// This file is part of www.nand2tetris.org // and the book "The Elements of Computing Systems" // by Nisan and Schocken, MIT Press. // File name: projects/5/CPU.hdl /** * The Hack Central Processing unit (CPU). * Parses the binary code in the instruction input and executes it according to the * Hack machine language specification. In the case of a C-instruction, computes the * function specified by the instruction. If the instruction specifies to read a memory * value, the inM input is expected to contain this value. If the instruction specifies * to write a value to the memory, sets the outM output to this value, sets the addressM * output to the target address, and asserts the writeM output (when writeM = 0, any * value may appear in outM). * If the reset input is 0, computes the address of the next instruction and sets the * pc output to that value. If the reset input is 1, sets pc to 0. * Note: The outM and writeM outputs are combinational: they are affected by the * instruction's execution during the current cycle. The addressM and pc outputs are * clocked: although they are affected by the instruction's execution, they commit to * their new values only in the next cycle. */ CHIP CPU { IN inM[16], // M value input (M = contents of RAM[A]) instruction[16], // Instruction for execution reset; // Signals whether to re-start the current // program (reset==1) or continue executing // the current program (reset==0). OUT outM[16], // M value output writeM, // Write to M? addressM[15], // Address in data memory (of M) pc[15]; // address of next instruction PARTS: // CPU implements Hack machine language from book c4/c5 // step 1: decode instruction type (addr instruction "A" vs compute instruction "C") // step 2: handle A reg load and ALU input sel // step 3: handle D reg and ALU comp // step 4: handle mem write and jump logic // step 5: update PC // // Instruction formats (for reference, duh): // A-instruction: 0vvvvvvvvvvvvvvv (load 15-bit value into A) // C-instruction: 111ACCCCCCDDDJJJ // A = ALU input sel (0=A, 1=M) // CCCCCC = ALU control bits // DDD = destination (A=bit5, D=bit4, M=bit3) // JJJ = jump condition (bit2=j(ump)l(ess)t(han), bit1=j(ump)eq(ual), bit0=j(ump)g(reater)t(han)) // STEP 1 // decode instruction type Not(in=instruction[15], out=aInstr); // aInstr = 1 when instruction[15] = 0 Not(in=aInstr, out=cInstr); // cInstr = 1 when instruction[15] = 1 // STEP 2 // pick A reg input (instruction or ALU out) Mux16(a=instruction, b=aluOut, sel=cInstr, out=aRegIn); // A-instr uses instruction, C-instr uses ALU // load A reg if A-instruction or dest A Or(a=aInstr, b=instruction[5], out=loadA); // load A if A-instr or C-instr with A dest ARegister(in=aRegIn, load=loadA, out=aRegOut); // A reg stores addr/value // pick ALU y input (A reg or M) Mux16(a=aRegOut, b=inM, sel=instruction[12], out=aluY); // instruction[12] picks A vs M for ALU // STEP 3 // load D reg if C-instruction with dest D And(a=cInstr, b=instruction[4], out=loadD); // loadD = 1 when C-instr and dest D DRegister(in=aluOut, load=loadD, out=dRegOut); // D reg stores data // compute ALU operation ALU(x=dRegOut, y=aluY, zx=instruction[11], nx=instruction[10], // ALU control from instruction[11..6] zy=instruction[9], ny=instruction[8], f=instruction[7], no=instruction[6], out=aluOut, zr=zr, ng=ng); // STEP 4 // writeM set if C-instruction with dest M And(a=cInstr, b=instruction[3], out=writeM); // writeM = 1 when C-instr and dest M // compute jump conditions Not(in=zr, out=notZr); // notZr = 1 when ALU out is not zero Not(in=ng, out=notNg); // notNg = 1 when ALU out is not negative And(a=notZr, b=notNg, out=pos); // pos = 1 when ALU out is positive And(a=instruction[2], b=ng, out=jlt); // jlt = 1 when jump if less than and ALU < 0 And(a=instruction[1], b=zr, out=jeq); // jeq = 1 when jump if equal and ALU = 0 And(a=instruction[0], b=pos, out=jgt); // jgt = 1 when jump if greater and ALU > 0 Or(a=jlt, b=jeq, out=jle); // combine jlt and jeq Or(a=jle, b=jgt, out=jump); // combine all jump conditions And(a=cInstr, b=jump, out=pcLoad); // only jump on C-instructions // STEP 5 // program counter PC(in=aRegOut, load=pcLoad, inc=true, reset=reset, out[0..14]=pc); // PC jumps to A reg or increments // OUT // connect outputs Or16(a=false, b=aluOut, out=outM); // outM gets ALU output Or16(a=false, b=aRegOut, out[0..14]=addressM); // addressM gets A register (15 bits) }