsAAAAAAKC4InQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdANAERUfHy+LxZLjMnToUFOueeDAAY0bN05Hjx415fy34+jRo7JYLJoxY4ajS8m3rVu3aty4cTp37pyjSykQ139GC/Lnxd/f3+5n3Wq1qnHjxnrvvfcK7Bo3ktM9tWjRQi1atMjzuSZPnqw1a9Zk256QkCCLxaKEhIR815lf16/94YcfFvq1/2rcuHG5/vftr0uLFi1sv/vx8fEOrRkAcuPi6AIAALcnLi5OtWrVsttWqVIlU6514MABjR8/Xi1atJC/v78p17ibbd26VePHj1evXr3k4+Pj6HJuW/v27bVt2zZVrFixQM/btGlT2x9XfvvtN82YMUM9e/ZUWlqa/vGPfxTotW7F3Llz83Xc5MmT9eSTT6pjx4522+vXr69t27YpJCSkAKormmJiYtSmTRvbenJysqKiojRw4EBFR0fbtnt5ealixYratm2b7r33XkeUCgA3RegGgCKuTp06atiwoaPLuC0ZGRmyWCxycbk7/2fp0qVLcnNzc3QZBa5cuXIqV65cgZ/Xx8dHDz74oG39kUceUbVq1TRr1qxcQ3dmZqauXr0qV1fXAq+noMOxl5eX3f3djapUqaIqVarY1q/PLKhatWqOz+Zuf14A7mxMLweAYm7FihUKCwuTp6enrFarIiIitHv3brs2O3fu1NNPPy1/f3+5u7vL399fXbt21X//+19bm/j4eD311FOSpPDwcNv0zutTOv39/dWrV69s1//71Nvr01fff/99vfTSS6pcubJcXV11+PBhSdI333yjVq1aycvLSx4eHmratKnWr1+fr3u/PhX422+/Vd++fVW2bFl5eXmpR48eSktL08mTJ9W5c2f5+PioYsWKGjp0qDIyMmzHX5+2Om3aNE2aNElVq1aVm5ubGjZsmGNNW7ZsUatWrVSqVCl5eHioSZMmWrduXY41ffXVV+rdu7fKlSsnDw8PxcbG6uWXX5YkBQQE2J7v9SnGK1as0KOPPqqKFSvK3d1dwcHBeuWVV5SWlmZ3/l69eslqterw4cNq166drFar/Pz89NJLLyk9Pd2ubXp6ul599VUFBwfLzc1NZcuWVXh4uLZu3WprYxiG5s6dq/vvv1/u7u4qXbq0nnzySf3666+3/Pz/PhW7Tp06+uGHH/Twww/Lw8NDgYGB+te//qWsrKybnjMnPj4+CgoKsv28/rXfJk6cqICAALm6umrDhg2Srv28P/744ypTpozc3NwUGhqqlStXZjvv9u3b1bRpU7m5ualSpUqKjY21+/n46z39fXr5zZ6txWJRWlqaFi9ebDdVWsp5enle+vW3337Tk08+qVKlSsnHx0fdunXTDz/8UKBTsMePH6/GjRurTJky8vLyUv369fXuu+/KMAy7dv7+/urQoYM+/vhj3XfffXJzc1NgYKBef/31AqlDUo7Ty69PT9+3b5+eeuopeXt7q0yZMhoyZIiuXr2qgwcPqk2bNipVqpT8/f01bdq0bOdNTU3V0KFDFRAQoJIlS6py5coaNGhQtt+5VatWqXHjxvL29rb9PPfu3bvA7g9A0UfoBoAi7voI3l+X6yZPnqyuXbsqJCREK1eu1Pvvv6/z58/r4Ycf1oEDB2ztjh49qqCgIL322mv68ssvNXXqVCUnJ+uBBx7Q//73P0nXpgpPnjxZkvTWW29p27Zt2rZtm9q3b5+vumNjY3Xs2DHNnz9fn3zyicqXL68lS5bo0UcflZeXlxYvXqyVK1eqTJkyioiIyHfwlq5NVfX29tby5cs1atQoffDBB+rbt6/at2+vevXq6cMPP1TPnj01c+ZMvfHGG9mOf/PNN/XFF1/otdde05IlS+Tk5KS2bdtq27ZttjYbN25Uy5YtlZKSonfffVfLli1TqVKl9Nhjj2nFihXZztm7d2+VKFFC77//vj788EP94x//0MCBAyVJq1evtj3f+vXrS5J++eUXtWvXTu+++66++OILDRo0SCtXrtRjjz2W7dwZGRl6/PHH1apVK/373/9W7969NXv2bE2dOtXW5urVq2rbtq0mTJhgC0Xx8fFq0qSJjh07ZmvXr18/DRo0SI888ojWrFmjuXPnav/+/WrSpIn++OOPfPXHyZMn1a1bN3Xv3l1r165V27ZtFRsbqyVLluTrfBkZGfrvf/+bbVT99ddf17fffqsZM2bo888/V61atbRhwwY1bdpU586d0/z58/Xvf/9b999/v7p06WIX2g4cOKBWrVrp3Llzio+P1/z587V7925NnDjxpvXcyrPdtm2b3N3d1a5dO1tf32ya+q30a1pamsLDw7VhwwZNnTpVK1euVIUKFdSlS5c8PNGbO3r0qPr166eVK1dq9erVtqnfEyZMyNZ2z549GjRokAYPHqyPP/5YTZo00Ysvvlgo71/o3Lmz6tWrp48++kh9+/bV7NmzNXjwYHXs2FHt27fXxx9/rJYtW2r48OFavXq17biLFy+qefPmWrx4sV544QV9/vnnGj58uOLj4/X444/b/riwbds2denSRYGBgVq+fLnWrVunMWPG2P13GABkAACKpLi4OENSjktGRoZx7Ngxw8XFxRg4cKDdcefPnzd8fX2Nzp0753ruq1evGhcuXDA8PT2NOXPm2LavWrXKkGRs2LAh2zHVqlUzevbsmW178+bNjebNm9vWN2zYYEgymjVrZtcuLS3NKFOmjPHYY4/Zbc/MzDTq1atnNGrU6AZPwzCOHDliSDKmT59u23b9Gf39GXTs2NGQZMyaNctu+/3332/Ur18/2zkrVapkXLp0ybY9NTXVKFOmjPHII4/Ytj344ING+fLljfPnz9u2Xb161ahTp45RpUoVIysry66mHj16ZLuH6dOnG5KMI0eO3PBes7KyjIyMDGPjxo2GJGPv3r22fT179jQkGStXrrQ7pl27dkZQUJBt/b333jMkGQsXLsz1Otu2bTMkGTNnzrTbfvz4ccPd3d0YNmzYDeu8fq9/vZ/mzZsbkozvv//erm1ISIgRERFxw/MZxrWfs3bt2hkZGRlGRkaGceTIEds9v/zyy4Zh/F+/3XvvvcaVK1fsjq9Vq5YRGhpqZGRk2G3v0KGDUbFiRSMzM9MwDMPo0qWL4e7ubpw8edLW5urVq0atWrVyvKe//ozfyrM1DMPw9PTM8Xfm+u/IX3/PbrVf33rrLUOS8fnnn9u169evnyHJiIuLu2FN16+9atWqG7b7q8zMTCMjI8N49dVXjbJly9p+1g3jWn9ZLBZjz549dse0bt3a8PLyMtLS0m7pGjn9fv9931/vbezYsTn+7N5///2GJGP16tW2bRkZGUa5cuWMqKgo27YpU6YYTk5Oxg8//GB3/IcffmhIMj777DPDMAxjxowZhiTj3Llzt3QfAO5OjHQDQBH33nvv6YcffrBbXFxc9OWXX+rq1avq0aOH3Si4m5ubmjdvbjd19cKFCxo+fLiqV68uFxcXubi4yGq1Ki0tTYmJiabU3alTJ7v1rVu36uzZs+rZs6ddvVlZWWrTpo1++OGHbNM6b1WHDh3s1oODgyUp2yh9cHCw3ZT666Kiouw+c319BHvTpk3KzMxUWlqavv/+ez355JOyWq22ds7OznrmmWf022+/6eDBgze8/5v59ddfFR0dLV9fXzk7O6tEiRJq3ry5JGXrI4vFkm0E/L777rO7t88//1xubm43nAb76aefymKxqHv37nZ94uvrq3r16uX77dq+vr5q1KjRDeu7kc8++0wlSpRQiRIlFBAQoJUrV2rgwIHZRqEff/xxlShRwrZ++PBh/ec//1G3bt0kye6e2rVrp+TkZFs/bdiwQa1atVKFChVsxzs7O9/SiPGtPNv8uJV+3bhxo0qVKmX3EjJJ6tq1a4HW8u233+qRRx6Rt7e37edxzJgxOnPmjE6dOmXXtnbt2qpXr57dtujoaKWmpurHH38s0Lr+LqfffYvForZt29q2ubi4qHr16nbP8dNPP1WdOnV0//332/2cRERE2E39f+CBByRdG1FfuXKlfv/9d1PvB0DRdHe+sQYAipHg4OAcX6R2ferv9f9T+HdOTv/3d9fo6GitX79eo0eP1gMPPCAvLy9ZLBa1a9dOly5dMqXuv7/R+nq9Tz75ZK7HnD17Vp6ennm+VpkyZezWS5Ysmev2y5cvZzve19c3x21XrlzRhQsXdP78eRmGkeNbuq+/Sf7MmTN22/PyRu8LFy7o4YcflpubmyZOnKiaNWvKw8NDx48fV1RUVLY+8vDwyPZiNldXV7t7O336tCpVqmT3c/B3f/zxhwzDsAuefxUYGHjL9/BXZcuWzbbN1dX1ln/WHnroIc2ePVsWi0UeHh669957bX36V7n9jA0dOjTXr9W7/nGKM2fO5NrvN3MrzzY/bqVfz5w5k2N/5daH+bFjxw49+uijatGihRYuXKgqVaqoZMmSWrNmjSZNmpStH2/0HP/+e1HQcvodz+k5lixZUqmpqbb1P/74Q4cPH7b7o81fXf85adasmdasWaPXX39dPXr0UHp6umrXrq2RI0cW+B86ABRdhG4AKKbuueceSdKHH36oatWq5douJSVFn376qcaOHatXXnnFtj09PV1nz5695eu5ublle6GTdO3/nF6v5a8sFkuO9b7xxhu5vom4IINDXpw8eTLHbSVLlpTVapWLi4ucnJyUnJycrd2JEyckKdsz+Pv938i3336rEydOKCEhwTa6Lem2vs+7XLly2rJli7KysnINh/fcc48sFos2b96c41u/zXgT+K3w9va+pTf25/YzFhsbq6ioqByPCQoKknTtDwO59fvN3MqzNUvZsmW1Y8eObNtvpe5btXz5cpUoUUKffvqpXXjN6TvHc7v29W05/QHmTnDPPffI3d1dixYtynX/dZGRkYqMjFR6erq2b9+uKVOmKDo6Wv7+/goLCyuskgHcwQjdAFBMRUREyMXFRUlJSTecymyxWGQYRrYA9c477ygzM9Nu2/U2OY1I+vv7a9++fXbbDh06pIMHD+YYuv+uadOm8vHx0YEDBzRgwICbti9Mq1ev1vTp020B4/z58/rkk0/08MMPy9nZWZ6enmrcuLFWr16tGTNmyN3dXZKUlZWlJUuWqEqVKqpZs+ZNr5Pb870eHv/eRwsWLMj3PbVt21bLli1TfHx8rtOgO3TooH/961/6/fff1blz53xf604RFBSkGjVqaO/evbaXAuYmPDxca9eu1R9//GH7Y09mZmaOL8X7u1t5tlLeRvdvVfPmzbVy5Up9/vnndlOoly9fXmDXuP71fs7OzrZtly5d0vvvv59j+/3792vv3r12U8w/+OADlSpVyvaiwDtNhw4dNHnyZJUtW1YBAQG3dIyrq6uaN28uHx8fffnll9q9ezehG4AkQjcAFFv+/v569dVXNXLkSP36669q06aNSpcurT/++EM7duyQp6enxo8fLy8vLzVr1kzTp0/XPffcI39/f23cuFHvvvuufHx87M5Zp04dSdLbb7+tUqVKyc3NTQEBASpbtqyeeeYZde/eXc8//7w6deqk//73v5o2bdotf0+z1WrVG2+8oZ49e+rs2bN68sknVb58eZ0+fVp79+7V6dOnNW/evIJ+TLfE2dlZrVu31pAhQ5SVlaWpU6cqNTVV48ePt7WZMmWKWrdurfDwcA0dOlQlS5bU3Llz9fPPP2vZsmW3NLJdt25dSdKcOXPUs2dPlShRQkFBQWrSpIlKly6t/v37a+zYsSpRooSWLl2qvXv35vueunbtqri4OPXv318HDx5UeHi4srKy9P333ys4OFhPP/20mjZtqueee07PPvusdu7cqWbNmsnT01PJycnasmWL6tatm+v3Yt+pFixYoLZt2yoiIkK9evVS5cqVdfbsWSUmJurHH3/UqlWrJEmjRo3S2rVr1bJlS40ZM0YeHh566623bum9ArfybKVr/Z2QkKBPPvlEFStWVKlSpWwj7fnVs2dPzZ49W927d9fEiRNVvXp1ff755/ryyy8l6ZZH3rdv357j9ubNm6t9+/aaNWuWoqOj9dxzz+nMmTOaMWNGrjMfKlWqpMcff1zjxo1TxYoVtWTJEn399deaOnWqPDw88nejJhs0aJA++ugjNWvWTIMHD9Z9992nrKwsHTt2TF999ZVeeuklNW7cWGPGjNFvv/2mVq1aqUqVKjp37pzmzJlj984FACB0A0AxFhsbq5CQEM2ZM0fLli1Tenq6fH199cADD6h///62dh988IFefPFFDRs2TFevXlXTpk319ddfZ3vRWEBAgF577TXNmTNHLVq0UGZmpuLi4tSrVy9FR0frxIkTmj9/vuLi4lSnTh3NmzfPLpjeTPfu3VW1alVNmzZN/fr10/nz51W+fHndf//9OX4HeGEZMGCALl++rBdeeEGnTp1S7dq1tW7dOjVt2tTWpnnz5vr22281duxY9erVS1lZWapXr57Wrl2b7WVOuWnRooViY2O1ePFiLVy4UFlZWdqwYYNatGihdevW6aWXXlL37t3l6empyMhIrVixIt8jhS4uLvrss880ZcoULVu2TK+99ppKlSqlevXq2b2Ea8GCBXrwwQe1YMECzZ07V1lZWapUqZKaNm2a7WVoRUF4eLh27NihSZMmadCgQfrzzz9VtmxZhYSE2I3m16lTR998841eeukl9ezZU6VLl9YzzzyjTp066bnnnrvhNW712c6ZM0f//Oc/9fTTT9u+oiq/L6e7ztPTU99++60GDRqkYcOGyWKx6NFHH9XcuXPVrl27bH9Iy83MmTNz3L5hwwa1bNlSixYt0tSpU/XYY4+pcuXK6tu3r8qXL68+ffpkO+b+++/Xs88+q7Fjx+qXX35RpUqVNGvWLA0ePPh2btVUnp6e2rx5s/71r3/p7bff1pEjR+Tu7q6qVavqkUcekb+/vySpcePG2rlzp4YPH67Tp0/Lx8dHDRs21LfffqvatWs79iYA3DEshvH/v2gQAADYOXr0qAICAjR9+vRcX7wFFAWTJ0/WqFGjdOzYMVWpUqXQruvv7686dero008/LbRrAsCdhpFuAACAYuTNN9+UJNWqVUsZGRn69ttv9frrr6t79+6FGrgBANcQugEAAIoRDw8PzZ49W0ePHlV6erqqVq2q4cOHa9SoUY4uDQDuSkwvBwAAAADAJIX75ZEAAAAAANxFCN0AAAAAAJiE0A0AAAAAgEl4kVoxlJWVpRMnTqhUqVKyWCyOLgcAAAAAih3DMHT+/HlVqlRJTk65j2cTuouhEydOyM/Pz9FlAAAAAECxd/z48Rt+JSOhuxgqVaqUpGud7+Xl5eBqAAAAAKD4SU1NlZ+fny1/5YbQXQxdn1Lu5eVF6AYAAAAAE93sI728SA0AAAAAAJMQugEAAAAAMAnTy4uxZqOWydnV3dFlAAAAAECe7Zrew9ElFAhGugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6C9nRo0dlsVi0Z88eR5cCAAAAADBZsQ3dp06dUr9+/VS1alW5urrK19dXERER2rZtm6NLs5NTCH/xxRfVoEEDubq66v7773dYbQAAAACA2+Pi6ALM0qlTJ2VkZGjx4sUKDAzUH3/8ofXr1+vs2bOOLu2mDMNQ79699f3332vfvn2OLgcAAAAAkE/FcqT73Llz2rJli6ZOnarw8HBVq1ZNjRo1UmxsrNq3by9Jslgsmjdvntq2bSt3d3cFBARo1apVduf5/fff1aVLF5UuXVply5ZVZGSkjh49atcmLi5OwcHBcnNzU61atTR37ly7/Tt27FBoaKjc3NzUsGFD7d69+6b1v/766/rnP/+pwMDA23sQAAAAAACHKpah22q1ymq1as2aNUpPT8+13ejRo9WpUyft3btX3bt3V9euXZWYmChJunjxosLDw2W1WrVp0yZt2bJFVqtVbdq00ZUrVyRJCxcu1MiRIzVp0iQlJiZq8uTJGj16tBYvXixJSktLU4cOHRQUFKRdu3Zp3LhxGjp0qPkPAAAAAABwRyiWodvFxUXx8fFavHixfHx81LRpU40YMSLbVO2nnnpKMTExqlmzpiZMmKCGDRvqjTfekCQtX75cTk5Oeuedd1S3bl0FBwcrLi5Ox44dU0JCgiRpwoQJmjlzpqKiohQQEKCoqCgNHjxYCxYskCQtXbpUmZmZWrRokWrXrq0OHTro5ZdfLvD7TU9PV2pqqt0CAAAAAHC8Yhm6pWuf6T5x4oTWrl2riIgIJSQkqH79+oqPj7e1CQsLszsmLCzMNtK9a9cuHT58WKVKlbKNnJcpU0aXL19WUlKSTp8+rePHj6tPnz62/VarVRMnTlRSUpIkKTExUfXq1ZOHh0eu1ywIU6ZMkbe3t23x8/Mr8GsAAAAAAPKu2L5ITZLc3NzUunVrtW7dWmPGjFFMTIzGjh2rXr165XqMxWKRJGVlZalBgwZaunRptjblypXT5cuXJV2bYt64cWO7/c7OzpKuvRCtMMTGxmrIkCG29dTUVII3AAAAANwBinXo/ruQkBCtWbPGtr59+3b16NHDbj00NFSSVL9+fa1YsULly5eXl5dXtnN5e3urcuXK+vXXX9WtW7dcr/f+++/r0qVLcnd3t12joLm6usrV1bXAzwsAAAAAuD3Fcnr5mTNn1LJlSy1ZskT79u3TkSNHtGrVKk2bNk2RkZG2dqtWrdKiRYt06NAhjR07Vjt27NCAAQMkSd26ddM999yjyMhIbd68WUeOHNHGjRv14osv6rfffpMkjRs3TlOmTNGcOXN06NAh/fTTT4qLi9OsWbMkSdHR0XJyclKfPn104MABffbZZ5oxY8ZN6z98+LD27NmjkydP6tKlS9qzZ4/27Nlje4EbAAAAAKBoKJYj3VarVY0bN9bs2bOVlJSkjIwM+fn5qW/fvhoxYoSt3fjx47V8+XI9//zz8vX11dKlSxUSEiJJ8vDw0KZNmzR8+HBFRUXp/Pnzqly5slq1amUb+Y6JiZGHh4emT5+uYcOGydPTU3Xr1tWgQYNsdXzyySfq37+/QkNDFRISoqlTp6pTp043rD8mJkYbN260rV8ffT9y5Ij8/f0L8EkBAAAAAMxkMQrrg8d3GIvFoo8//lgdO3Z0dCkFLjU1Vd7e3qo3cL6cXd0dXQ4AAAAA5Nmu6T1u3siBrueulJSUHD+SfF2xnF4OAAAAAMCdgNANAAAAAIBJiuVnum/FXTqrHgAAAABQiBjpBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCQuji4A5tk0sau8vLwcXQYAAAAA3LUY6QYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJC6OLgDmaTZqmZxd3R1dBoqRXdN7OLoEAAAAoEhhpBsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmh20RHjx6VxWLRnj17HF0KAAAAAMABikXoPnXqlPr166eqVavK1dVVvr6+ioiI0LZt2xxdWjYfffSRGjduLG9vb5UqVUq1a9fWSy+9JElq0aKFLBZLrou/v79jiwcAAAAA5ImLowsoCJ06dVJGRoYWL16swMBA/fHHH1q/fr3Onj3r6NLsfPPNN3r66ac1efJkPf7447JYLDpw4IDWr18vSVq9erWuXLkiSTp+/LgaNWqkb775RrVr15YkOTs7O6x2AAAAAEDeFfmR7nPnzmnLli2aOnWqwsPDVa1aNTVq1EixsbFq3769JMlisWjevHlq27at3N3dFRAQoFWrVtmd5/fff1eXLl1UunRplS1bVpGRkTp69Khdm7i4OAUHB8vNzU21atXS3Llz7fbv2LFDoaGhcnNzU8OGDbV79267/Z9++qkeeughvfzyywoKClLNmjXVsWNHvfHGG5KkMmXKyNfXV76+vipXrpwkqWzZstm2AQAAAACKhiIfuq1Wq6xWq9asWaP09PRc240ePVqdOnXS3r171b17d3Xt2lWJiYmSpIsXLyo8PFxWq1WbNm3Sli1bZLVa1aZNG9vI88KFCzVy5EhNmjRJiYmJmjx5skaPHq3FixdLktLS0tShQwcFBQVp165dGjdunIYOHWpXg6+vr/bv36+ff/65QJ9Benq6UlNT7RYAAAAAgOMV+dDt4uKi+Ph4LV68WD4+PmratKlGjBihffv22bV76qmnFBMTo5o1a2rChAlq2LChbYR5+fLlcnJy0jvvvKO6desqODhYcXFxOnbsmBISEiRJEyZM0MyZMxUVFaWAgABFRUVp8ODBWrBggSRp6dKlyszM1KJFi1S7dm116NBBL7/8sl0NAwcO1AMPPKC6devK399fTz/9tBYtWnTDPxbciilTpsjb29u2+Pn53db5AAAAAAAFo8iHbunaZ7pPnDihtWvXKiIiQgkJCapfv77i4+NtbcLCwuyOCQsLs41079q1S4cPH1apUqVsI+dlypTR5cuXlZSUpNOnT+v48ePq06ePbb/VatXEiROVlJQkSUpMTFS9evXk4eGR6zU9PT21bt06HT58WKNGjZLVatVLL72kRo0a6eLFi/m+/9jYWKWkpNiW48eP5/tcAAAAAICCUyxepCZJbm5uat26tVq3bq0xY8YoJiZGY8eOVa9evXI9xmKxSJKysrLUoEEDLV26NFubcuXK6fLly5KuTTFv3Lix3f7rLzczDOOWa7333nt17733KiYmRiNHjlTNmjW1YsUKPfvss7d8jr9ydXWVq6trvo4FAAAAAJinWIx05yQkJERpaWm29e3bt9vt3759u2rVqiVJql+/vn755ReVL19e1atXt1u8vb1VoUIFVa5cWb/++mu2/QEBAbbr7d27V5cuXcr1mjnx9/eXh4eHXa0AAAAAgOKhyIfuM2fOqGXLllqyZIn27dunI0eOaNWqVZo2bZoiIyNt7VatWqVFixbp0KFDGjt2rHbs2KEBAwZIkrp166Z77rlHkZGR2rx5s44cOaKNGzfqxRdf1G+//SZJGjdunKZMmaI5c+bo0KFD+umnnxQXF6dZs2ZJkqKjo+Xk5KQ+ffrowIED+uyzzzRjxgy7WseNG6dhw4YpISFBR44c0e7du9W7d29lZGSodevWhfTEAAAAAACFpchPL7darWrcuLFmz56tpKQkZWRkyM/PT3379tWIESNs7caPH6/ly5fr+eefl6+vr5YuXaqQkBBJkoeHhzZt2qThw4crKipK58+fV+XKldWqVSt5eXlJkmJiYuTh4aHp06dr2LBh8vT0VN26dTVo0CBbHZ988on69++v0NBQhYSEaOrUqerUqZOthubNm+utt95Sjx499Mcff6h06dIKDQ3VV199paCgoMJ7aAAAAACAQmEx8vJh5CLKYrHo448/VseOHR1dSqFITU2Vt7e36g2cL2dXd0eXg2Jk1/Qeji4BAAAAuCNcz10pKSm2wdqcFPnp5QAAAAAA3KkI3QAAAAAAmKTIf6b7VtwFM+gBAAAAAHcgRroBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwiYujC4B5Nk3sKi8vL0eXAQAAAAB3LUa6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADCJi6MLgHmajVomZ1d3R5eB27Breg9HlwAAAADgNjDSDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdhezo0aOyWCzas2ePo0sBAAAAAJis2IbuU6dOqV+/fqpatapcXV3l6+uriIgIbdu2zdGl2fl7CN+7d6+6du0qPz8/ubu7Kzg4WHPmzHFskQAAAACAfHFxdAFm6dSpkzIyMrR48WIFBgbqjz/+0Pr163X27FlHl3ZDu3btUrly5bRkyRL5+flp69ateu655+Ts7KwBAwY4ujwAAAAAQB4Uy5Huc+fOacuWLZo6darCw8NVrVo1NWrUSLGxsWrfvr0kyWKxaN68eWrbtq3c3d0VEBCgVatW2Z3n999/V5cuXVS6dGmVLVtWkZGROnr0qF2buLg4BQcHy83NTbVq1dLcuXPt9u/YsUOhoaFyc3NTw4YNtXv37hvW3rt3b73++utq3ry5AgMD1b17dz377LNavXr17T8YAAAAAEChKpah22q1ymq1as2aNUpPT8+13ejRo9WpUyft3btX3bt3V9euXZWYmChJunjxosLDw2W1WrVp0yZt2bJFVqtVbdq00ZUrVyRJCxcu1MiRIzVp0iQlJiZq8uTJGj16tBYvXixJSktLU4cOHRQUFKRdu3Zp3LhxGjp0aJ7vJyUlRWXKlMnHkwAAAAAAOFKxnF7u4uKi+Ph49e3bV/Pnz1f9+vXVvHlzPf3007rvvvts7Z566inFxMRIkiZMmKCvv/5ab7zxhubOnavly5fLyclJ77zzjiwWi6Rro9o+Pj5KSEjQo48+qgkTJmjmzJmKioqSJAUEBOjAgQNasGCBevbsqaVLlyozM1OLFi2Sh4eHateurd9++03/+Mc/bvletm3bppUrV2rdunW5tklPT7f740JqamqenhcAAAAAwBzFcqRbuvaZ7hMnTmjt2rWKiIhQQkKC6tevr/j4eFubsLAwu2PCwsJsI927du3S4cOHVapUKdvIeZkyZXT58mUlJSXp9OnTOn78uPr06WPbb7VaNXHiRCUlJUmSEhMTVa9ePXl4eOR6zRvZv3+/IiMjNWbMGLVu3TrXdlOmTJG3t7dt8fPzu+VrAAAAAADMUyxHuq9zc3NT69at1bp1a40ZM0YxMTEaO3asevXqlesx10e1s7Ky1KBBAy1dujRbm3Llyuny5cuSrk0xb9y4sd1+Z2dnSZJhGPmu/cCBA2rZsqX69u2rUaNG3bBtbGyshgwZYltPTU0leAMAAADAHaBYh+6/CwkJ0Zo1a2zr27dvV48ePezWQ0NDJUn169fXihUrVL58eXl5eWU7l7e3typXrqxff/1V3bp1y/V677//vi5duiR3d3fbNW5m//79atmypXr27KlJkybdtL2rq6tcXV1v2g4AAAAAULiK5fTyM2fOqGXLllqyZIn27dunI0eOaNWqVZo2bZoiIyNt7VatWqVFixbp0KFDGjt2rHbs2GH7Wq5u3brpnnvuUWRkpDZv3qwjR45o48aNevHFF/Xbb79JksaNG6cpU6Zozpw5OnTokH766SfFxcVp1qxZkqTo6Gg5OTmpT58+OnDggD777DPNmDHjhrXv379f4eHhat26tYYMGaKTJ0/q5MmTOn36tElPCwAAAABglmI50m21WtW4cWPNnj1bSUlJysjIkJ+fn/r27asRI0bY2o0fP17Lly/X888/L19fXy1dulQhISGSJA8PD23atEnDhw9XVFSUzp8/r8qVK6tVq1a2ke+YmBh5eHho+vTpGjZsmDw9PVW3bl0NGjTIVscnn3yi/v37KzQ0VCEhIZo6dao6deqUa+2rVq3S6dOntXTpUrup7dWqVcv2dWUAAAAAgDubxbidDx4XYRaLRR9//LE6duzo6FIKXGpqqry9vVVv4Hw5u7o7uhzchl3Te9y8EQAAAIBCdz13paSk5PiR5OuK5fRyAAAAAADuBIRuAAAAAABMUiw/030r7tJZ9QAAAACAQsRINwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACZxcXQBMM+miV3l5eXl6DIAAAAA4K7FSDcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJnFxdAEwT7NRy+Ts6u7oMky1a3oPR5cAAAAAALlipBsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhuxAcPXpUFotFe/bscXQpAAAAAIBCVKxC96lTp9SvXz9VrVpVrq6u8vX1VUREhLZt2+bo0uxcD+F/X7p37263n5AOAAAAAEWbi6MLKEidOnVSRkaGFi9erMDAQP3xxx9av369zp496+jScvTNN9+odu3atnV3d3cHVgMAAAAAKGjFZqT73Llz2rJli6ZOnarw8HBVq1ZNjRo1UmxsrNq3by9Jslgsmjdvntq2bSt3d3cFBARo1apVduf5/fff1aVLF5UuXVply5ZVZGSkjh49atcmLi5OwcHBcnNzU61atTR37ly7/Tt27FBoaKjc3NzUsGFD7d69O8eay5YtK19fX9vi7e1dcA8EAAAAAOBwxSZ0W61WWa1WrVmzRunp6bm2Gz16tDp16qS9e/eqe/fu6tq1qxITEyVJFy9eVHh4uKxWqzZt2qQtW7bIarWqTZs2unLliiRp4cKFGjlypCZNmqTExERNnjxZo0eP1uLFiyVJaWlp6tChg4KCgrRr1y6NGzdOQ4cONf8BAAAAAADuOMUmdLu4uCg+Pl6LFy+Wj4+PmjZtqhEjRmjfvn127Z566inFxMSoZs2amjBhgho2bKg33nhDkrR8+XI5OTnpnXfeUd26dRUcHKy4uDgdO3ZMCQkJkqQJEyZo5syZioqKUkBAgKKiojR48GAtWLBAkrR06VJlZmZq0aJFql27tjp06KCXX345x5qbNGli+2OB1WrNdUT8ZtLT05Wammq3AAAAAAAcr9iEbunaZ7pPnDihtWvXKiIiQgkJCapfv77i4+NtbcLCwuyOCQsLs41079q1S4cPH1apUqVsQbhMmTK6fPmykpKSdPr0aR0/flx9+vSxC8sTJ05UUlKSJCkxMVH16tWTh4dHrte8bsWKFdqzZ49tCQkJydd9T5kyRd7e3rbFz88vX+cBAAAAABSsYvUiNUlyc3NT69at1bp1a40ZM0YxMTEaO3asevXqlesxFotFkpSVlaUGDRpo6dKl2dqUK1dOly9flnRtinnjxo3t9js7O0uSDMO45Vr9/PxUvXr1W26fm9jYWA0ZMsS2npqaSvAGAAAAgDtAsQvdfxcSEqI1a9bY1rdv364ePXrYrYeGhkqS6tevrxUrVqh8+fLy8vLKdi5vb29VrlxZv/76q7p165br9d5//31dunTJ9jby7du3F+AdZefq6ipXV1dTrwEAAAAAyLtiE7rPnDmjp556Sr1799Z9992nUqVKaefOnZo2bZoiIyNt7VatWqWGDRvqoYce0tKlS7Vjxw69++67kqRu3bpp+vTpioyM1KuvvqoqVaro2LFjWr16tV5++WVVqVJF48aN0wsvvCAvLy+1bdtW6enp2rlzp/78808NGTJE0dHRGjlypPr06aNRo0bp6NGjmjFjRr7u6eDBg9m2hYSEqGTJkvl7SAAAAACAQlVsQrfValXjxo01e/ZsJSUlKSMjQ35+furbt69GjBhhazd+/HgtX75czz//vHx9fbV06VLbZ6k9PDy0adMmDR8+XFFRUTp//rwqV66sVq1a2Ua+Y2Ji5OHhoenTp2vYsGHy9PRU3bp1NWjQIFsdn3zyifr376/Q0FCFhIRo6tSp6tSpU57v6emnn8627ciRI/L398/7AwIAAAAAFDqLkZcPIRdxFotFH3/8sTp27OjoUkyVmpoqb29v1Rs4X86u7o4ux1S7pve4eSMAAAAAKGDXc1dKSkqOH0++rli9vRwAAAAAgDsJoRsAAAAAAJMUm89034q7aCY9AAAAAOAOwEg3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJnFxdAEwz6aJXeXl5eXoMgAAAADgrsVINwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmcXF0ATBPs1HL5Ozq7ugyCsSu6T0cXQIAAAAA5Bkj3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdhSghIUEWi0Xnzp2zbVuzZo2qV68uZ2dnDRo0yGG1AQAAAAAKXrEN3RaL5YZLr169TLmuv7+/XnvttRz3NWnSRMnJyfL29rZt69evn5588kkdP35cEyZMMKUmAAAAAIBjuDi6ALMkJyfb/r1ixQqNGTNGBw8etG1zd3fP0/kyMjJUokSJ26qpZMmS8vX1ta1fuHBBp06dUkREhCpVqnRb5wYAAAAA3HmK7Ui3r6+vbfH29pbFYpGvr68qVKighx56SAsXLrRr//PPP8vJyUlJSUmSro2Uz58/X5GRkfL09NTEiRMlSZ988okaNGggNzc3BQYGavz48bp69eot1fTX6eUJCQkqVaqUJKlly5ayWCxKSEiQJG3dulXNmjWTu7u7/Pz89MILLygtLa2AngwAAAAAoLAU29CdG4vFot69eysuLs5u+6JFi/Twww/r3nvvtW0bO3asIiMj9dNPP6l379768ssv1b17d73wwgs6cOCAFixYoPj4eE2aNCnPdTRp0sQ28v7RRx8pOTlZTZo00U8//aSIiAhFRUVp3759WrFihbZs2aIBAwbkeq709HSlpqbaLQAAAAAAx7vrQrckPfvsszp48KB27Ngh6drU8SVLlqh379527aKjo9W7d28FBgaqWrVqmjRpkl555RX17NlTgYGBat26tSZMmKAFCxbkuYaSJUuqfPnykqQyZcrI19dXJUuW1PTp0xUdHa1BgwapRo0aatKkiV5//XW99957unz5co7nmjJliry9vW2Ln59fnusBAAAAABS8uzJ0V6xYUe3bt9eiRYskSZ9++qkuX76sp556yq5dw4YN7dZ37dqlV199VVar1bb07dtXycnJunjxYoHUtmvXLsXHx9tdIyIiQllZWTpy5EiOx8TGxiolJcW2HD9+vEBqAQAAAADcnmL7IrWbiYmJ0TPPPKPZs2crLi5OXbp0kYeHh10bT09Pu/WsrCyNHz9eUVFR2c7n5uZWIHVlZWWpX79+euGFF7Ltq1q1ao7HuLq6ytXVtUCuDwAAAAAoOPkK3UlJSYqLi1NSUpLmzJmj8uXL64svvpCfn59q165d0DWaol27dvL09NS8efP0+eefa9OmTTc9pn79+jp48KCqV69uWl3169fX/v37Tb0GAAAAAKBw5Hl6+caNG1W3bl19//33Wr16tS5cuCBJ2rdvn8aOHVvgBZrF2dlZvXr1UmxsrKpXr66wsLCbHjNmzBi99957GjdunPbv36/ExEStWLFCo0aNsmv3+++/a8+ePXbL2bNnb6mu4cOHa9u2bfrnP/+pPXv26JdfftHatWs1cODAfN0nAAAAAMBx8hy6X3nlFU2cOFFff/21SpYsadseHh6ubdu2FWhxZuvTp4+uXLmS7QVquYmIiNCnn36qr7/+Wg888IAefPBBzZo1S9WqVbNrN2PGDIWGhtota9euvaVr3Hfffdq4caN++eUXPfzwwwoNDdXo0aNVsWLFPN8fAAAAAMCxLIZhGHk5wGq16qefflJAQIBKlSqlvXv3KjAwUEePHlWtWrVyfcP2nei7775TixYt9Ntvv6lChQqOLqfApKamytvbW/UGzpezq7ujyykQu6b3cHQJAAAAAGBzPXelpKTIy8sr13Z5Hun28fFRcnJytu27d+9W5cqV83o6h0hPT9fhw4c1evRode7cuVgFbgAAAADAnSPPoTs6OlrDhw/XyZMnZbFYlJWVpe+++05Dhw5Vjx5FYzRy2bJlCgoKUkpKiqZNm+bocgAAAAAAxVSep5dnZGSoV69eWr58uQzDkIuLizIzMxUdHa34+Hg5OzubVStuEdPLAQAAAMBctzq9PE9fGWYYhk6cOKGFCxdqwoQJ+vHHH5WVlaXQ0FDVqFHjtosGAAAAAKA4yXPorlGjhvbv368aNWooMDDQrLoAAAAAACjy8vSZbicnJ9WoUUNnzpwxqx4AAAAAAIqNPL9Ibdq0aXr55Zf1888/m1EPAAAAAADFRp6ml0tS9+7ddfHiRdWrV08lS5aUu7v9i7rOnj1bYMUBAAAAAFCU5Tl0v/baayaUAQAAAABA8ZPn0N2zZ08z6gAAAAAAoNjJc+g+duzYDfdXrVo138UAAAAAAFCc5Dl0+/v7y2Kx5Lo/MzPztgoCAAAAAKC4yHPo3r17t916RkaGdu/erVmzZmnSpEkFVhgAAAAAAEWdxTAMoyBOtG7dOk2fPl0JCQkFcTrchtTUVHl7eyslJUVeXl6OLgcAAAAAip1bzV15/p7u3NSsWVM//PBDQZ0OAAAAAIAiL8/Ty1NTU+3WDcNQcnKyxo0bpxo1ahRYYQAAAAAAFHV5Dt0+Pj7ZXqRmGIb8/Py0fPnyAisMAAAAAICiLs+he8OGDXbrTk5OKleunKpXry4XlzyfDgAAAACAYivPKdlisahJkybZAvbVq1e1adMmNWvWrMCKAwAAAACgKMvzi9TCw8N19uzZbNtTUlIUHh5eIEUBAAAAAFAc5Dl0G4aR7TPdknTmzBl5enoWSFEAAAAAABQHtzy9PCoqStK16eW9evWSq6urbV9mZqb27dunJk2aFHyFAAAAAAAUUbccur29vSVdG+kuVaqU3N3dbftKliypBx98UH379i34CgEAAAAAKKJuOXTHxcVJkvz9/TV06FCmkgMAAAAAcBMWwzAMRxeBgpWamipvb2/VGzhfzq7uubbbNb1HIVYFAAAAAMXH9dyVkpIiLy+vXNvl64u1P/zwQ61cuVLHjh3TlStX7Pb9+OOP+TklAAAAAADFTp7fXv7666/r2WefVfny5bV79241atRIZcuW1a+//qq2bduaUSMAAAAAAEVSnkP33Llz9fbbb+vNN99UyZIlNWzYMH399dd64YUXlJKSYkaNAAAAAAAUSXkO3ceOHbN9NZi7u7vOnz8vSXrmmWe0bNmygq0OAAAAAIAiLM+h29fXV2fOnJEkVatWTdu3b5ckHTlyRLyTDQAAAACA/5Pn0N2yZUt98sknkqQ+ffpo8ODBat26tbp06aInnniiwAsEAAAAAKCoyvPby99++21lZWVJkvr3768yZcpoy5Yteuyxx9S/f/8CLxAAAAAAgKIqz6HbyclJTk7/N0DeuXNnde7cuUCLAgAAAACgOMjz9HJJ2rx5s7p3766wsDD9/vvvkqT3339fW7ZsKdDiAAAAAAAoyvIcuj/66CNFRETI3d1du3fvVnp6uiTp/Pnzmjx5coEXCAAAAABAUZXn0D1x4kTNnz9fCxcuVIkSJWzbmzRpoh9//LFAiwMAAAAAoCjLc+g+ePCgmjVrlm27l5eXzp07VxA1AQAAAABQLOQ5dFesWFGHDx/Otn3Lli0KDAwskKIAAAAAACgO8hy6+/XrpxdffFHff/+9LBaLTpw4oaVLl2ro0KF6/vnnzajRNEePHpXFYtGePXscXQoAAAAAoBi6pdC9b98+23dzDxs2TB07dlR4eLguXLigZs2aKSYmRv369dOAAQPyXYjFYrnh0qtXr3yfOz8SEhJuWlN8fHyh1gQAAAAAKFpu6Xu6Q0NDlZycrPLlyyswMFA//PCDRowYocTERGVlZSkkJERWq/W2CklOTrb9e8WKFRozZowOHjxo2+bu7m7XPiMjw+5FbgWtSZMmdjW9+OKLSk1NVVxcnG2bt7e3adcHAAAAABR9tzTS7ePjoyNHjki6NiU7KytLnp6eatiwoRo1anTbgVuSfH19bYu3t7csFott/fLly/Lx8dHKlSvVokULubm5acmSJTpz5oy6du2qKlWqyMPDQ3Xr1tWyZcvszpuVlaWpU6eqevXqcnV1VdWqVTVp0qQca8jKylLfvn1Vs2ZNJScn29Xk7u4uV1dX23qFChX0xhtvKDAwUO7u7qpXr54+/PBD27muj5R/+eWXCg0Nlbu7u1q2bKlTp07p888/V3BwsLy8vNS1a1ddvHjRdlyLFi00YMAADRgwQD4+PipbtqxGjRolwzBu+xkDAAAAAArXLY10d+rUSc2bN1fFihVlsVjUsGFDOTs759j2119/LdAC/2r48OGaOXOm4uLi5OrqqsuXL6tBgwYaPny4vLy8tG7dOj3zzDMKDAxU48aNJUmxsbFauHChZs+erYceekjJycn6z3/+k+3cV65cUXR0tJKSkrRlyxaVL1/+hrWMGjVKq1ev1rx581SjRg1t2rRJ3bt3V7ly5dS8eXNbu3HjxunNN9+Uh4eHOnfurM6dO8vV1VUffPCBLly4oCeeeEJvvPGGhg8fbjtm8eLF6tOnj77//nvt3LlTzz33nKpVq6a+ffsW0JMEAAAAABSGWwrdb7/9tqKionT48GG98MIL6tu3r0qVKmV2bdkMGjRIUVFRdtuGDh1q+/fAgQP1xRdfaNWqVWrcuLHOnz+vOXPm6M0331TPnj0lSffee68eeughu3NcuHBB7du316VLl5SQkHDTaeNpaWmaNWuWvv32W4WFhUmSAgMDtWXLFi1YsMAudE+cOFFNmzaVJPXp00exsbFKSkqyven9ySef1IYNG+xCt5+fn2bPni2LxaKgoCD99NNPmj17dq6hOz09Xenp6bb11NTUG9YPAAAAACgctxS6JalNmzaSpF27dunFF190SOhu2LCh3XpmZqb+9a9/acWKFfr9999t4dPT01OSlJiYqPT0dLVq1eqG570+RX39+vXy8PC4aR0HDhzQ5cuX1bp1a7vtV65cUWhoqN22++67z/bvChUqyMPDw+6r1SpUqKAdO3bYHfPggw/KYrHY1sPCwjRz5kxlZmbmOMNgypQpGj9+/E3rBgAAAAAUrlsO3df99UVihe16mL5u5syZmj17tl577TXVrVtXnp6eGjRokK5cuSIp+8vXctOuXTstWbJE27dvV8uWLW/a/vqb3NetW6fKlSvb7XN1dbVb/+vL3iwWS7aXv1ksFtv58is2NlZDhgyxraempsrPz++2zgkAAAAAuH15Dt13ks2bNysyMlLdu3eXdC0M//LLLwoODpYk1ahRQ+7u7lq/fr1iYmJyPc8//vEP1alTR48//rjWrVtnNz08JyEhIXJ1ddWxY8du2jY/tm/fnm29Ro0auX6O3tXVNVvYBwAAAAA4XpEO3dWrV9dHH32krVu3qnTp0po1a5ZOnjxpC91ubm4aPny4hg0bppIlS6pp06Y6ffq09u/frz59+tida+DAgcrMzFSHDh30+eefZ/vc91+VKlVKQ4cO1eDBg5WVlaWHHnpIqamp2rp1q6xWq+3z4/l1/PhxDRkyRP369dOPP/6oN954QzNnzrytcwIAAAAACl+RDt2jR4/WkSNHFBERIQ8PDz333HPq2LGjUlJS7Nq4uLhozJgxOnHihCpWrKj+/fvneL5BgwYpKytL7dq10xdffKEmTZrkeu0JEyaofPnymjJlin799Vf5+Piofv36GjFixG3fV48ePXTp0iU1atRIzs7OGjhwoJ577rnbPi8AAAAAoHBZDL4A+o7SokUL3X///XrttdfyfY7U1FR5e3ur3sD5cnbN/XPtu6b3yPc1AAAAAOBudj13paSkyMvLK9d2ToVYEwAAAAAAdxVCNwAAAAAAJinSn+kujhISEhxdAgAAAACggDDSDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgElcHF0AzLNpYld5eXk5ugwAAAAAuGsx0g0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASVwcXQDM02zUMjm7uue6f9f0HoVYDQAAAADcfRjpBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMcleG7oSEBFksFp07d87RpQAAAAAAirFiHbq3bt0qZ2dntWnTxm57kyZNlJycLG9v71yP9ff3l8ViyXVp0aKFydUDAAAAAIo6F0cXYKZFixZp4MCBeuedd3Ts2DFVrVpVklSyZEn5+vrmelxmZqa+//57GYYh6Vp479Spkw4ePCgvLy/bOQAAAAAAuJFiO9KdlpamlStX6h//+Ic6dOig+Ph4276/Ty+Pj4+Xj4+PPv30U4WEhMjV1VUXL16Ur6+vfH19VaZMGUlS+fLlbdv+85//qFmzZnJ3d5efn59eeOEFpaWl2a7h7++viRMnqkePHrJarapWrZr+/e9/6/Tp04qMjJTValXdunW1c+dO2zHX61izZo1q1qwpNzc3tW7dWsePHy+UZwYAAAAAKFjFNnSvWLFCQUFBCgoKUvfu3RUXF2cbuc7JxYsXNWXKFL3zzjvav3+/ypcvn2vbn376SREREYqKitK+ffu0YsUKbdmyRQMGDLBrN3v2bDVt2lS7d+9W+/bt9cwzz6hHjx7q3r27fvzxR1WvXl09evSwq+vixYuaNGmSFi9erO+++06pqal6+umnb3iv6enpSk1NtVsAAAAAAI5XbEP3u+++q+7du0uS2rRpowsXLmj9+vW5ts/IyNDcuXPVpEkTBQUFydPTM9e206dPV3R0tAYNGqQaNWqoSZMmev311/Xee+/p8uXLtnbt2rVTv379VKNGDY0ZM0bnz5/XAw88oKeeeko1a9bU8OHDlZiYqD/++MOujjfffFNhYWFq0KCBFi9erK1bt2rHjh251jNlyhR5e3vbFj8/v7w8KgAAAACASYpl6D548KB27NhhGyF2cXFRly5dtGjRolyPKVmypO67775bOv+uXbsUHx8vq9VqWyIiIpSVlaUjR47Y2v31fBUqVJAk1a1bN9u2U6dO2ba5uLioYcOGtvVatWrJx8dHiYmJudYTGxurlJQU28J0dAAAAAC4MxTLF6m9++67unr1qipXrmzbZhiGSpQooT///DPHY9zd3WWxWG7p/FlZWerXr59eeOGFbPuuv6xNkkqUKGH79/Vz57QtKyvL7hw51XGj2lxdXeXq6npLtQMAAAAACk+xC91Xr17Ve++9p5kzZ+rRRx+129epUyctXbpUderUua1r1K9fX/v371f16tVv6zw5uXr1qnbu3KlGjRpJujZqf+7cOdWqVavArwUAAAAAMFexm17+6aef6s8//1SfPn1Up04du+XJJ5/Uu+++e9vXGD58uLZt26Z//vOf2rNnj3755RetXbtWAwcOvO1zlyhRQgMHDtT333+vH3/8Uc8++6wefPBBWwgHAAAAABQdxS50v/vuu3rkkUfk7e2dbV+nTp20Z88e/fjjj7d1jfvuu08bN27UL7/8oocfflihoaEaPXq0KlaseFvnlSQPDw8NHz5c0dHRCgsLk7u7u5YvX37b5wUAAAAAFD6LcaPv0UKhio+P16BBg2zfH55fqamp8vb2Vr2B8+Xs6p5ru13Te9zWdQAAAADgbnU9d6WkpMjLyyvXdsVupBsAAAAAgDsFoRsAAAAAAJMQuu8gvXr1uu2p5QAAAACAOwehGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJO4OLoAmGfTxK7y8vJydBkAAAAAcNdipBsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAk7g4ugCYp9moZXJ2dc9x367pPQq5GgAAAAC4+zDSDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJik3o7tWrlywWiywWi0qUKKHAwEANHTpUaWlpji4NAAAAAHCXcnF0AQWpTZs2iouLU0ZGhjZv3qyYmBilpaVp3rx5du0yMjJUokQJB1WZszuxJgAAAADA7Sk2I92S5OrqKl9fX/n5+Sk6OlrdunXTmjVrNG7cON1///1atGiRAgMD5erqKsMwlJKSoueee07ly5eXl5eXWrZsqb1799rOt3fvXoWHh6tUqVLy8vJSgwYNtHPnTknSf//7Xz322GMqXbq0PD09Vbt2bX322WeSpPj4ePn4+NjVtmbNGlksFtt6fmsCAAAAABQdxWqk++/c3d2VkZEhSTp8+LBWrlypjz76SM7OzpKk9u3bq0yZMvrss8/k7e2tBQsWqFWrVjp06JDKlCmjbt26KTQ0VPPmzZOzs7P27NljG43+5z//qStXrmjTpk3y9PTUgQMHZLVa81RffmrKSXp6utLT023rqampeX5WAAAAAICCV2xD944dO/TBBx+oVatWkqQrV67o/fffV7ly5SRJ3377rX766SedOnVKrq6ukqQZM2ZozZo1+vDDD/Xcc8/p2LFjevnll1WrVi1JUo0aNWznP3bsmDp16qS6detKkgIDA/NcY35qysmUKVM0fvz4PF8fAAAAAGCuYjW9/NNPP5XVapWbm5vCwsLUrFkzvfHGG5KkatWq2cKtJO3atUsXLlxQ2bJlZbVabcuRI0eUlJQkSRoyZIhiYmL0yCOP6F//+pdtuyS98MILmjhxopo2baqxY8dq3759ea43PzXlJDY2VikpKbbl+PHjea4FAAAAAFDwitVId3h4uObNm6cSJUqoUqVKdi8m8/T0tGublZWlihUrKiEhIdt5rn8ee9y4cYqOjta6dev0+eefa+zYsVq+fLmeeOIJxcTEKCIiQuvWrdNXX32lKVOmaObMmRo4cKCcnJxkGIbdOa9Pc/+r/NSUE1dXV9vIOAAAAADgzlGsQrenp6eqV69+S23r16+vkydPysXFRf7+/rm2q1mzpmrWrKnBgwera9euiouL0xNPPCFJ8vPzU//+/dW/f3/FxsZq4cKFGjhwoMqVK6fz588rLS3NFqz37NlTYDUBAAAAAIqGYjW9PC8eeeQRhYWFqWPHjvryyy919OhRbd26VaNGjdLOnTt16dIlDRgwQAkJCfrvf/+r7777Tj/88IOCg4MlSYMGDdKXX36pI0eO6Mcff9S3335r29e4cWN5eHhoxIgROnz4sD744APFx8ffdk0AAAAAgKLlrg3dFotFn332mZo1a6bevXurZs2aevrpp3X06FFVqFBBzs7OOnPmjHr06KGaNWuqc+fOatu2re2FZZmZmfrnP/+p4OBgtWnTRkFBQZo7d64kqUyZMlqyZIk+++wz1a1bV8uWLdO4ceNuuyYAAAAAQNFiMf7+4WMUeampqfL29la9gfPl7OqeY5td03sUclUAAAAAUHxcz10pKSny8vLKtd1dO9INAAAAAIDZCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJXBxdAMyzaWJXeXl5OboMAAAAALhrMdINAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmMTF0QXAPM1GLZOzq3uO+3ZN71HI1QAAAADA3YeRbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATFKkQndCQoIsFovOnTt3W+fp1auXOnbsWCA1me3o0aOyWCzas2ePo0sBAAAAAOSRw0L3/PnzVapUKV29etW27cKFCypRooQefvhhu7abN2+WxWJRpUqVlJycLG9v7wKt5dSpU+rXr5+qVq0qV1dX+fr6KiIiQtu2bSvQ6wAAAAAA7i4ujrpweHi4Lly4oJ07d+rBBx+UdC1c+/r66ocfftDFixfl4eEh6doId6VKlVSzZk1TaunUqZMyMjK0ePFiBQYG6o8//tD69et19uxZU64HAAAAALg7OGykOygoSJUqVVJCQoJtW0JCgiIjI3Xvvfdq69atdtvDw8OzTS+Pj4+Xj4+PvvzySwUHB8tqtapNmzZKTk62HZuZmakhQ4bIx8dHZcuW1bBhw2QYhm3/uXPntGXLFk2dOlXh4eGqVq2aGjVqpNjYWLVv397WzmKxaN68eWrbtq3c3d0VEBCgVatW2d3T77//ri5duqh06dIqW7asIiMjdfToUbs2cXFxCg4Olpubm2rVqqW5c+fa7d+xY4dCQ0Pl5uamhg0bavfu3fl9xAAAAAAAB3PoZ7pbtGihDRs22NY3bNigFi1aqHnz5rbtV65c0bZt2xQeHp7jOS5evKgZM2bo/fff16ZNm3Ts2DENHTrUtn/mzJlatGiR3n33XW3ZskVnz57Vxx9/bNtvtVpltVq1Zs0apaen37De0aNHq1OnTtq7d6+6d++url27KjEx0VZHeHi4rFarNm3apC1bttj+CHDlyhVJ0sKFCzVy5EhNmjRJiYmJmjx5skaPHq3FixdLktLS0tShQwcFBQVp165dGjdunN29AAAAAACKFoeH7u+++05Xr17V+fPntXv3bjVr1kzNmze3jYBv375dly5dyjV0Z2RkaP78+WrYsKHq16+vAQMGaP369bb9r732mmJjY9WpUycFBwdr/vz5dp8Jd3FxUXx8vBYvXiwfHx81bdpUI0aM0L59+7Jd66mnnlJMTIxq1qypCRMmqGHDhnrjjTckScuXL5eTk5Peeecd1a1bV8HBwYqLi9OxY8ds9zJhwgTNnDlTUVFRCggIUFRUlAYPHqwFCxZIkpYuXarMzEwtWrRItWvXVocOHfTyyy/f9Dmmp6crNTXVbgEAAAAAOJ5DQ3d4eLjS0tL0ww8/aPPmzapZs6bKly+v5s2b64cfflBaWpoSEhJUtWpVBQYG5ngODw8P3Xvvvbb1ihUr6tSpU5KklJQUJScnKywszLbfxcVFDRs2tDtHp06ddOLECa1du1YRERFKSEhQ/fr1FR8fb9fur+e5vn59pHvXrl06fPiwSpUqZRs9L1OmjC5fvqykpCSdPn1ax48fV58+fWz7rVarJk6cqKSkJElSYmKi6tWrZ/sse07XzMmUKVPk7e1tW/z8/G56DAAAAADAfA57kZokVa9eXVWqVNGGDRv0559/qnnz5pIkX19fBQQE6LvvvtOGDRvUsmXLXM9RokQJu3WLxWL3me1b5ebmptatW6t169YaM2aMYmJiNHbsWPXq1euGx1ksFklSVlaWGjRooKVLl2ZrU65cOV2+fFnStSnmjRs3ttvv7OwsSfmqW5JiY2M1ZMgQ23pqairBGwAAAADuAA7/nu7rL0hLSEhQixYtbNubN2+uL7/8Utu3b891avnNeHt7q2LFitq+fbtt29WrV7Vr166bHhsSEqK0tDS7bX89z/X1WrVqSZLq16+vX375ReXLl1f16tXtFm9vb1WoUEGVK1fWr7/+mm1/QECA7Zp79+7VpUuXcr1mTlxdXeXl5WW3AAAAAAAc744I3Vu2bNGePXtsI93StdC9cOFCXb58Od+hW5JefPFF/etf/9LHH3+s//znP3r++edtbz+XpDNnzqhly5ZasmSJ9u3bpyNHjmjVqlWaNm2aIiMj7c61atUqLVq0SIcOHdLYsWO1Y8cODRgwQJLUrVs33XPPPYqMjNTmzZt15MgRbdy4US+++KJ+++03SdK4ceM0ZcoUzZkzR4cOHdJPP/2kuLg4zZo1S5IUHR0tJycn9enTRwcOHNBnn32mGTNm5PveAQAAAACO5dDp5dK10H3p0iXVqlVLFSpUsG1v3ry5zp8/r3vvvfe2pkq/9NJLSk5OVq9eveTk5KTevXvriSeeUEpKiqRrby9v3LixZs+eraSkJGVkZMjPz099+/bViBEj7M41fvx4LV++XM8//7x8fX21dOlShYSESLr22fJNmzZp+PDhioqK0vnz51W5cmW1atXKNvIcExMjDw8PTZ8+XcOGDZOnp6fq1q2rQYMG2Wr55JNP1L9/f4WGhiokJERTp05Vp06d8n3/AAAAAADHsRj5/SDxXcZisejjjz9Wx44dHV3KTaWmpsrb21v1Bs6Xs6t7jm12Te9RyFUBAAAAQPFxPXelpKTc8CO+Dp9eDgAAAABAcUXoBgAAAADAJA7/THdRwSx8AAAAAEBeMdINAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASVwcXQDMs2liV3l5eTm6DAAAAAC4azHSDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJXBxdAMzTbNQyObu6Z9u+a3oPB1QDAAAAAHcfRroBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQuvPh6NGjslgs2rNnT65tEhISZLFYdO7cOUlSfHy8fHx8CqU+AAAAAMCdociG7l69eqljx47Ztv897JrBz89PycnJqlOnzi0f06VLFx06dMi2Pm7cON1///0mVAcAAAAAuFO4OLqAosjZ2Vm+vr55Osbd3V3u7u4mVQQAAAAAuBMV2ZHuW5HTaPJrr70mf39/2/r1EfPJkyerQoUK8vHx0fjx43X16lW9/PLLKlOmjKpUqaJFixbZjslpevlnn32mmjVryt3dXeHh4Tp69Kjddf86vTw+Pl7jx4/X3r17ZbFYZLFYFB8fr969e6tDhw52x129elW+vr521wcAAAAAFA2MdEv69ttvVaVKFW3atEnfffed+vTpo23btqlZs2b6/vvvtWLFCvXv31+tW7eWn59ftuOPHz+uqKgo9e/fX//4xz+0c+dOvfTSS7ler0uXLvr555/1xRdf6JtvvpEkeXt7q2bNmmrWrJmSk5NVsWJFSdfC/IULF9S5c+dcz5eenq709HTbempqan4fBQAAAACgABXpke5PP/1UVqvVbmnbtm2ez1OmTBm9/vrrCgoKUu/evRUUFKSLFy9qxIgRqlGjhmJjY1WyZEl99913OR4/b948BQYGavbs2QoKClK3bt3Uq1evXK/n7u4uq9UqFxcX+fr6ytfXV+7u7mrSpImCgoL0/vvv29rGxcXpqaeektVqzfV8U6ZMkbe3t23J6Q8DAAAAAIDCV6RDd3h4uPbs2WO3vPPOO3k+T+3ateXk9H+PokKFCqpbt65t3dnZWWXLltWpU6dyPD4xMVEPPvigLBaLbVtYWFie65CkmJgYxcXFSZJOnTqldevWqXfv3jc8JjY2VikpKbbl+PHj+bo2AAAAAKBgFenp5Z6enqpevbrdtt9++832bycnJxmGYbc/IyMj23lKlChht26xWHLclpWVlWMdf7/G7ejRo4deeeUVbdu2Tdu2bZO/v78efvjhGx7j6uoqV1fXAqsBAAAAAFAwinTovply5crp5MmTMgzDNgp9o+/Wzq+QkBCtWbPGbtv27dtveEzJkiWVmZmZbXvZsmXVsWNHxcXFadu2bXr22WcLslQAAAAAQCEq0tPLb6ZFixY6ffq0pk2bpqSkJL311lv6/PPPC/w6/fv3V1JSkoYMGaKDBw/qgw8+UHx8/A2P8ff315EjR7Rnzx7973//s3sRWkxMjBYvXqzExET17NmzwOsFAAAAABSOYh26g4ODNXfuXL311luqV6+eduzYoaFDhxb4dapWraqPPvpIn3zyierVq6f58+dr8uTJNzymU6dOatOmjcLDw1WuXDktW7bMtu+RRx5RxYoVFRERoUqVKhV4vQAAAACAwmExCvIDySgQFy9eVKVKlbRo0SJFRUXl+fjU1FR5e3ur3sD5cnZ1z7Z/1/QeBVEmAAAAANy1rueulJQUeXl55dquWH+mu6jJysrSyZMnNXPmTHl7e+vxxx93dEkAAAAAgNtA6L6DHDt2TAEBAapSpYri4+Pl4kL3AAAAAEBRRqq7g/j7+xfo148BAAAAAByrWL9IDQAAAAAARyJ0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACZxcXQBMM+miV3l5eXl6DIAAAAA4K7FSDcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJuEz3cWQYRiSpNTUVAdXAgAAAADF0/W8dT1/5YbQXQydOXNGkuTn5+fgSgAAAACgeDt//ry8vb1z3U/oLobKlCkjSTp27NgNOx/FQ2pqqvz8/HT8+HHeVl/M0dd3F/r77kJ/313o77sHfV28GYah8+fPq1KlSjdsR+guhpycrn1U39vbm1/uu4iXlxf9fZegr+8u9Pfdhf6+u9Dfdw/6uvi6lUFOXqQGAAAAAIBJCN0AAAAAAJiE0F0Mubq6auzYsXJ1dXV0KSgE9Pfdg76+u9Dfdxf6++5Cf9896GtIksW42fvNAQAAAABAvjDSDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN1F1Ny5cxUQECA3Nzc1aNBAmzdvvmH7jRs3qkGDBnJzc1NgYKDmz59fSJXiduWlr5OTkxUdHa2goCA5OTlp0KBBhVcoCkRe+nv16tVq3bq1ypUrJy8vL4WFhenLL78sxGpxu/LS31u2bFHTpk1VtmxZubu7q1atWpo9e3YhVovbldf/7b7uu+++k4uLi+6//35zC0SByUtfJyQkyGKxZFv+85//FGLFuB15/d1OT0/XyJEjVa1aNbm6uuree+/VokWLCqlaOAKhuwhasWKFBg0apJEjR2r37t16+OGH1bZtWx07dizH9keOHFG7du308MMPa/fu3RoxYoReeOEFffTRR4VcOfIqr32dnp6ucuXKaeTIkapXr14hV4vbldf+3rRpk1q3bq3PPvtMu3btUnh4uB577DHt3r27kCtHfuS1vz09PTVgwABt2rRJiYmJGjVqlEaNGqW33367kCtHfuS1v69LSUlRjx491KpVq0KqFLcrv3198OBBJScn25YaNWoUUsW4Hfnp786dO2v9+vV69913dfDgQS1btky1atUqxKpR6AwUOY0aNTL69+9vt61WrVrGK6+8kmP7YcOGGbVq1bLb1q9fP+PBBx80rUYUjLz29V81b97cePHFF02qDGa4nf6+LiQkxBg/fnxBlwYTFER/P/HEE0b37t0LujSYIL/93aVLF2PUqFHG2LFjjXr16plYIQpKXvt6w4YNhiTjzz//LITqUNDy2t+ff/654e3tbZw5c6YwysMdgpHuIubKlSvatWuXHn30Ubvtjz76qLZu3ZrjMdu2bcvWPiIiQjt37lRGRoZpteL25KevUXQVRH9nZWXp/PnzKlOmjBklogAVRH/v3r1bW7duVfPmzc0oEQUov/0dFxenpKQkjR071uwSUUBu53c7NDRUFStWVKtWrbRhwwYzy0QByU9/r127Vg0bNtS0adNUuXJl1axZU0OHDtWlS5cKo2Q4iIujC0De/O9//1NmZqYqVKhgt71ChQo6efJkjsecPHkyx/ZXr17V//73P1WsWNG0epF/+elrFF0F0d8zZ85UWlqaOnfubEaJKEC3099VqlTR6dOndfXqVY0bN04xMTFmlooCkJ/+/uWXX/TKK69o8+bNcnHh/64VFfnp64oVK+rtt99WgwYNlJ6ervfff1+tWrVSQkKCmjVrVhhlI5/y09+//vqrtmzZIjc3N3388cf63//+p+eff15nz57lc93FGP8VL6IsFovdumEY2bbdrH1O23HnyWtfo2jLb38vW7ZM48aN07///W+VL1/erPJQwPLT35s3b9aFCxe0fft2vfLKK6pevbq6du1qZpkoILfa35mZmYqOjtb48eNVs2bNwioPBSgvv9tBQUEKCgqyrYeFhen48eOaMWMGobuIyEt/Z2VlyWKxaOnSpfL29pYkzZo1S08++aTeeustubu7m14vCh+hu4i555575OzsnO2vZ6dOncr2V7brfH19c2zv4uKismXLmlYrbk9++hpF1+3094oVK9SnTx+tWrVKjzzyiJllooDcTn8HBARIkurWras//vhD48aNI3Tf4fLa3+fPn9fOnTu1e/duDRgwQNK1/6NuGIZcXFz01VdfqWXLloVSO/KmoP63+8EHH9SSJUsKujwUsPz0d8WKFVW5cmVb4Jak4OBgGYah3377jRfoFVN8pruIKVmypBo0aKCvv/7abvvXX3+tJk2a5HhMWFhYtvZfffWVGjZsqBIlSphWK25PfvoaRVd++3vZsmXq1auXPvjgA7Vv397sMlFACur32zAMpaenF3R5KGB57W8vLy/99NNP2rNnj23p37+/goKCtGfPHjVu3LiwSkceFdTv9u7du/n4XxGQn/5u2rSpTpw4oQsXLti2HTp0SE5OTqpSpYqp9cKBHPQCN9yG5cuXGyVKlDDeffdd48CBA8agQYMMT09P4+jRo4ZhGMYrr7xiPPPMM7b2v/76q+Hh4WEMHjzYOHDggPHuu+8aJUqUMD788ENH3QJuUV772jAMY/fu3cbu3buNBg0aGNHR0cbu3buN/fv3O6J85FFe+/uDDz4wXFxcjLfeestITk62LefOnXPULSAP8trfb775prF27Vrj0KFDxqFDh4xFixYZXl5exsiRIx11C8iD/Pz3/K94e3nRkde+nj17tvHxxx8bhw4dMn7++WfjlVdeMSQZH330kaNuAXmQ1/4+f/68UaVKFePJJ5809u/fb2zcuNGoUaOGERMT46hbQCEgdBdRb731llGtWjWjZMmSRv369Y2NGzfa9vXs2dNo3ry5XfuEhAQjNDTUKFmypOHv72/MmzevkCtGfuW1ryVlW6pVq1a4RSPf8tLfzZs3z7G/e/bsWfiFI1/y0t+vv/66Ubt2bcPDw8Pw8vIyQkNDjblz5xqZmZkOqBz5kdf/nv8VobtoyUtfT5061bj33nsNNzc3o3Tp0sZDDz1krFu3zgFVI7/y+rudmJhoPPLII4a7u7tRpUoVY8iQIcbFixcLuWoUJoth/P83agEAAAAAgALFZ7oBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAuIu0aNFCgwYNcnQZAADcNSyGYRiOLgIAABSOs2fPqkSJEipVqpSjS8kmISFB4eHh+vPPP+Xj4+PocgAAKBAuji4AAAAUnjJlyji6hBxlZGQ4ugQAAEzB9HIAAO4if51e7u/vr4kTJ6pHjx6yWq2qVq2a/v3vf+v06dOKjIyU1WpV3bp1tXPnTtvx8fHx8vHx0Zo1a1SzZk25ubmpdevWOn78uN115s2bp3vvvVclS5ZUUFCQ3n//fbv9FotF8+fPV2RkpDw9PRUTE6Pw8HBJUunSpWWxWNSrVy9J0hdffKGHHnpIPj4+Klu2rDp06KCkpCTbuY4ePSqLxaLVq1crPDxcHh4eqlevnrZt22Z3ze+++07NmzeXh4eHSpcurYiICP3555+SJMMwNG3aNAUGBsrd3V316tXThx9+WCDPHABwdyN0AwBwF5s9e7aaNm2q3bt3q3379nrmmWfUo0cPde/eXT/++KOqV6+uHj166K+fRrt48aImTZqkxYsX67vvvlNqaqqefvpp2/6PP/5YL774ol566SX9/PPP6tevn5599llt2LDB7tpjx45VZGSkfvrpJ7366qv66KOPJEkHDx5UcnKy5syZI0lKS0vTkCFD9MMPP2j9+vVycnLSE088oaysLLvzjRw5UkOHDtWePXtUs2ZNde3aVVevXpUk7dmzR61atVLt2rW1bds2bdmyRY899pgyMzMlSaNGjVJcXJzmzZun/fv3a/Dgwerevbs2btxY8A8dAHBX4TPdAADcRVq0aKH7779fr732mvz9/fXwww/bRqFPnjypihUravTo0Xr11VclSdu3b1dYWJiSk5Pl6+ur+Ph4Pfvss9q+fbsaN24sSfrPf/6j4OBgff/992rUqJGaNm2q2rVr6+2337Zdt3PnzkpLS9O6deskXRvpHjRokGbPnm1rc6uf6T59+rTKly+vn376SXXq1NHRo0cVEBCgd955R3369JEkHThwQLVr11ZiYqJq1aql6OhoHTt2TFu2bMl2vrS0NN1zzz369ttvFRYWZtseExOjixcv6oMPPsjn0wYAgJFuAADuavfdd5/t3xUqVJAk1a1bN9u2U6dO2ba5uLioYcOGtvVatWrJx8dHiYmJkqTExEQ1bdrU7jpNmza17b/ur+e4kaSkJEVHRyswMFBeXl4KCAiQJB07dizXe6lYsaJd3ddHunNy4MABXb58Wa1bt5bVarUt7733nt00dgAA8oMXqQEAcBcrUaKE7d8WiyXXbX+fyn19e27b/r7fMIxs2zw9PW+pxscee0x+fn5auHChKlWqpKysLNWpU0dXrly56b1cr9vd3T3X819vs27dOlWuXNlun6ur6y3VCABAbhjpBgAAeXL16lW7l6sdPHhQ586dU61atSRJwcHB2aZxb926VcHBwTc8b8mSJSXJ9jlrSTpz5owSExM1atQotWrVSsHBwbaXn+XFfffdp/Xr1+e4LyQkRK6urjp27JiqV69ut/j5+eX5WgAA/BUj3QAAIE9KlCihgQMH6vXXX1eJEiU0YMAAPfjgg2rUqJEk6eWXX1bnzp1Vv359tWrVSp988olWr16tb7755obnrVatmiwWiz799FO1a9dO7u7uKl26tMqWLau3335bFStW1LFjx/TKK6/kuebY2FjVrVtXzz//vPr376+SJUtqw4YNeuqpp3TPPfdo6NChGjx4sLKysvTQQw8pNTVVW7duldVqVc+ePfP1nAAAkBjpBgAAeeTh4aHhw4crOjpaYWFhcnd31/Lly237O3bsqDlz5mj69OmqXbu2FixYoLi4OLVo0eKG561cubLGjx+vV155RRUqVNCAAQPk5OSk5cuXa9euXapTp44GDx6s6dOn57nmmjVr6quvvtLevXvVqFEjhYWF6d///rdcXK6NP0yYMEFjxozRlClTFBwcrIiICH3yySe2z48DAJBfvL0cAADcsvj4eA0aNEjnzp1zdCkAABQJjHQDAAAAAGASQjcAAAAAACZhejkAAAAAACZhpBsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAk/w/u4HO8fkd5aoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Feature importance for Random Forest\n", + "if 'Random Forest' in models:\n", + " rf_model = models['Random Forest']\n", + " feature_importance = pd.DataFrame({\n", + " 'feature': feature_columns,\n", + " 'importance': rf_model.feature_importances_\n", + " }).sort_values('importance', ascending=False)\n", + " \n", + " plt.figure(figsize=(10, 6))\n", + " sns.barplot(x='importance', y='feature', data=feature_importance)\n", + " plt.title('Feature Importance in Predicting Lap Times')\n", + " plt.tight_layout()\n", + " plt.show()" + ] } ], "metadata": { + "kernelspec": { + "display_name": "csci349", + "language": "python", + "name": "python3" + }, "language_info": { - "name": "python" + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.13" } }, "nbformat": 4,